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Abstract

Background: 

Identifying all protein-protein interactions in an organism is a major objective of proteomics.  A 
related goal is to know which protein pairs are present in the same protein complex.  High-
throughput methods such as yeast two-hybrid (Y2H) and affinity purification coupled with mass 
spectrometry (APMS) have been used to detect interacting proteins on a genomic scale.  
However, both Y2H and APMS methods have substantial false-positive rates.  Aside from high-
throughput interaction screens, other gene- or protein-pair characteristics may also be informative 
of physical interaction.  Therefore it is desirable to integrate multiple datasets and utilize their 
different predictive value for more accurate prediction of co-complexed relationship.

Results: 

Using a supervised machine learning approach ― probabilistic decision tree, we integrated high-
throughput protein interaction datasets and other gene- and protein-pair characteristics to predict 
co-complexed pairs (CCP) of proteins.  Our predictions proved more sensitive and specific than 
predictions based on Y2H or APMS methods alone or in combination.  Among the top 
predictions not annotated as CCPs in our reference set (obtained from the MIPS complex 
catalogue), a significant fraction was found to physically interact according to a separate database 
(YPD, Yeast Proteome Database), and the remaining predictions may potentially represent 
unknown CCPs.

Conclusions: 

We demonstrated that the probabilistic decision tree approach can be successfully used to predict 
co-complexed protein (CCP) pairs from other characteristics.  Our top-scoring CCP predictions 
provide testable hypotheses for experimental validation.



Background

Proteins are the major executors of the genetic program.  Many proteins participate in cellular 
processes as members of protein complexes of varying size.  It is believed that combinatorial 
interactions among proteins serve as an important basis for the biological complexity of higher 
organisms [1].  Therefore, increased knowledge about protein-protein interactions and protein 
complexes will greatly aid our understanding of protein function.

In recent years, there have been several large-scale efforts to map protein-protein interactions 
in yeast.  The yeast two-hybrid (Y2H) system [2, 3] detects both transient and stable interactions.  
However, it suffers from high false-positive rate due to a number of factors such as fortuitous 
activation of reporter genes and self-activating “bait” proteins.  False negatives are also inherent 
in the yeast two-hybrid system because of insufficient depth of screening, misfolding in the 
fusion proteins that abrogate the interactions, and use of full-length proteins that may mask 
interactions [3, 4].  In addition, both “bait” and “prey” proteins are over-expressed in the nucleus, 
so interactions detected may not be physiologically relevant [5], while certain interactions, for 
example, those involving membrane proteins and those requiring ancillary non-nuclear factors, 
may be undetectable [4].  Affinity purification coupled with mass spectrometry (APMS) has also 
been used to identify components of protein complexes on a large scale [6, 7].  Protein 
interactions identified in this way are more likely to be physiological, especially when tagged 
“bait” proteins are expressed under endogenous promoters [6].  Yet APMS is also subject to 
experimental error.  Epitope tags may disable some protein interactions.  Weakly associated 
components may dissociate and escape detection.  Complexes containing transmembrane proteins 
are poorly detected while other condition-specific interactions may be missed [5].  Considering 
only interactions supported by more than one type of high-throughput evidence improves 
accuracy, but sacrifices sensitivity [5].  Therefore, more sophisticated methods are required to 
appropriately combine different high-throughput experimental datasets.

Integrating information beyond direct measurement of protein interactions could potentially 
improve the quality of protein interaction data as well.  It has been shown that two proteins with 
similar mRNA expression profiles are more likely to interact with each other [8-12] (reviewed in
[13]).  Subcellular localization of proteins also provides information, since two interacting 
proteins usually reside in the same subcellular compartment [5, 14, 15].  Many other 
characteristics of a gene or protein pair might also have predictive value [16].  Although each 
characteristic alone may contain only limited information about whether a protein pair is co-
complexed, many characteristics considered in combination may be more predictive.

Previously, there have been several efforts in integrating heterogeneous biological data 
types.  Earlier studies addressed the question in a semi-manual and heuristic manner [17, 18].  
More recently, the Support Vector Machine (SVM) algorithm has been applied to learning gene 
functions from two data types [19], which performs the task in an automated fashion.  Bayesian 
networks have also been used to combine heterogeneous data sources [20, 21], and King et al.
predicted gene function and knockout phenotype from patterns of annotation using a probabilistic 
decision tree approach [22, 23].  Probabilistic decision trees provide confidence levels of the 
predictions, as does Bayesian networks.  In addition, the decision tree presents all the rules used 
in the prediction, making it easily interpretable which attribute combinations are most 
informative.  When combining multiple biological data sources, learning the contributions of 
different attribute combinations can greatly help us to gain insight of the underlying biological 



relationships, and therefore probabilistic decision trees represent an appropriate approach for this 
task.   

Here we focused on the prediction of co-complexed protein (CCP) pairs in Saccharomyces 
cerevisiae and employed a probabilistic decision tree approach to integrate many gene- and 
protein-pair characteristics (see Table 1 and 2 for a summary and Additional file 1 for a complete 
list).  A CCP pair is defined as a pair of proteins that belong to the same protein complex.  Based 
on a training set, a probabilistic decision tree was generated and used to score protein pairs in a 
test set.  High-scoring protein pairs by this approach represent predicted CCPs.  Predictions were 
assessed by cross-validation according to a reference set based on the MIPS (Munich Information 
center for Protein Sequences) complex catalogue [24, 25].  Furthermore, top-scoring protein pairs 
not listed in MIPS as being co-complexed were validated by another database, YPD (Yeast 
Proteome Database) [26], at a significantly higher rate than expected by chance.

Results

We sought to combine a wide range of gene- and protein-pair characteristics using probabilistic 
decision trees to predict which protein pairs belong to the same complex.  The approach was 
tested on the budding yeast Saccharomyces cerevisiae, for which extensive genomic and 
proteomic information is available.  Data were obtained for a total of 467 gene- or protein-pair 
attributes, which were organized hierarchically and fell into 9 major categories (see Table 1 for a 
summary and Additional file 1 for more details).  A reference set of 8707 CCPs was obtained 
from annotated protein complexes in MIPS [25].  We chose this literature-derived reference set as 
our “gold standard” because of its high reliability, but we note that this reference set is still 
imperfect since it reflects investigational bias that may lead us to predict fewer CCPs between 
uncharacterized proteins. 

Probabilistic decision tree

To model the conditional probability that a protein pair is co-complexed given its other known 
attributes, we constructed a probabilistic decision tree using all protein pairs in Saccharomyces
cerevisiae and all attributes listed in Table 1.  The decision tree successively partitioned protein 
pairs according to the values (0 or 1) of their particular attributes.  The structure of the tree was 
learned automatically, and the attribute used to define each successive partition was the attribute 
providing the greatest reduction of entropy with respect to the CCP attribute (see Methods 
section).  Figure 1 shows the decision tree constructed using all attributes described in Table 1.  
Some of the rules specified in the decision tree capture biological knowledge about co-complexed 
proteins.  For example, protein pairs in one high-scoring node (Figure 1, green arrowhead) are 
annotated with the attributes “TAP, ‘spoke’ model (I_APMS.TAP.spoke)” and “gene 
neighborhood (N)”, which is consistent with the fact that the TAP study screens for protein 
complexes at a large scale [6], and the observation that proteins with conserved gene
neighborhood are more likely to interact [5].   

The attribute “bound by Fhl1p, p<0.001 (R_p001.FHL1)”, describing putative regulation of 
genes by the transcription factor Fhl1p according to chromatin immunoprecipitation experiments, 
was chosen to make the first partition (shown as the root node in Figure 1), since this attribute 
yielded the greatest reduction in entropy.  One might wonder why it is more informative than 
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high-throughput screens designed to assess protein-protein interactions.  Note that our attribute 
selection criterion – conditional information gain – takes into consideration both accuracy and 
coverage.  Although binding of Fhl1p does not provide information comprehensive enough to 
cover most of the yeast proteome, no existing evidence type is both very accurate and very 
comprehensive.  Therefore it is not surprising that a relatively accurate attribute with a fair 
coverage becomes the winner.  Fhl1p binds to the promoters of 194 genes at a p-value threshold 
of 0.001 [27], which translates to 18,721 protein pairs.  This number is comparable to those of the 
APMS studies (26,742 for HMS-PCI [7] and 17,314 for TAP [6], and is significantly higher than 
those of the Y2H studies (4,475  and 948 [2, 3]).  A significant portion (3,590 pairs) of the 18,721 
protein pairs bound by Fhl1p are annotated as CCPs in our reference set, which should be 
regarded as relatively accurate considering the noisiness of the high-throughput interaction 
datasets.  In addition, Fhl1p is believed to regulate the transcription of genes involved in rRNA 
processing [28], and many rRNA processing proteins, together with small nucleolar RNA’s 
(snoRNA’s), form a large RNP complex — the processome [29].  Many of the genes regulated by 
Fhl1p are likely to be actually members of the processome complex, therefore it is reasonable that 
the attribute “bound by Fhl1p, p<0.001 (R_p001.FHL1)” came out to be the variable most 
informative of co-complexed relationships. 

Among attributes listed in Table 1, those that individually provide the greatest reduction in 
entropy at the root node are shown in Table 3.  To compare this reduction with the entropy of the 
node before it is partitioned, we also describe relative reduction in entropy (defined as the 
conditional information gain divided by the entropy of the root node) for the top attributes.  
Relative reduction in entropy among the top 20 attributes ranges from 2.0% to 25.7%.  Each of 
the 20 top-scoring protein-pair attributes shows significant positive correlation with CCP (p<10-

300 by Fisher’s Exact Test, with multiple hypotheses adjusted for using the conservative 
Bonferroni correction).  Most of these top attributes are from the categories “same transcriptional 
regulator,” “correlated mRNA expression,” and “high-throughput screens of interaction.”  This 
supports previous observations that co-complexed proteins are more likely to have correlated 
expression profiles and to have been identified in previous high-throughput interaction screens [5, 
8, 9].  Yet it is worth noting that even attributes with low relative reduction in entropy at the root 
node could potentially be useful when combined with other attributes.  For example, the relative 
entropy reduction provided by the attribute “bound by Grf10p, p<0.005” at the root node is only 
0.0025%, but it is nevertheless used in the decision tree for an informative partition (Figure 1).

Table 4 lists the 61 attributes used in the decision tree shown in Figure 1.  This list includes 
attributes from 8 of the 9 categories.  Although some attributes never appear in the decision trees, 
this does not necessarily mean that they are not informative with regard to CCPs.  Absence of an 
attribute may simply indicate that the information it provides is at least partially redundant with 
other attributes that are used in the tree. 

Assessment using cross-validation

We used four-fold cross-validation to score each protein pair according to its estimated 
probability of being a CCP pair.  Successively omitting one quarter of all protein pairs, we 
generated four decision trees, each very similar to the one generated using all protein pairs (data 
not shown).  In the scoring procedure, a protein pair is mapped to a terminal or “leaf” node in the 
decision tree, whereupon it is assigned a probability of CCP calculated from the numbers of CCP 



and non-CCP pairs in the training set that map to the same leaf node (see Methods section).  
True-positive rates (defined as the number of true positives divided by the total number of trues) 
and false-positive rates (defined as the number of false positives divided by the total number of 
falses) of the predictions were calculated at a series of score thresholds, and these values were 
used to plot a Receiver Operating Characteristic (ROC) curve, shown in Figure 2 at different 
resolutions.  Note that a method making random guesses will have an expected ROC curve on the 
diagonal (i.e., true-positive rate equals false-positive rate).  Using our probabilistic decision tree 
approach, over 78.9% of CCPs are correctly predicted at a false-positive rate of 1% (Fig. 2B).  
Because experimentally testing a large number of protein pairs for CCP is both time-consuming 
and costly, predictions with many false-positives are not practically very useful.  Given the ~20 
million possibly interacting protein pairs in yeast, even a false-positive rate of 0.01 is likely to be 
unacceptable.  Therefore, we focused on the part of our ROC curve where the false-positive rate 
is very low (~10-5) (Fig. 2C).  Among the top 83 predictions, 74 are known CCP pairs.  At a false-
positive rate of 5.4×10-5 (1125 false positives), the true-positive rate is 0.12 (1005 true positives).  
Different users of our predictions may have different levels of acceptable true-positive or false-
positive rate.  Our ROC curve allows users to tune predictions to suit their applications.

To assess the contribution of different datasets, we repeated the training and cross-validation 
procedures, successively omitting one category of attributes when constructing the decision trees 
(Fig. 2 and data not shown).  Judging from the ROC curves, five out of the nine categories have 
little observable effect on the predictions when excluded (data not shown), and omission of each 
of the remaining four categories – “high-throughput screens (HTS) of interaction”, “correlated 
mRNA expression”, “same transcriptional regulator” and “sequence homology” – shows modest 
decrease in performance (Fig. 2).  This indicates that most attributes are at least partially 
redundant with one or more attributes in another category.  It also suggests that many strong 
predictions of CCP relationships can be made without direct evidence of physical interaction.  

The MIPS database contains other types of information, such as protein function, protein 
class and subcellular localization, which may also be informative of CCP relationships.  
However, some of these annotations may be derived solely from physical interaction evidence, 
thereby resulting in circularity.  With this substantial caveat in mind, we repeated training and 
cross-validation using attributes from three additional categories — “same subcellular 
localization (MIPS)”, “same function (MIPS)” and “same protein class (MIPS)” (Table 2).  The 
performance improves considerably with the addition of these attributes, with only 108 false 
positives (false-positive rate 5.2×10-6) when 1015 true CCP pairs are predicted (true-positive rate 
0.117) (Fig. 2, grey curve).  At least part of the improvement came from non-circular evidence 
because not all of these annotations are derived from physical interactions.  In addition, since 
these attributes can be used without risk of circularity for protein pairs not known to physically 
interact, this all-inclusive tree should be used to make predictions for such pairs.

To compare decision tree predictions with those of high-throughput experiments, we 
calculated true-positive and false-positive rate for predictions made by high-throughput 
interaction screens (two high-throughput APMS and two Y2H studies) (Fig. 3: A, B, C).  Because 
APMS experiments use only a subset of genes as baits and therefore have not examined all 
possible protein pairs in the yeast proteome, we made two separate comparisons considering only 
protein pairs covered by each of the two APMS studies (using the “spoke” model, in which only 
bait-prey protein pairs are considered [30]) (Fig. 3: B, C).  Comparison of the ROC curves shows 
that the decision tree approach based on a wide variety of evidence types is superior to any single 



high-throughput method (Fig. 3: A, B, C).  In addition, we compared our predictions with simple 
combinations of experimental evidence types.  Since we are more concerned about predictions 
with low false-positive rates, we then focused on predictions supported by at least two high-
throughput studies (Fig. 3A).  Two other ROC curves are also plotted, one for decision tree 
predictions using only the four high-throughput interaction datasets and the other for predictions 
using all attributes together with attributes from the three additional categories “same function 
(MIPS)” and “same protein class (MIPS)” and “same subcellular localization (MIPS)” (Fig. 3: A, 
B, C).  The decision tree approach using only high-throughput interaction datasets yields slightly 
better predictions than those generated by simple combinations of the same four datasets, and 
furthermore is more “tunable” to a desired true-positive or false-positive rate.  Prediction success 
of the decision tree approach improves considerably after adding other genomic and proteomic 
information. 

Assessment based on the Yeast Proteome Database (YPD)

Having demonstrated the success of our approach using cross-validation, we went further to see if 
we could predict CCPs not in the MIPS reference set.  Among protein pairs not known to be CCP 
in the reference set, the top-scoring ones (predicted using all attributes in Table 1) were further 
examined.  Since our reference set may not contain all known CCPs, especially the recently 
identified ones, some of these “false positives” might have already been tested and shown to be 
true CCPs.  We searched for evidence of co-complexed relationships for these 50 “false positives” 
in a separate database, YPD [26].  YPD contains literature-based protein complex annotations and 
was not used as a data source in building our decision trees.  We excluded YPD complexes for 
which interaction evidence comes solely from the high-throughput experiments used in our 
decision tree.  Out of the top 50 “false positives,” 15 are annotated in YPD as members of the 
same complex and are therefore true CCPs (Table 5, also see Table 1S in Additional file 2 for a 
longer list).  This cannot be solely accounted for by the additional CCP annotations in YPD, 
because if the 50 protein pairs are randomly chosen among non-CCP pairs according to MIPS, the 
probability of seeing 15 or more pairs annotated with CCP in YPD is very low (p<10-35 by 
Fisher’s Exact Test).  We also compared this result with two datasets: the TAP (tandem-affinity 
purification) APMS study [6] and the HMS-PCI (high-throughput mass spectrometric protein 
complex identification) APMS study [7].  For each dataset, we calculated the probability of 
finding 15 or more CCP pairs in YPD among protein pairs that show interaction according to the 
dataset of interest but are non-CCP in MIPS.  By this measure, our approach showed slightly 
better performance than the TAP study alone (p=0.2), and significantly outperformed the HMS-
PCI study alone (p=2×10-11).

As a comparison, we also performed the opposite experiment — using CCPs annotated in 
YPD as the gold standard in decision tree prediction.  Cross-validation performance was 
comparable to that obtained using the MIPS reference set (Figure 1S in Additional file 3).  Using 
the same false-positive rate threshold of 5×10-5, predictions based on MIPS and YPD overlap by
more than one third.  Such an overlap is highly significant considering the size of the yeast 
proteome (p<10-269 by Fisher’s Exact Test), indicating that our approach is robust with regard to 
the gold standard used.  Among the top-scoring 50 protein pairs not in the YPD reference set, 11 
of them are annotated as CCPs in MIPS, comparable to the results shown earlier (15 out of 50).  
This is again highly significant (p<10-28 by Fisher’s Exact Test) given the null hypothesis that the 



50 protein pairs are randomly chosen from non-CCP pairs according to YPD.  

Discussion

Using a probabilistic decision tree approach, we were able to integrate a large number of 
gene- or protein-pair characteristics to predict co-complexed pairs of proteins.  When evaluated 
by cross-validation, our method yielded more sensitive and specific predictions than the high-
throughput interaction screens alone or in combination.  However, we note that APMS 
experiments are not designed to examine pairwise interactions, and provide additional 
information about protein complexes that is not directly available from our approach.  
Furthermore, we do not suggest that interaction screens could be replaced by our approach.  On 
the contrary, the success of our approach depends on the integration of such protein interaction 
datasets as well as other genomic and proteomic data types.

The reference set of CCPs used in this study derives from the MIPS complex catalogue [24]
and may present a bias towards well-known proteins.  Such a bias, if combined with attribute data 
with the same bias, may artificially inflate the performance in cross-validation.  Since all 
attributes in Table 1 are from high-throughput or genome-wide studies, they contain little bias 
against unknown proteins.  Therefore we expect our results using only these attributes (Figure 2 
and 3, solid black lines, and Table 5) to accurately reflect the real method performance.  The 
additional attributes listed in Table 2 are from collections of individual studies, and hence may be 
biased towards well-known proteins.  As a consequence of such bias, as well as the potential 
circularity noted earlier, results obtained when the additional attributes in Table 2 were included 
(Figure 2 and 3, grey lines) may be artificially inflated.

One of the merits of the probabilistic decision tree approach is that for each protein pair, it 
provides a score which corresponds to the estimated probability that the protein pair is co-
complexed.  The collection of CCP probabilities for all protein pairs constitutes a weighted 
network of interactions in which the weight of each edge is the probability of interaction.  Such a 
probabilistic interaction network presents a starting point for improved ab initio complex 
prediction [31]. 

The probabilistic interaction network can also be used to identify additional members of 
existing complexes.  For example, according to the MIPS complex catalogue, the rRNA 
processing complex contains 18 proteins (Figure 4).  Six additional proteins were found by our 
decision tree to be co-complexed with one or more of these 18 members with a score threshold of 
0.5 (Figure 4).  Three of them (Lcp5p, Mtr3p and Rrp40p) are verified in YPD.  For the other 
three (Rrp1p, Srp1p and Cbf5p), each of them has been found to be associated with members of 
the rRNA processing complex in multiple affinity purifications in the high-throughput studies [6, 
7].  Srp1p binds to nuclear localization sequences (NLS) in nuclear proteins to bring them to the 
nuclear pore complex [32], and therefore its association with proteins in the complex is more 
likely to be transient rather than stable.  Cbf5p is involved in multiple uridine to pseudouridine 
conversions in rRNA [33] and Rrp1p is involved in maturation of rRNA [34].  Both of them are 
likely to be actual members of the rRNA processing complex.  We expect that the probabilities 
generated here could be used to improve previously-described methods for discovering new 
members of partially-known protein complexes [35, 36].

Decision tree predictions can also be used to stratify individual interactions derived from the 



high-throughput datasets by confidence.  For each of the four APMS datasets (TAP spoke, TAP 
matrix, HMS-PCI spoke and HMS-PCI matrix), we partitioned the protein pairs based on scores 
from decision tree predictions.  We found that the fraction of protein pairs in each subset that are 
annotated in YPD is correlated with the score (Figure 5).  In general, a higher percentage of 
protein pairs are verified in a high-scoring subset than in a subset with low scores.  Hence the 
score from decision tree prediction can serve as a good indicator of our confidence in the 
interaction and be used to further discriminate candidate CCP pairs resulting from high-
throughput studies.  

Integrating error-prone datasets and extracting useful information is an enormous challenge.  
For multiple evidence types with high false-positive and low false-negative rates, an obvious 
approach is to predict according to the intersection of all datasets.  On the other hand, one might 
want to take the union if the evidence types have low false-positive rates but high false-negative 
rates.  These two simple methods will be most effective if the evidence types are “orthogonal” 
[37], or more precisely, conditionally independent given the truth.  However, these two extremes 
are not generally applicable in integrating multiple datasets related to protein interactions.  
Furthermore, most such datasets are not independent.  Given the heterogeneous nature of various 
genomic data, it is desirable to develop more effective rules of data integration that can take into 
account the different predictive value of every data source and their combinations.  One way to 
combine the different features of the datasets is to model the conditional probability of CCP given 
all gene- or protein-pair characteristics.  A recent study combined evidence from six datasets by 
dividing protein pairs into 26 subsets according to combinations of evidence types and estimated 
error rate for each of them as the fraction of false positives in the subset [38].  However, such a 
method scales poorly as the number of datasets increases because the number of parameters (i.e.
error rates) grows exponentially with the number of attributes, and is therefore highly prone to 
over-fitting.  Here we took a probabilistic decision tree approach to tackle the problem.  By post-
pruning the decision trees, we were able to choose features informative of CCP and avoid over-
fitting, and were therefore able to integrate a much larger number of gene- and protein-pair 
characteristics.  Our method substantially outperformed the Jansen et al. 2002 approach.  (There 
are 46 true positives and 37 false positives among the top 83 predictions in [38], evaluated on the 
training set, while our method, evaluated by cross-validation, predicted 74 true positives among 
the top 83 predictions.) This improvement demonstrates the benefit of integrating diverse data 
types to predict CCPs. 

During the preparation of this manuscript, Jansen et al. published another related study using 
naïve Bayes and a fully-connected Bayesian network to combine multiple evidence types [20].  
The naïve Bayes approach allows them to incorporate more evidence types than in their previous 
study [38], but assumes conditional independency between the attributes, which they justify by 
showing the lack of linear correlation between most of the attributes used.  (But note that 
conditional independency does not follow the absence of linear correlation.)  The results, however, 
are not directly comparable for at least three reasons.  First, they use a “gold-standard” in which 
positives are defined by the MIPS complex catalogue (the same as in our study), but negatives are 
non-positive protein pairs with different subcellular localizations.  This largely recasts the 
problem of CCP prediction as the problem of predicting protein pairs that either are co-
complexed or share the same subcellular localization, which over-simplifies the task.  Second, 
due to their choice of gold-standard negatives, their training set used in cross-validation is 
enriched with protein pairs for which both members have known subcellular localization and in 



consequence the result does not represent their performance on the entire yeast proteome.  Third, 
they use functional annotation to make their predictions, which has the potential for circularity 
(e.g., if the function is actually assigned on the basis of CCP annotation in the “gold standard”) 
and introduces a strong bias towards well-studied proteins, both of which may artificially inflate 
the performance. 

Conclusions

A probabilistic decision tree approach has been previously used to predict some 
characteristics of genes or proteins (e.g., knockout phenotype and protein function) [22, 23, 39].  
Here we showed that a similar approach can also be used to predict a characteristic of protein 
pairs (i.e. co-complexed relationship) from other characteristics.  CCP predictions provide 
testable hypotheses for experimental validation.  The estimated CCP probabilities provided by 
integrating heterogeneous data with probabilistic decision trees may lead to improved ab initio 
complex discovery from interaction data [31] or to more accurate addition of proteins to partially-
known protein complexes.  Predicted CCP membership may also represent functional links 
between proteins, and therefore aid in the prediction of protein function.  This general approach 
can be readily applied to other characteristics of gene or protein pairs and in other organisms as 
large-scale genomic and proteomic data becomes available.

Methods

Collecting datasets

We collected 12 major categories of gene- and protein-pair characteristics for all protein pairs in 
Saccharomyces cerevisiae.  A summary with references to the data sources is shown in Table 1 
and 2.  Each evidence type was mapped to one or more binary variables (“attributes”).  For an 
evidence type with continuous values (e.g., expression correlation coefficient), a series of 
alternative thresholds were used to convert it into several binary attributes.  All attributes were 
hierarchically organized into a directed acyclic graph (DAG), with an edge from attribute i to 
attribute j indicating that any protein pair annotated with attribute j is, by logical necessity, also 
annotated with attribute i. 

A reference set of co-complexed protein pairs was obtained from the MIPS complex 
catalogue [24, 25] which provides a relatively complete list of currently known protein complexes 
in yeast.  All protein pairs within the same complex were recorded as CCPs.  Since the MIPS 
complex catalogue is organized into a hierarchy of complexes, we only considered complexes 
with no annotated sub-complexes.  Altogether, our MIPS-derived reference set contains 8707 
CCPs collected from a total of 250 complexes.

If a protein pair is not annotated with a particular attribute, it could be because previous 
study showed that it does not have the attribute (negative evidence), or because it has not been 
examined (absence of evidence).  We did not make any distinction between these two scenarios 
since this information is typically unavailable.  Similarly, no distinction was made between 
negative evidence and absence of evidence for CCP annotations. 



Cross-validation:

All protein pairs were randomly partitioned into four subsets.  In each of the four iterations, a 
probabilistic decision tree was constructed using training data composed of three out of the four 
subsets, successively leaving one out as the test set.  Protein pairs in the test set were then scored 
according to the decision tree generated from the corresponding training data. 

Generating decision trees

A detailed overview of decision trees and their applications can be found in [40, 41].  In our case, 
we started with all protein pairs of the training set R in a single root node, and constructed the 
decision tree greedily by recursively partitioning each node N into two daughter nodes based on 
the attribute k that gives the greatest reduction in entropy or, equivalently, the maximal 
conditional information gain.  Let Yk(m) denote whether protein pair m is annotated with attribute 
k, and X be the random variable indicating whether a protein pair is annotated as a CCP.  If node 

N is partitioned into two nodes N0 and N1 where ( ){ }tmYNmN kt =∈= , , the conditional 

information gain is defined as:

( ) ( )∑
=

−
1,0t

N
t

N XH
N

N
XH

t
. 

Here N  represents the number of protein pairs within node N, and HN(X) is the entropy of X at 

node N, defined as ( ) ( ) ( )NNNN pppp −−−− 1log1log , where pN is the probability that a 

protein pair Nm∈  is annotated as a CCP.  We estimated pN as the fraction of CCPs in node N, 
using one pseudocount (with the same CCP distribution as the entire training set R) for small-
sample-size regularization.

A tree generated in the above fashion risks over-fitting the training data.  The standard 
approach to combat this is post-pruning — pruning away some of the branches after the tree is 
grown [41].  We used the Bayesian Information Criterion (BIC) for model selection during
pruning, as previously described [22].  After the tree was fully grown, we started from the leaves 
and pruned away any branch whose removal decreased the tree’s BIC score.  Such pruning 
dramatically reduced the size of the tree, hence the number of parameters, and avoided over-
fitting the training data.  

Scoring for co-complexed protein pairs

Protein pairs in each test set were scored according to the decision tree generated from the 
corresponding training set.  Starting from the root node, the decision tree prescribes a series of 
binary questions for any given protein pair.  All questions are of the form “Does the protein pair 
have attribute j?” Which question is asked depends on the answer to the previous question.  After 
each question, the protein pair is assigned to one of the two daughter nodes, based upon whether 
or not it is annotated with attribute j.  In the end, the protein pair is located to a leaf node N.  The 
score of the protein pair is then the estimated probability pN that a protein pair Nm∈ is 
annotated with CCP, as described above. 
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Figure legends

Figure 1: 

Decision tree constructed using all protein pairs.  Each leaf node is labeled with the numbers of 
CCPs and non-CCPs associated with it, while each internal node is labeled with the attribute (j) 
used for subsequent partitioning (see Table 4 or Supplementary Information for descriptions of 
the attributes).  Two edges originate from each internal node, labeled “+” or “-,” corresponding to 
the daughter nodes that have or do not have attribute j, respectively.  Nodes with percentages of 
CCPs higher than that of the root node are colored red, while those with lower CCP percentages 
are blue.  The color saturation depends on the relative entropy compared with the root node.  The 
arrowhead size of an edge from a given node approximately represents the fraction of protein 
pairs in the parent node assigned to the corresponding daughter node. 

Figure 2: 

ROC curves for predictions based on: all attributes (black), all attributes except the category 
“high-throughput screens of interaction” (yellow), all attributes except the category “correlated 
mRNA expression” (green), all attributes except the category “same transcriptional regulator” 
(red), all attributes except the category “sequence homology” (blue) and all attributes together 
with the categories “same subcellular localization (MIPS)”, “same function (MIPS)” and “same 
protein class (MIPS)” (grey).  The expected ROC curve for random guesses is the diagonal where 
true-positive rate equals false-positive rate (black dotted line).  A-C show the same ROC curve at 
different resolutions.

Figure 3: 

A: Decision tree predictions compared with four high-throughput datasets and their simple 
combinations.  B and C: Decision tree predictions compared with two APMS studies: HMS-PCI 
(B) and TAP (C), respectively.  Only protein pairs covered by each respective study (using the 
“spoke” model [30]) were considered.  Black solid line: decision tree predictions using all 
attributes; blue solid line: decision tree predictions using only high-throughput interaction 
datasets; grey solid line: decision tree predictions using all attributes together with the categories 
“same function” and “same protein class”; black dotted line: expected performance of random 
guesses. 

Figure 4: 

The rRNA processing complex with candidate members predicted by the decision tree.  Red 
circles represent members of the complex annotated in MIPS.  Green and yellow circles are 
proteins found to be co-complexed with the MIPS complex members by the decision tree with a 
score higher than 0.5.  The yellow ones are verified in YPD while the green ones are not.  The 
width of each edge is proportional to the decision tree score of the corresponding protein pair.  
Edges with scores lower than 0.1 as well as edges between the MIPS complex members are not 
shown.



Figure 5:

Correlation between scores from decision tree predictions and the fractions verified by YPD.  For 
each of the four datasets (TAP spoke, TAP matrix, HMS-PCI spoke and HMS-PCI matrix), we 
plotted the fractions of its protein pairs at different score intervals that are also annotated in YPD.



Tables 

Table 1. Categories of gene- and protein-pair attributes used

Attribute
ID

Description Number of 
Attributes

References

I. High-throughput screens (HTS) of interactions 11 [2, 3, 6, 7]

X. Correlated mRNA expression 23 [42, 43]

R. Same transcriptional regulator 229 [27]

L. Same subcellular localization (high-throughput) 16 [44]

P. Same knockout phenotype 181 [25]

H. Sequence homology 4 [45]

U. Gene fusion 1 [5]

N. Gene neighborhood 1 [5]

O. Gene co-occurrence in phylogenetic profiles 1 [5]



Tabel 2: Additional categories of gene- and protein-pair attributes

Attribute

ID

Description Number of

Attributes

References

S. Same subcellular localization (MIPS) 43 [25]

F. Same function (MIPS) 258 [25]

C. Same protein class (MIPS) 191 [25]



 Table 3: Top 20 attributes ranked by reduction in entropy provided by partitioning the root node

Attribute ID
Entropy

Reduction
Relative
Entropy

Reduction
Attribute Description

R_p001.FHL1 9.5e-4 25.7% Bound by Fhl1p, p<0.001

R_p005.FHL1 9.3e-4 25.3% Bound by Fhl1p, p<0.005

X_cc.p.8 7.6e-4 20.7% Correlated mRNA expression, cell cycle dataset, cc>0.8

X_cc.p.7 7.4e-4 20.0% Correlated mRNA expression, cell cycle dataset, cc>0.7

X_cc.p.6 6.0e-4 16.2% Correlated mRNA expression, cell cycle dataset, cc>0.6

R_p001 6.0e-4 15.9% Same transcriptional regulator, p<0.001

R_p005.RAP1 5.0e-4 13.6% Bound by Rap1p, p<0.005

X_cc 5.0e-4 13.4% Correlated mRNA expression, cell cycle dataset

X 5.0e-4 13.4% Correlated mRNA expression

R_p005 4.3e-4 11.6% Same transcriptional regulator, p<0.005

I_APMS.TAP 3.0e-4 8.2% TAP 

R_p001.RAP1 3.0e-4 8.2% Bound by Rap1p, p<0.001

I_APMS 2.7e-4 7.3% APMS 

I 2.7e-4 7.3% High-throughput screens (HTS) of interactions

I_APMS.TAP.spoke 1.5e-4 4.1% TAP, "spoke" model

X_cc.p.9 1.4e-4 3.7% Correlated mRNA expression, cell cycle dataset, cc>0.9

X_Rst.p.6 1.2e-4 3.3% Correlated mRNA expression, Rosetta compendium, cc>0.6

N 1.2e-4 3.2% Gene neighborhood 

X_Rst 1.1e-4 2.8% Correlated mRNA expression, Rosetta compendium

I_APMS.HMS-PCI 7.3e-5 2.0% HMS-PCI 



Table 4: Attributes used in the decision tree

Attribute ID Attribute Description
I High-throughput screens (HTS) of interaction
I_APMS.TAP Tandem-affinity purification (TAP)
I_APMS.TAP.spoke Tandem-affinity purification (TAP), "spoke" model
I_APMS.HMS-PCI High-throughput mass spectrometric protein complex identification (HMS-PCI)
I_APMS.HMS-PCI.spoke High-throughput mass spectrometric protein complex identification (HMS-PCI), "spoke" model
I_Y2H Yeast two-hybrid (Y2H)
I_Y2H.Uetz Yeast two-hybrid (Y2H), Uetz et al.
X Correlated mRNA expression
X_Rst Correlated mRNA expression, Rosetta compendium
X_Rst.p Positively correlated mRNA expression, Rosetta compendium
X_Rst.p.8 Correlated mRNA expression, Rosetta compendium, cc>0.8
X_cc.p Positively correlated mRNA expression, cell cycle dataset
X_cc.p.7 Correlated mRNA expression, cell cycle dataset, cc>0.7
X_cc.p.8 Correlated mRNA expression, cell cycle dataset, cc>0.8
X_cc.p.9 Correlated mRNA expression, cell cycle dataset, cc>0.9
R Same transcriptional regulator
R_p005.ABF1 Bound by Abf1p, p<0.005
R_p005.GRF10 Bound by Grf10p, p<0.005
R_p005.HAP4 Bound by Hap4p, p<0.005
R_p005.RAP1 Bound by Rap1p, p<0.005
R_p005.RME1 Bound by Rme1p, p<0.005
R_p005.SFP1 Bound by Sfp1p, p<0.005
R_p005.SWI4 Bound by Swi4p, p<0.005
R_p005.YAP5 Bound by Yap5p, p<0.005
R_p001.FHL1 Bound by Fhl1p, p<0.001
R_p001.HAP4 Bound by Hap4p, p<0.001
R_p001.HIR2 Bound by Hir2p, p<0.001
R_p001.RAP1 Bound by Rap1p, p<0.001
R_p001.REB1 Bound by Reb1p, p<0.001
L Same subcellular localization (high-throughput)
L_05 ER
L_08 Mitochondrial
L_10 Nucleus
L_04 Cytoplasm
P Same Phenotype
P_1 Conditional phenotypes
P_1.1 Heat-sensitivity
P_1.3 Slow-growth
P_2 Cell cycle defects
P_2.4 Other cell cycle defects
P_4.2 Methionine auxotrophy
P_4.5.4 Respiratory deficiency
P_5 Cell morphology and organelle mutants
P_5.2.5 Other budding mutants
P_5.3 Cell wall mutants
P_5.6.1 Tubulin cytoskeleton mutants
P_5.6.1.5 Other tubulin cytoskeleton mutants
P_5.6.2 Actin cytoskeleton mutants
P_5.9 Secretory mutants
P_5.11 Mitochondrial mutants
P_5.13.2 Other vacuolar mutants
P_5.14 Other cell morphology mutants
P_8 Nucleic acid metabolism defects
P_8.1 DNA repair mutants
P_8.1.1 UV light sensitivity
P_8.2 DNA replication mutants
P_9.9 Staurosporine sensitivity
H Sequence homology, E<e-6 
H.e-12 Sequence homology, E<e-12
N Gene neighborhood
O Gene co-occurrence



Table 5: Top predictions not annotated as CCPs in the reference set

The 50 top-scoring protein pairs not annotated in our reference set (so-called “false positives”) 
with results of a further search for pre-existing evidence of CCP.  15 of them are shown to be true 
CCPs according to YPD.

Rank Protein 1 Protein 2 Score YPD Complex Annotation
1 Rpl40Bp Rps31p 0.943
2 Rps31p Rpl40Ap 0.938
3 Smc1p Smc3p 0.864 Cohesin
4 Gpt2p Sec28p 0.857
5 Pwp2p Utp13p 0.844 Small subunit processome
5 Sgn1p Pub1p 0.844
7 Rdh54p Rad5p 0.833
7 Arp3p Rvs167p 0.833
7 Arp3p Srv2p 0.833

10 Spt5p Rpb3p 0.800 Paf1p complex
10 Spt5p Rpo21p 0.800 Paf1p complex
12 Pwp2p Dip2p 0.776 Small subunit processome
12 Pwp2p Ylr409C 0.776
12 Sap190p Sap155p 0.776
12 Sap190p Sap185p 0.776
12 Pph21p Pph22p 0.776
12 Nop7p Fpr4p 0.776
12 Sap185p Sap155p 0.776
12 Sik1p Cbf5p 0.776
12 Nop2p Ebp2p 0.776 Pre-60S ribosomal particle
12 Rpa135p Ret1p 0.776
22 Pwp2p Asc1p 0.750
22 Drs1p Spb4p 0.750
24 Rsm10p Mrps5p 0.744 Mrp4p-associated complex (mitochondrial ribosome)
24 Mtr3p Rrp45p 0.744 Exosome 3'-5' exoribonuclease complex
24 Rrp40p Rrp46p 0.744 Exosome 3'-5' exoribonuclease complex
24 Rrp40p Ski6p 0.744 Exosome 3'-5' exoribonuclease complex
28 Fun12p Cbf5p 0.743
28 Mrpl16p Yml025Cp 0.743
28 Mrpl1p Mrpl9p 0.743
28 Mrpl9p Ypl183C-Ap 0.743
28 Rrp40p Rrp45p 0.743 Exosome 3'-5' exoribonuclease complex
33 Gin4p Kcc4p 0.727
33 Ecm16p Prp43p 0.727
35 Rps27Ap Rpl42Bp 0.714
35 Rps17Bp Rpl36Ap 0.714
35 Rps4Ap Rpp2Ap 0.714
35 Dur1,2p Pdb1p 0.714
35 Rsm7p Mrps5p 0.714 Mrp4p-associated complex (mitochondrial ribosome)
40 Pat1p Lsm2p 0.692 mRNA decay complex
40 Hrp1p Nab2p 0.692
42 Mrpl1p Mrpl10p 0.684
42 Mrpl9p Yml025Cp 0.684
44 Lsm2p Dhh1p 0.667 45S penta-snRNP
44 Pat1p Dhh1p 0.667 45S penta-snRNP
46 Dyn1p Cdc55p 0.667
46 Emp24p Fks1p 0.667
46 Yef3p Act1p 0.667
46 Yef3p Pph22p 0.667
46 Asc1p Tfp1p 0.667



Description of Additional files

1. ccp-supp1.doc
Microsoft Word document
List of data sources and attributes used.

2. ccp-supp2.doc
Microsoft Word document
Table 1S: A list of 1000 top-scoring protein pairs not found in the MIPS reference set, 

together with YPD annotations (where available).

3. ccp-supp3.doc
Microsoft Word document
Figure 1S: Comparison of cross-validation performance using MIPS or YPD as the 

gold standard.
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