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Abstract 

 

Background In a genetic interaction, the phenotype of a double mutant differs from the 

combined phenotypes of the underlying single mutants.  When the single mutants have no growth 

defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic 

lethality or synthetic fitness.  These genetic interactions reveal gene redundancy and 

compensating pathways. Recently available large-scale data sets of genetic interactions and 

protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the 

topological structure of biological pathways and how genes function in these pathways.  

Results We have defined congruent genes as pairs of genes with similar sets of genetic 

interaction partners and constructed a genetic congruence network by linking congruent genes. 

By comparing path lengths in three types of networks (genetic interaction, genetic congruence, 

and protein interaction), we discovered that high genetic congruence not only exhibits correlation 

with direct protein interaction linkage but also exhibits commensurate distance with the protein 

interaction network. However, consistent distances were not observed between genetic and 

protein interaction networks. We also demonstrated that congruence and protein networks are 

enriched with motifs that indicate network transitivity, while the genetic network has both 

transitive (triangle) and intransitive (square) types of motifs.  These results suggest that 

robustness of yeast cells to gene deletions is due in part to two complementary pathways (square 

motif) or three complementary pathways, any two of which are required for viability (triangle 

motif). 

Conclusions Genetic congruence is superior to genetic interaction in prediction of protein 

interactions and function associations. Genetically interacting pairs usually belong to parallel 

compensatory pathways, which can generate transitive motifs (any two of three pathways needed) 

or intransitive motifs (either of two pathways needed). 
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Background 

 

A powerful tool to dissect the genetic buffering contributing to robustness of an organism 

is to identify gene pairs whose individual mutants are viable, but whose double mutants are lethal 

or exhibit reduced fitness [1, 2].  These are particular types of genetic interactions, which more 

generally indicate that the phenotype of a double mutant differs from that expected from the 

phenotypes of the single mutants.  Other types of genetic interaction include epistasis (an 

anticipated combined effect is not observed) and suppression (a defect is rectified by a second 

mutation).  For convenience, we use genetic interaction henceforth to refer specifically to 

synthetic lethal and synthetic fitness genetic interactions. 

 

Genetic interaction partners have been described as acting either in parallel compensating 

pathways, or in the same essential process [2]. Through revealing gene redundancy and 

compensating pathways, genetic interaction has contributed to the understanding of gene 

functions as well as the networks and pathways in which gene products participate [3-6]. It is also 

highly relevant to understanding genetic instability and variation occurring in various human 

diseases [2].  

 

While a genetic interaction indicates that genes have compensating function, it does not 

necessarily indicate that the gene products work in the same pathway, for example as indicated by 

biochemical, physical interactions between proteins. Protein interactions can indicate correct 

network topology by linking proteins within the same biological pathway. The recent availability 

of high-throughput genetic interaction screens [3-6] and protein interaction screens [7-10] for the 

model organism Saccharomyces cerevisiae (budding yeast) provides a unique opportunity to 

investigate the genetic interaction network and protein interaction network both individually and 

jointly. Genetic interactions often reflect functional relationships that reach far beyond local 

protein interactions. Protein interaction data from high-throughput approaches are known to 

include false positive as well as physiologically relevant observations. It is critical to understand 

the correlations between genetic and protein interactions, as information derived from these two 

types of networks can provide complementary views for developing our understanding of how 

genes function in specific biological pathways, and how failures of these pathways lead to 

pathologic conditions that are relevant to the occurrence and progression of human diseases. 

 

 Graph theoretic approaches have been applied to study global properties of protein 

interaction networks and genetic interaction networks in yeast [6, 11-22]. A few global network 

analyses also directly compared the genetic and protein interaction maps. It has been suggested 

that the current genetic interaction network is at least four times denser than the protein 

interaction network; genetic interactions are significantly more abundant between physically 

interacting proteins and the number of common genetic neighbors between two genes correlates 

with a known protein-protein interaction [6]. Other studies show that highly connected hubs in 

the protein network have a higher probability to genetically interact with each other [23], that the 

two-hop physical–genetic interaction is the top predictor of genetic interactions [24], and that 

probabilistic network models favor between-pathway explanations over within-pathway 

explanations for synthetic lethal genetic interactions [22].  

 

Here, we present a global and local network investigation of the connections among 

genetic interaction, genetic congruence, and protein interaction networks for yeast, focusing on 

quantitative comparison of path length and motifs. Our results demonstrate that the genetic 

congruence network inferred from direct genetic interactions largely overlaps with the protein 

interaction network, with corresponding distances and motifs, while the genetic interaction 
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network does not. This finding indicates that genetic congruence provides evidence for physical 

interaction and protein complex membership, as well as similar gene functions. The genetic 

congruence network we have defined can function as a mini-map to reveal network properties 

before the entire genetic interaction map is completed in yeast. 

 

Results 

 

Network overview 
 

The genetic interactions used in this study are taken from published experiments 

detecting cell growth defects through screening a deletion of interest (query gene) against ~5000 

viable yeast single-deletion strains (target genes) [3-6]. As only ~150 queries have been reported, 

the current network covers ~2% of the entire map. Therefore, many observations will be re-

assessed after completion of the map. Specifically, the entire observed genetic network is 

expected to be symmetric when query and target genes are reversed. To account for the symmetric 

property of the entire genetic network, we have constructed both an asymmetric genetic network 

that includes all currently available high-throughput genetic interactions and the symmetric 

genetic network that covers interactions only between genes that have been used as queries (Fig. 

1A). The graph of the symmetric genetic network is shown in Fig. 1B.  Each node represents a 

gene, and each edge represents the genetic interaction between two connected genes.  The edges 

are considered undirected, and we do not distinguish between edges that were detected in one or 

both directions.  High connectivity in the symmetric genetic network (Fig. 1B) reflects that query 

genes were selected based on related functionality [6]. 

 

Previous analysis has suggested that shared genetic interaction partners correlate with 

physical interactions [6].   Quantitative measures for partner sharing in physical interaction 

networks has been defined as Mutual Clustering Coefficients (MCC) [14].  Here we use the 

negative Log10 of the P-value of the hypergeometric MCC as a quantitative measure of neighbor 

sharing in the genetic interaction network, and for convenience term it the congruence score [25]. 

Higher scores indicate that two genes share more genetic interaction partners than expected by 

chance. A genetic congruence network is then derived from introducing non-directed edges 

between congruent genes, using the congruence score to provide an edge weight (Fig. 1C).  

Asymmetric and symmetric congruence networks have been constructed from the corresponding 

genetic networks, respectively.  A P-value of 0.01 for shared genetic interaction partners after 

correcting for multiple testing corresponds to a congruence score of 8 for the congruence network 

derived from the asymmetric genetic interactions and a congruence score of 6 for the network 

derived from the symmetric genetic interactions.  

 

 The protein interaction network we used is derived from ~45,000 protein-protein 

interactions compiled from the large-scale yeast two-hybrid and mass spectrometry analyses [7-

10]. Each interaction has been assigned with a confidence score that corresponds to the network 

edge weight. The confidence score represents the probability that two proteins interact with each 

other [12].  

 

The size and global topological measures for genetic, congruence, and protein networks 

are provided (Table 1). The average degree is the number of edges per node, and the clustering 

coefficient measures the interconnectivity around a node. Interestingly, average degrees nearly 

halve but clustering coefficients double from genetic networks to congruence networks. The 
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values for the protein network are in between those for genetic and congruence networks. These 

suggest that the congruence network tends to be highly clustered. We quantitatively demonstrate 

with the following results on path lengths and local motifs that the inferred congruence links from 

shared patterns of genetic interactions have greater relevance to protein interactions than 

underlying direct genetic interactions.  

  

Network distances 

 
Conventional analysis shows genetically interacting genes encode proteins in the same 

complex more often than would be expected by chance [6]. Because physical associations and 

genetic interactions each report on functional similarity, we might naively expect that physical 

and genetic links should be correlated. However, it has also been recognized that the number of 

genetic interaction pairs having direct physical interaction is a small fraction of the total number 

of genetic interaction pairs (~1%) [6]. Therefore, given currently known genetic and protein 

interactions and their overlap, the majority of genetic interactions do not connect physical 

partners. 

 

To quantitatively study the global relationships between genetic and physical 

interactions, we calculated the shortest path length for any two genes in the genetic interaction 

network and the shortest path length for corresponding gene products in the protein interaction 

network, and then compared these two path lengths. Our results reveal that most protein pairs are 

distributed 3-4 links apart in the protein interaction network, regardless of whether there is a 

genetic interaction between the gene pair (Fig. 2A). This indicates that characteristic path lengths 

in genetic and physical interaction networks are incommensurate. Results are similar using 

symmetric and asymmetric genetic networks. These observations support the concept that 

genetically interacting pairs usually have no direct physical interactions.  If we define pathways 

by the context of physical interactions and assume genes with physical interactions function in a 

single pathway and without physical interactions act in parallel pathways, then our results suggest 

that genetically interacting genes are more likely to belong to parallel compensating pathways. 

Other groups have used similar reasoning to identify components of pairs of complementary 

pathways from joint analysis of physical and genetic interactions [22]. 

 

We asked whether the other view of genetic interactions, i.e. genetic congruence, might 

yield improved concordance with physical interactions. We first explored the relationship 

between pair-wise genetic congruence versus direct physical interaction. High-throughput 

physical interaction data sets are known to include many false-positives, which can confound 

analysis. Confidence scores have been developed to reflect the probability that a physical 

interaction is a true-positive [12]. We observed that protein interaction confidence increases with 

the congruence score (Fig. 2B). Above the congruence score of 8 and 6, which corresponds to the 

network P-value of 0.01 for the asymmetric and symmetric networks respectively, all protein 

pairs exhibit high confidence interactions with confidence score greater than ~0.8. This implies 

that genetic congruence acts as an indication of high-confidence protein interactions.  It is notable 

that information from a purely genetic experiment correlates well with information from a purely 

proteomic experiment.  We also used receiver operating characteristic (ROC) curves to assess the 

relationship of congruence scores and physical interactions.  ROC curves for asymmetric and 

symmetric congruence scores both climb rapidly away from the origin with high true positive 

rates and low false positive rates [see additional file 1, supp. fig. S2]. According to the area under 

the curve, the congruence score from the symmetric network performs better than the score from 

the asymmetric network, but at the cost of making fewer predictions. This is in agreement with 

the result from Fig. 2B that congruence scores of the symmetric network predict higher 

confidence physical interactions as compared with those of asymmetric network. The reason for 
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the differences may be due to biased selection of query genes, as the symmetric network only 

contains query genes and all query genes were selected from a few related biological processes 

[6].  

 

We further investigated the pair-wise congruence in the context of the protein interaction 

network. Our results show that the shortest path of physical interactions between congruent pairs 

decreases from ~3.6 links to 1 link (direct physical interaction) with increasing of congruence 

score (Fig. 2C). The path length transition begins when the congruence score increases beyond 8 

and 6 for asymmetric and symmetric congruence networks, respectively. Once the score reaches 

21 and 20 for asymmetric and symmetric networks, the congruent gene encoded proteins coincide 

with known direct physical interactions (4 pairs with congruence score ≥ 21 in the asymmetric 

network and 1 pair with congruence score ≥ 20 in the symmetric network). 

  

 Finally, to explore the connection between the congruence network and the protein 

network, we computed the highest score path for any two genes in the congruence network. Edge 

weights are in the range of 0 and 1 generated by applying a sigmoid function to the congruence 

scores (see Methods). The higher the path score, the higher probability two genes share similar 

genetic interaction partners. When comparing the highest path score in the congruence network 

with the shortest path length in the protein interaction network, we observed that the physical 

distance decreases monotonically from the average path length ~3.6 links to 1 (direct physical 

interaction) as the highest path score increases in both asymmetric and symmetric congruence 

networks (Fig. 2D). Therefore, transitive genetic congruence is commensurate with physical 

distances, which is similar to direct genetic congruence (Fig. 2C). 

 

Network motifs 

 

 Network motifs represent significantly recurrent patterns of simple interactions in 

complex networks [17]. Comparison of local structures in the network can help reveal the 

connections among superficially unrelated biological or social networks [18]. Additionally, the 

local structure of the network contributes to the understanding of global organization of the 

network [16]. To contrast the local structure of three types of networks, we counted the 

abundance of non-directed triads and tetrads in genetic, congruence, and protein networks. The 

random networks used to detect tetrads were generated to preserve the same triad counts as the 

real network [18]. 

 

More significantly, we can determine network transitivity through the observation of 

whether a transitive or intransitive motif is enriched or depleted in the network. Transitivity is a 

common network property that interactions of A-B and B-C imply elevated probability of 

interaction of A-C. We developed a characteristic, termed the motif transitivity score (MTS), as a 

quantification of the motif transitivity [see Methods and additional file 1, supp. table S1]. The 

positive values indicate transitive motifs while the negatives represent intransitive motifs. The 

network transitivity has been quantified by the clustering coefficient before [26, 27], which is 

closely related to the motif transitivity score defined here. We have found good agreement 

between motif enrichments (Fig. 3A) and average clustering coefficients (Table 1), i.e. 

congruence and protein networks are more clustered compared with the genetic network. 

 

When using the asymmetric genetic and congruence networks for comparison with the 

physical network, the pattern of enriched motifs (the relative motif ratio) is significantly 

correlated for congruence and protein interaction networks (Pearson correlation coefficient R = 

0.76, P-value = 0.03), and these are anti-correlated with the enriched motifs for direct genetic 

interactions (R = –0.66, P-value = 0.08; R = –0.69, P-value = 0.06, respectively) (Fig. 3A). This 
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is consistent with the above global distance analysis, supporting significant overlap between 

congruence and protein networks. 

 

The enriched motifs in asymmetric congruence and protein networks are all transitive, 

including triad2 (triangle motif) and tetrad6. The triangle motif is the most significantly enriched 

motif, suggesting the transitive property of congruence interactions and physical interactions. 

This result is in agreement with our observation in the previous section that the transitive 

congruence is correlated with short physical distance (Fig. 2D). The asymmetric genetic 

interaction network, however, consists of both intransitive motif tetrad4 (square motif) and 

transitive motif tetrad6, with the square motif as the most enriched structure. 

 

The detection of intransitive motifs in the asymmetric genetic network may be due to the 

artifact that the interactions have not yet been tested.  It does not necessarily mean that these 

interactions do not exist. To overcome this bias, we repeated motif-finding procedure using the 

symmetric genetic network and corresponding congruence network (Fig. 3A). The pattern of 

enriched motifs is still significantly correlated for symmetric genetic congruence and protein 

interaction networks (Pearson correlation coefficient R = 0.73, P-value = 0.04), but these are 

insignificantly correlated with those for the symmetric genetic network (R = 0.29, P-value = 0.49; 

R = 0.10, P-value = 0.82, respectively).   The enriched motifs in the symmetric congruence 

network remain the same as for the asymmetric congruence network, i.e. all transitive motifs, 

triad2 (triangle motif) and tetrad6.   

 

A final concern is that the transitive motifs arise from the mathematical process of 

generating congruence scores: if genes A and B share synthetic lethal partners, and B and C share 

partners, then A and C may have an increased probability of sharing partners. To address the 

question, we followed the following protocol [see additional file 1, supp. fig. S3]: (1) Randomize 

the genetic interaction network. (2) Calculate congruence scores for gene pairs in the randomized 

network.  (3) Set a threshold and calculate motif enrichment for the random congruence network.  

We repeated this process 100 times for both the symmetric and the asymmetric genetic interaction 

networks.  The typical extreme value for the maximum congruence score observed was 5 for the 

symmetric network and 6 for the asymmetric.  Thus, applying the same cutoff for congruence 

scores as in the actual network, 6 for symmetric and 8 for symmetric, typically rejects all the 

congruence edges in the randomized network.  We reduced the thresholds to retain the same 

number of congruence edges as in the actual network, with mean values of 1.8 (symmetric) and 

3.2 (asymmetric) over the 100 randomizations.  The average clustering coefficient is significantly 

smaller in the random networks than the actual network: 0.23 vs. 0.84 (random vs. actual 

symmetric, P-value 10−402 ), and 0.12 vs. 0.73 (random vs. actual asymmetric, P-value 10−933 ).  

Although the transitive motif triad2 (triangle) is enriched in the random congruence network 

relative to a fully random network, the motif count is far below that observed in the actual 

congruence network [see additional file 1, supp. table S3].  Other patterns of motif enrichment are 

quite different: tetrad4 (square motif, intransitive) is enriched in the random congruence network 

and depleted in the actual network, and tetrad6 (4-clique, transitive) is enriched in the actual 

network but not in the random network [see additional file 1, supp. fig. S4].  The transitive motifs 

in the congruence network are therefore enriched significantly beyond what would be expected 

based solely on the method of defining congruence edges. 

 

Both transitive and intransitive motifs are still detected in the symmetric genetic 

interaction network. However, the types are different from those in the asymmetric genetic 

network. The transitive triangle motif becomes the most enriched structure in the symmetric 

genetic network, in agreement with a previous study that genetic interaction partners of a gene 

have an increased likelihood to interact with each other [24].  One source of the triangle motif 
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could be the requirement for any two of three pathways for viability.  Notably, the square motif is 

still highly enriched in the symmetric genetic network despite the abundance of the triangles, 

indicating that the square motif will remain enriched when the complete genetic interaction 

network is determined.  

 

The view from recent studies indicates that high clustering is a generic feature of 

biological networks, as exemplified by protein interaction and protein domain networks [13]. 

However, we find that the genetic interaction network has both transitive and intransitive motifs. 

The coexistence of triangle and square motifs in the genetic network suggests two scenarios for 

genetic interactions between pathway components. In one scenario, genetic interactions between 

two pathways generate a square motif.  Each edge crosses between the pathways, and genes at 

opposite corners are in the same pathway.  In the second scenario, any two of three pathways are 

required for viability.  Genetic interactions cross between all three pathways, generating the 

triangle motif.  

 

To further answer the question whether the enriched triangles and squares overlap with 

each other or are excluded from each other, we compared the members of triangle and square 

motifs in the symmetric genetic network (Fig. 3B). Results show that one-node sharing is the 

dominant scenario (76%) for triangles and squares. Assuming three pathways for the triangle 

motif and two pathways for the square motif, the one-node sharing case defines four parallel 

pathways with one shared by the square and triangle. Two-node sharing accounts for 22% of total 

possibilities, and suggests three parallel pathways with two shared by the triangle and square. 

Only 2% of total cases are the complete overlap of the triangle and square, which is in an 

agreement with our observation that tetrad5 is not an enriched motif in the symmetric genetic 

network (Fig. 3A).  

 

Because the completed genetic interaction map will necessarily be symmetric (except for 

false-positives or false-negatives), the enriched motifs in the symmetric genetic network are more 

relevant than the enriched motifs in the asymmetric genetic network. 

  

Biological relevance 

 
Correct interpretation of the relationship between genetic and protein interactions enables 

interesting biological predictions. As we have demonstrated in previous sections, genetic 

congruence and protein networks are similarly organized with corresponding distances and 

motifs. Then, we would expect that two genes closer in the congruence network have higher 

tendency to physically interact with each other, reside within one protein complex, and involve in 

similar biological process. 

 

To validate this prediction generally, we plotted protein complex membership versus the 

distance in the genetic network and the path score in the congruence network (Fig. 4A).  The 

probability of co-residence in a protein complex increases with the congruence path score, and 

scores greater than 0.7 indicate same protein complex membership.  On the other hand, gene 

products binned by distance in the genetic interaction network have uniformly low probability of 

protein complex co-residence. 

 

Physical interactions usually suggest functional association. Accordingly, we asked 

whether congruence also indicates functional connection besides physical connection. As an 

initial validation, we found that genes close in the congruence network share similar functional 

annotations recorded in the database of Gene Ontology (GO)[28], i.e. biological process and 

molecular function (Fig. 4B). Moreover, the functional similarity is consistently higher for gene 
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pairs based on path score in the congruence network than based on distance in the genetic 

network. 

  

An example of congruence coinciding with protein interaction and function association is 

the prefoldin complex, which includes PAC10, GIM3, GIM4, GIM5, and YKE2. These five genes 

are clustered in the congruence network and the average path score between any two members of 

this complex is 0.51 (Fig. 1C). They are all chaperone proteins forming a complex, which 

promotes efficient protein folding [29, 30].  

 

Discussion 

 

 We have demonstrated that high genetic congruence implies high probability of a 

physical interaction and short distance in the physical interaction network. Short distances in the 

congruence network (measured by a high path score), but not in the genetic network, are 

commensurate with distances in the protein network. To account for false-positives in the high 

throughput protein interaction datasets, parallel analyses were performed using a protein network 

with edges weighted according to interaction confidence [see additional file 1, supp. fig. S5], and 

the results were similar to those obtained from the un-weighted protein network. A guide to the 

figures showing path length comparisons among genetic, congruence, and protein networks is 

provided [see additional file 1, supp. table S4].  Local structure indicates similar transitive motif 

enrichment in congruence and protein networks, while the genetic network significantly consists 

of transitive as well as intransitive motifs. Both global distance analysis and local motif analysis 

demonstrate that the genetic congruence network possesses similar network transitivity to the 

protein network. 

 

The similarity between congruence and protein networks and the dissimilarity between 

genetic and protein networks have yielded three interesting conclusions with biological 

significance. First, we have demonstrated that significant genetic congruence correlates strongly 

with protein complex membership and functional association. Second, genetically interacting 

pairs usually belong to compensatory pathways without direct physical interactions.  Finally, the 

coexistence of triangles and squares in the genetic network indicates that robustness may be due 

to two pathways that compensate each other (squares), or three pathways any two of which are 

needed (triangles). 

 

While the protein interaction and genetic congruence networks exhibit a high degree of 

similarity, we do not expect them to be identical because they are based on distinctly different 

experimental measures. The protein interaction network is based on protein binding constants in 

cellular extracts under selective precipitation conditions [7, 8] or within cells through over-

expression of tested proteins [9, 10]. The congruence network is based on growth defects 

exhibited by cells lacking a pair of gene products cultured under standard conditions[6].  Thus, 

high congruence may not necessarily indicate a physical interaction.  The concordance we 

observed between congruence and protein interaction network structures provides strong support 

for the argument that they both faithfully reflect biologically relevant network relationships.  

 

The conclusions drawn from our study are limited by the current coverage of genetic and 

protein networks. This is especially true for the genetic network, which is at low coverage. 

Moreover, the current genetic network is biased by query gene selection. The ~150 query genes 

all have relative large numbers of interaction partners and related functionality[6]. As the 
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coverage and symmetric property are increased, we expect that the average degree and average 

clustering coefficient will decline. Network distance results are robust in response to changes in 

genetic network symmetry and protein network edge weight. The symmetric genetic network has 

been used for motif counting and the relative motif ratio is insensitive to network size[18]. 

Therefore, we believe that our conclusions on network distances and motifs should continue to 

hold as the entire genetic interaction network is mapped. 

 

Conclusions 

 

 In summary, we have demonstrated that genetic congruence is superior to genetic 

interaction in predicting protein interactions and within-pathway functional associations.  In 

contrast, genetic interaction pairs usually act in parallel compensatory pathways. Motif study 

indicates that genetic interactions bear both transitive and intransitive characters. Consideration of 

the symmetric property of a complete genetic interaction network is crucial to determination of 

motif enrichment for the genetic network. 

 

 

Methods 

 

Genetic interaction networks 
The genetic interaction dataset is derived from a recent high throughput study in budding 

yeast [6]. The interaction is detected by cell growth defect through introducing a deletion of 

interest (query gene) into all viable yeast single-deletion strains (target gene). Interactions derived 

from 6 essential query genes, including MYO2, SCC1, CDC2, CDC7, CDC42, and CDC45 were 

removed in our study because phenotypes exhibited by conditional alleles of essential genes may 

include loss of function, unregulated function, and gain of function, while null alleles of 

nonessential genes are by definition solely loss of function mutations. Results and conclusions do 

not change, however, when these 6 essential genes are included in the analysis. 

 

We constructed two types of genetic networks. The asymmetric genetic network includes 

currently available high throughput genetic interactions, i.e. 3799 genetic interactions between 

126 non-essential query genes and 982 target genes. The symmetric genetic network only contains 

interactions between query genes, i.e. 813 genetic interactions between 108 non-essential query 

genes and 104 target genes that have been used as queries. 

 

Randomization of genetic interactions 

Genetic interactions from the high throughput study [6] were reported as an interaction 

between the query gene and the target gene. A randomized network was generated by keeping the 

query gene list unchanged, randomly matching one of the target genes according to the 

probability of each target gene shown in the interaction list with replacement. Duplicate query-

target pairs and self-interaction pairs, which are not possible in the experimental networks, were 

rejected during randomization. Results depict the average over 1000 randomizations. 

 

Genetic congruence networks 
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The congruence score was defined as −log10 hypergeometric P − value x ≥ kobs( )[ ], and 

hypergeometric P − value (x ≥ kobs) = C(m,x)C(t − m,n − x) /C(t,n)
x= k

min( m,n )∑ , where two target 

genes having m and n genetic interaction partners share x partners from a list of t query genes, 

and C(j,k) is the binomial coefficient j!/k!(j-k)! [25]. Related measures have been used to analyze 

protein interaction networks to predict protein-protein interactions [14]. The congruence score is 

calculated for every target gene pair in the symmetric and asymmetric genetic networks. The 

symmetric and asymmetric congruence networks are derived from the corresponding genetic 

networks, respectively. The distribution of network size over different congruence scores is 

provided [see additional file 1, supp. fig. S1]. The congruence score of 8 (122 nodes with 267 

edges) for asymmetric congruence network corresponds to the network P-value of 0.01 after 

correction for multiple testing of per-link P-value ~ 0.01/9822 =10−8
. Similarly, the congruence 

score of 6 (61 nodes with 146 edges) is the cutoff value for the symmetric congruence network. 

 

Protein interaction network 
We used 47,783 protein-protein interactions with confidence scores [12] compiled from the 

large-scale two-hybrid data sets of protein-protein interactions [9, 10] and mass spectrometry 

analysis of protein complexes [7, 8]. The distribution of network size over different confidence 

scores is provided [see additional file 1, supp. fig. S1]. 

 

Network distances 
The shortest path distance was counted for any two nodes in the un-weighted genetic 

interaction and protein interaction networks. The shortest path length is the sum of lengths of 

individual linkage. 

 

The SEEDY algorithm [31] was used to compute highest score path distance for the weighted 

genetic congruence and protein interaction networks. The highest score path is the path with the 

maximal value of the product of edge weights. Disconnected components are ignored for both 

shortest path and highest score path calculations. 

  

The edge weight for the protein network is the confidence score (in the range of 0 and 1) [12]. 

The edge weight for the genetic congruence network is derived from a sigmoid function 

w =
e

(s−a ) / b

1+ e(s−a ) / b
 (in the range of 0 and 1), where s is the congruence score, a and b are 

parameters. The rationale of introducing the above sigmoid function is derived from the 

probability distribution of Pr(true positive | s) = Pr(protein interaction | s)  as genes sharing 

genetic interaction partners usually exhibit physical association [6]. The parameters a = 15.9 and 

b = 1.6 are the best-fit values for the sigmoid function to form a smoothed interpolation of 

Pr(protein interaction | s) for the asymmetric congruence network [see additional file 1, supp. 

fig. S6]. Results were not sensitive to the choice of parameter values [see additional file 1, supp. 

fig. S7]. Similarly, a = 17.7 and b = 3.4 are the best-fit values for the symmetric congruence 

network. 

 

Network motifs 
We used the mfinder1.1 – network motifs detection tool 

(http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html) to count non-directed 

triad and tetrad motifs in genetic interaction, genetic congruence, and protein interaction 

networks. Both symmetric and asymmetric genetic networks were used for motif searching. 

Motifs were also counted for the symmetric congruence network with cutoff value of 6, the 
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asymmetric congruence network with cutoff value of 8, and the protein network with confidence 

score greater than 0.5 [12]. Motif results are insensitive to the threshold values for congruence 

and protein networks [see additional file 1, supp. table S2]. The Metropolis algorithm was used to 

conserve the number of triads in random networks for tetrad motif counting. The relative motif 

ratio (RMR) was calculated to represent the abundance of each motif relative to random networks 

in which each node has the same number of edges as the corresponding node in the real network. 

The formula for RMR is defined as 

RMR = ∆ i /( ∆ i

2∑ )1/ 2,  ∆ i =
Nreal

i
− < Nrand i

>

Nreal
i
+ < Nrand i

> +ε
,  and ε = 4

. The criteria taken for enriched 

motifs are Nreal Zscore > 2, Nreal/Nrand > 1.1, Uniqueness ≥ 4  where Uniqueness is the number 

of times a motif appears in the network with completely disjoint groups of nodes [17, 18]. 

 

To quantify the motif transitivity, we give the definition of motif transitivity score (MTS) as 

MTS =
3× number of '∆ '  -  number of 'V'

3× number of '∆'  +  number of 'V'
, where '∆' is a group of 3 vertices each of which 

is connected to the other two, and 'V' is a group of 3 vertices only one of which is connected to 

the other two. The '∆' and 'V' are mutually exclusive subgroups in the MTS calculation. The 

factor of 3 accounts for the fact that each '∆' is equivalent to three 'V'. This formula quantifies 

the motif transitivity in the range from –1 to 1, and is insensitive to the motif size. The MTS is 1 

for a fully connected motif, and is –1 for a motif without the triangle. The values of MTS for 

triads and tetrads are listed [see additional file 1, supp. table S1]. 
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Figure Legends 

 

Fig. 1 - Schematic illustration of genetic and congruence networks.  
A. Asymmetric and symmetric genetic networks are represented in matrix form; filled squares 

represent observed genetic interactions.  The symmetric network includes only genes used as 

queries. B. The symmetric genetic interaction network contains 126 genes. C. A congruence 

network was calculated from the symmetric genetic interaction network using a threshold 

congruence score of 6. 

 

Fig. 2 - Path length comparison for genetic, congruence, and protein networks.  
A. There is little correlation between short paths in the genetic interaction network and short 

paths in the protein interaction network. B.  Protein interaction confidence increases with 

congruence score. C. The path length in the protein network decreases monotonically with the 

congruence score. D.  High-scoring paths in the congruence network are correlated with short 

distances in the protein interaction network, indicating that these networks are commensurate.  

Results are displayed for the observed and randomized networks. Error bars indicate one standard 

error.  The random value if present is comparable to the observed value (P-value > 0.05). 

 

Fig. 3 - Motif characterization for genetic, congruence, and protein networks.  

A. Both transitive and intransitive motifs are enriched in the genetic network, tetrad4 and tetrad6 

for the asymmetric network and triad2, tetrad1 and tetrad4 for the symmetric network. Only 

transitive motifs are enriched in congruence and protein networks, triad2 and tetrad6 for 

symmetric and asymmetric congruence networks, triad2, tetrad3, and tetrad6 for the protein 

network. Motif enrichment criteria are as defined in [17] (see Methods). B.  The connections 

between triangle and square motifs in the symmetric genetic network. Three types of relationships 

exist between triangles and squares and the percentage of each scenario is labeled.  The red 

numbers indicate individual pathways. 

 

Fig. 4 - Congruence network but not genetic network predicts protein complex membership 

and functional association.  
A. Short distance in congruence network implies protein complex membership. B. Close distance 

in congruence network suggests similar function. GO [28] hierarchy depth is normalized to the 

range of 0 and 1 by [depth-min(depths)] / [max(depths)-min(depths)], where depths are calculated 

for each GO category, biological process and molecular function. Error bars indicate one standard 

error. As distance results are similar for symmetric and asymmetric networks, we only present 

those for the symmetric network. 
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Tables 

 

Table 1. Standard global topological measures describing network structure.  

Detailed analyses on path lengths and local motifs are described in Fig. 2 and 3. 

 Asymmetric 

genetic 

network 

Symmetric 

genetic 

network 

Asymmetric 

congruence 

network 

Threshold 

= 8 

Symmetric 

congruence 

network 

Threshold 

= 6 

Protein 

network 

Threshold 

= 0.5 

No. of nodes 1004 111 122 61 3208 

No. of edges 3799 813 267 146 13038 

Average 

degree 

7.6 14.6 4.4 4.8 8.1 

Average 

clustering 

coefficient 

0.10 0.37 0.73 0.84 0.45 

Description of Additional Files 

 

Additional file 1: ye-supp.pdf contains supplemental figures and tables. 
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