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Summary

Data of currently available protein-protein interaction sets and protein domain

sets of Yeast are used to set up protein and domain interaction and domain

sequence networks. All of them are far from being random or regular networks.

In fact, they turn out to be sparse and locally well clustered indicating so-called

scale-free and partially small-world topology. This subtle topologies display

considerable indirect properties which are measured with a newly introduced

transitivity coefficient. Fairly small sets of highly connected proteins and

domains shape the topologies of the underlying networks emphasizing a kind of

backbone the nets are based on. The biological nature of these particular nodes is

further investigated. Since highly connected proteins and domains accumulated a

significant higher number of links by their important involvement in certain

cellular aspects, their mutational effect on the cell is considered by a perturbation

analysis. In comparison to domains of Yeast, it is investigated what factors force

domains to accumulate links to other domains in protein sequences of higher

eukaryotes.
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INTRODUCTION

Tremendous amount of biological data currently available emphasize the

necessity to investigate the mutual relationships of genes, proteins and

metabolites. The latter were the starting point of considering metaboloms of

prokaryotes as complex networks [1–3]. Quite similarly, proteomes offer an

opportunity to examine domain architectures of their protein sequences from this

perspective [4, 5]. Furthermore, efforts were made to enlighten interactions

between families of protein domains. Structural domain data were mapped to a

network linking interacting domain structures [6]. Finally, protein-protein

interaction networks emerged by employing sets of protein interactions of H.

pylori [7] and S. cerevisiae [8–12].

The results contradict the initial assumption that the connection topology of these

biological networks is either completely regular or random. In fact, it appears

that they employ subtle topologies situated between these two extremes. Two

network models recently introduced result in topologies which are able to

describe biological networks more accurately. Primarily, small-world networks

were introduced by Watts and Strogartz [13]. This network type turned out to be

sparse but much more highly clustered than an equally sparse random graph. It

was illustrated with metabolic networks as well as with sociological and technical

networks [13–15]. Subsequently, Barabási and Albert introduced a theoretical

network model which emphasizes a characteristic connectivity distribution. [16].

A variety of networks emerging from different fields like biology, sociology,

technology, linguistics and others have adopted this topology [17].
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In this paper, I report the use of protein interaction data to generate an interaction

network of Saccharomyces cerevisiae. Using the known nonredundant complete

Yeast proteome, domain information is used to set up domain sequence and

domain interaction networks. Since a comparison of these three types of

networks is currently undone, the topologies of these networks will be

comparatively studied and biological consequences discussed.
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MATERIALS AND METHODS

Definition of networks

A protein-protein interaction graph,
�������

, is defined by a set of nodes which

contains a set of interacting Yeast proteins. In order to complete the definition of

the network, protein-protein interactions are denoted by a set of undirected edges.

In a coarse grained way, a protein sequence can be computed as a linear

arrangement of the domains it contains. Thus, a domain sequence graph,
���

, is

formally defined by a set of nodes consisting of all domains which occur in the

protein sequences of the Yeast proteome. Two domains are regarded as being

undirectedly linked if they co-occur in one of these protein sequences [4].

Since �
	��� of all Yeast proteins carry only one type of domain, the

construction of a domain interaction graph,
�������

, focuses on interactions

involving these particular proteins. Thus, the set of nodes consists of domains

which appear in interactions of single sorted domain proteins. Obviously,

ambiguity arising from multi-domain interactions is thus avoided. An undirected

edge between these domains indicates this relationship.

Sources of protein-protein interaction data

Sets of Yeast protein-protein interactions were collected from several overlapping

data compilations [8–11] which employed Yeast two-hybrid experiments

extensively. Other relevant interaction data was retrieved from several other

protein interaction databases. The database of interacting proteins (DIP,
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http://dip.doe-mbi.ucla.edu) scans the literature in order to provide a collection

of all functional linkages of proteins obtained by experimental methods [18]. The

MIPS Yeast Genome Database (MYGD, http://www.mips.biochem.mpg.de/) [19]

is a collection of genetic data from literature which relies on the results of micro

array expression experiments. Additionally, MIPS also contains data from Yeast

two-hybrid and co-immunoprecipitation experiments.

The protein nomenclature of these data is inconsistent, therefore, the terms were

translated to Swiss-Prot/TrEMBL annotations.

Proteome specific data

Yeast specific proteome and protein domain information came from the InterPro

database (http://www.ebi.ac.uk/interpro) [20] and the Proteome Analysis

database (http://www.ebi.ac.uk/proteome) [21]. Since InterPro employs

Swiss-Prot annotation, every protein sequence is itemized with each of its

domains.

Network properties

From a theoretical point of view, network topologies set up very differently.

Small world networks emerge from regular graphs. With a probability ����� ,
edges are clipped and randomly rewired. Considering ����� , the completely

rewired graph would end up as a random graph [13]. In contrast, scale-free

networks emerge in a more ’evolutive’ way. In fact, the generation procedure

features continuous addition of new nodes considering the quotient

�����
���! #"%$�� $ as the probability of connecting node &�� to the newly introduced
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one [16]. Note, that the number of nodes of scale-free networks is subject to

change, while the number of nodes of small world networks remains constant.

Although these network types emerge completely different, both feature a sparse

but highly clustered topology.

In order to unravel the topology of an otherwise unknown network, different

characteristic values have been defined. In the networks, the degree � of a node is

the number of other nodes to which it is connected.

The mean path length of a node & , '#( , is defined as the average of all shortest

paths from node & to all other nodes. Accordingly, the mean path length ' of the

whole network is represented as the average of ')( over all & .

The clustering coefficient of a node & , *+( , measures the fraction of nodes

connected to & which are also connected to each other. By extension, the

clustering coefficient * of the graph is defined as the average of *,( over all & .

Provided that there exists a sequence of edges -/.102.43 , one might ask to which

extent edge -/.43 are undirectedly linked in the graph. The transitivity

coefficient, 56( , represents the mean fraction of neighboring nodes of & which

obey this relation. Accordingly, the mean transitivity coefficient, 5 , is defined as

the average of all 56( over all & . This definition resembles the concept of

’transitive triples’ which is used in sociology [22].

Some of these characteristic values enables the identification of several network

types. Basically, these types are classified by the connectivity distribution 798:��;
of the nodes. Exponential networks like the small-world [13] and random graph
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model [23] are characterized by 7<8=��; which peaks at an average >?��@ and decays

exponentially [24]. Both lead to fairly homogenous networks with nodes having

approximately the same number of links �%�A>?��@ . Furthermore, a small-world

graph is defined as sparse, 'CBD'#EGFIH �IJ=K , but much more clustered than an

equally sparse random graph, *ML *+EGFNH �IJ=K . By contrast, inhomogeneous

networks known as scale-free networks show power-law decay 798:��;O�P� �RQ in

their connectivity distribution. Compared to exponential networks, the

probability that a node is highly connected ( �%L >?��@ ) is statistically significant in

scale-free networks [16]. This result indicates a network free of a characteristic

scale since the network properties are actually independent of the network size.

Figure 1 schematically gives an idea of the introduced topologies.

Lethal and viable proteins

Information about lethality and viability of proteins was retrieved from the YPD

database (http://www.proteome.com) [25]. Obviously, if one protein proves to be

lethal all links in the protein-protein interaction network have to be considered as

lethally affected. For the domain-related networks, only fractions of connections

prove to be lethal or viable depending on the protein under consideration. Since

these networks map protein specific information to a domain dependent space,

every link between protein domains does not have to be inevitably proven either

lethal or viable. If there exists a domain link which occurs both in one lethal and

one viable protein fraction of lethal connections turns out to be �TSU� . Hence, these

nodes and edges are interesting objects to investigate in regards to their influence

on network properties.
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Domain fusion events

Since the domain interaction graph focuses on interactions of proteins which

carry only one type of domain, the superposition of the protein domain sequence

network onto the domain interaction network enables detection of all interaction

processes which are accompanied by a domain fusion event on the sequence

level. The extent to which domain interactions in Yeast coincide with domain

fusions in higher eukaryotes is of particular interest. Species dependent proteome

information was retrieved from Proteome Analysis database.

Graph tools

Graph analysis tools were written in C++ using the LEDA library of data

types [26].
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RESULTS

Network topologies

It is the intention of this work to provide a comparison of these three network

types. Thus, some already known results are addressed partially in order to

provide a thorough view.

All networks emerge as sparse networks providing mean numbers of edges per

vertex >?��(V@ which are far smaller than the maximal possible degree per vertex as

shown in Table 1.

Frequency distributions of links immediately reveal the presence of scale-free

topology. Thus, frequency distributions follow a power-law

798:��;O�M�
�RQ

[4, 6, 12]. Figure 2 compares the frequency plots of the networks

considered. As a result of this analysis, the curves of frequency distributions of

InterPro domain interactions and protein-protein interactions almost coincide.

Thus, the assumption that �
	��� of the interacting proteins carry only one

domain is well reflected.

Additionally, InterPro domain sequence networks have been found to exhibit

small-world properties [4]. Addressing the relevant parameters of

small-worldedness, the clustering coefficient * of InterPro domain sequence

networks far exceeds the respective one of an equally sized random graph.

However, the definition of small-world networks additionally demands

'CBD'OE?FNH �NJ:K . It turns out that the major component of the domain sequence

network which covers the majority of domains fulfills this demand. As a result,
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protein and domain interaction networks both feature clustering coefficients

which fulfill the definition of small-world networks (Table 2). However,

respective numbers of ' fail. Although protein interaction and domain

interaction networks both feature huge ’major’ components, neither of them

satisfies this structural demand of small-world networks.

Biological hubs

Scale-free topology suggests that only a minority of the highly connected nodes

shape the topology of the underlying network. Since highly connected hubs play

a crucial role for information processing and integrity of networks, it is

interesting to see which role these nodes play in biological networks. Table 3

shows the 15 most highly connected nodes of each network. Highest linked

InterPro domains in domain sequence networks of Yeast were already found to

be involved in signal transduction pathways. Other high linked domains appear

in transcriptional/translational activities and energy maintenance [4].

In this analysis, the significance of signaling pathways is strongly emphasized in

the domain interaction network by WD40 and zinc-finger motifs which are

among the highest interacting domains.

Strongest interacting proteins are involved in nucleus related transportation

processes. These include subunits of Importin and nucleoporins. Furthermore,

cell-cycle regulating (MEC3, TEM1) and transcription processing proteins

appear highly interacting.

Transitivity
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Since scale-free and small-world networks were found to be sparse but highly

clustered, the degree of transitivity can be questioned. The mean transitivity

value, 5 , measures the extent to which indirect links are accompanied by direct

ones. Such a ’back-up’ of links reinforces the clustered nature of biological

(sub)networks. Table 2 shows statistics of the networks under this consideration.

Similarly to the behavior of * , 5 exceeds the respective number of random

graphs of equal size, 5�E , by far. However, it should be noted that the values are

reasonably low.

It might be tempting to assume that 5 is closely related to * since an edge -/.13
implies an increase of *<8:0W; . In order to investigate the mutual relation of 5 and

* , Figure 3 shows a scatterplot of 5 against * concerning all three types of

networks. Considering Figure 3, symbols indeed arrange around the median axis.

However, they are far from indicating a strong correlation.

From a biological point of view, it is interesting to discover the role of proteins

which are involved in such a transitive organization. Table 4 shows a compilation

of proteins and domains exhibiting highest 5X( . Strikingly, the list of interacting

proteins is headed by proteins which form enzymatic protein clusters. Among

them are PMT and OST proteins setting up

Dolichyl-Diphosphooligosaccharide-protein glycosyltransferase protein

complex. Similarly, the interacting domains with the highest 5 -values are

protagonists of functional clusters involved in transcription (TFIID-proteins and

RNA pol Y subunit) and signal transduction. However, the 5 -values of

interacting domains are lower than those of interacting proteins. The picture
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changes drastically if 5 -values of the domain sequence network are considered

since these tend to be shifted to higher values.

Lethality and Viability

The separation of viable and lethal proteins allows one to observe protein

interaction networks and domain related networks from a different perspective.

The frequency distributions of both lethal and viable proteins in the

protein-protein interaction network are shown in Figure 4. Initially, it was

suggested that strongly interacting proteins can be assigned a lethal role [12]. In

fact, this analysis shows significantly that this assumption is misleading since the

latter plot indicates merely a slight trend of lethal proteins to accumulate higher

numbers of interactions than viable ones. Since the transitivity coefficient takes

the existence of alternative paths into account, it might be interesting to check if

5 is more suited to explain the latter correlation. Figure 5 shows a frequency plot

of 5 regarding lethal and viable proteins. Confirming the latter assumption,

lethal proteins indicate a slight trend to higher 5 . Regarding higher values of 5 ,

it clearly appears that lethal proteins tend to accumulate more alternative

interaction paths. However, it should be noted that frequencies are considerably

low. A similar view holds for lethal and viable fractions of domains in the

respective networks. Figure 6 displays frequency distributions of fractions of

lethal and viable domain interactions and domain connections in the respective

graphs. Analogously, the plots suggest a slight shift to lower fractions of lethal

connections in Figure 6.

Observing the mutational effects from a different perspective, Figure 7 displays
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frequency distributions of the mean path lengths ' and mean clustering

coefficients * of the protein-protein interaction network. Results were obtained

by deleting separately lethally and viably mutated proteins and subsequent

calculation of these network properties. Both types of distributions are normally

distributed. The distributions of lethally perturbed networks generally show

slightly increased standard deviations. These observations also hold for domain

related networks which were considered analogously by clipping fractions of

links affected by lethal or viable mutations of the respective proteins.

Domain interactions and fusion events

Functional links between proteins have also been detected by analyzing fusion

patterns of protein domains. Separate proteins A and B in one organism are

found to be expressed as a fusion protein in other species. A protein sequence

containing both A and B is termed a Rosetta Stone sequence [27]. In this

analysis, however, this framework does not work in general but only in particular

cases. The comparison of pairwise domain interactions and pairwise domain

fusions in higher organisms enables an estimation of the extent to which domain

interactions are indeed accompanied by a domain fusion event. Pairs of domain

interactions and domain links correspond to edges in the respective networks.

Considering every domain separately, edges in the Yeast domain interaction

network are counted which co-occur in the domain sequence networks of A.

thaliana, C. elegans, Drosophila, H.sapiens and Yeast, respectively.

Subsequently, fractions of domain fusion per domain interaction of the

mentioned organisms are calculated. As a result, Figure 8 summarizes an
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increasing extent of domain fusions in the latter row of eukaryotes.
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DISCUSSION

Completeness and quality of data

The protein-protein interaction data used for the set up of the interaction network

are widely based on yeast two-hybrid analyses. However, yeast two-hybrid data

are significantly flawed by high rates of false positive signals [28]. Moreover,

many of the interactions identified merely rely on positive signals from one

single technique and result from indirect observations. The observation that

Importin Z subunit protein (SRP1) (Table 3) interacts with that number of

proteins is merely a result of the two-hybrid screen employed since a very small

fraction of those interactions were shown by other methods.

The discovery of scale-freedom in protein and domain related networks alleviates

the insurmountable problems arising from the current extent of incompleteness.

Even though the current interaction data are far from complete and are somewhat

noisy, these findings reinforce the argument that the topology of interaction

networks will not change significantly as the amount of interaction data grows.

Strictly speaking, the set up of the domain interaction network is an indirect one

since interactions are inferred from protein interactions and domain sequence

information. In contrast to other approaches, no structural information of

domains was taken into account. Thus, it should be noted that domain interaction

networks mediate a certain degree of simplification. However, even though the

domain interaction network is simplified to a certain degree scale-freeness of the

network confirms the assumption that the topology will not change with

increasing amount and quality of domain and protein interaction data.

Analogously, this assumption also holds for domain sequence networks since the
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proteome data have been far better compiled and studied with the release of the

complete genomic sequence of Saccharomyces cerevisiae. The assumption of

scale-free characteristics leads to interaction and domain sequence graphs

independent of the actual size of the underlying networks. Although the

generation and compilation of interaction data is still at a basic level, these

interaction graphs give tentative insights of the underlying network topology.

What do these network architectures tell?

The observation of scale-freedom in all three networks confirms the appearance

of sparse but highly clustered nets. As a consequence, highly connected nodes

emerge which predominantly shape the topology of the underlying network.

Considering the shortest ways through the network, it will become immediately

clear that these routes always pass highly connected nodes. Thus, these hubs

illustrate crossways helping to transport information quickly to even remote parts

of the network.

So, sparsity and strong local clustering of the scale-free nets offer a different

view on the organization of the networks considered. Pathways defined by

protein and domain interactions might be treated as highly clustered subnets

which are sparsely interlinked to other ones. Accordingly, highly interacting

proteins and domains can be considered as the ’backbone’ of the networks which

interconnect pathways in the respective networks. Otherwise, these nodes might

be central proteins and domains which shape a particular pathway. Thus, it is

possible to get a good flavor of the general characteristics of the underlying

networks without the knowledge of all interactions. This idea intuitively
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becomes important since the current interaction data are from being complete as

already mentioned in the latter section.

In order to get a flavor how frequent sequences of edges -�.402.43 are

accompanied by co-occuring edges -[.13 , a new measure, mean transitivity

coefficient 5 , was introduced. Similarly to mean clustering coefficient * ,

5 -values of scale-free and small-world networks exceed the respective numbers

of equally sized random graphs strongly emphasizing a tendency to reinforce

clustering. However, the 5 -values of all three networks of Yeast indicate the

assumption that indirect or alternative linkage might be rather an exceptional

than common feature. However, the latter point crucially depends on the set up

of networks. Since domain networks were generated by considering domain

nodes linked if they co-occur with other ones in proteins, 5 is subject to a shift to

higher values. Nevertheless, this value reflects the extent to which particular

sequences of nodes are ’backed up’ by an inserted direct link. As already

mentioned, proteins which are mainly involved in enzymatic clusters display a

high degree of transitivity. Obviously, this result is based on the observation that

these proteins nearly interact with each other in the respective protein clusters.

Otherwise, two nodes - although already linked - might be connected indirectly

by adding an intermediate node. Considering protein and domain interactions,

intermediate proteins and domains might be considered as the entry to alternative

pathways. Analogously, intermediate domains in domain sequence networks

might display access to different domain architectures. Thus, high values of 5
imply domains which frequently co-occur with the same domains. Since a crucial

role for the networks topology coincides with connectedness, highly transitive
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nodes might be among the sets of highly connected nodes of the networks

considered. However, no evidence to support this assumption was found. In fact,

it turns out that rather the opposite is the case since frequent interacting proteins

like JSN1 or YHR4 show transitivity coefficients around �TS\��] . The same holds

for highest connected domains in the domain sequence network emphasizing

pkinase and WD40 representing transitivity coefficients of �^S\_R	 and �^SU��	 ,
respectively. In contrast, domains of the domain interaction network apparently

contradict this particular trend since highly interacting domains show reasonable

high transitivity more frequently. WD40 and RRM which lead the list of highly

interacting domains in Table 3 emerge as fairly transitive with values of �TS\]�	 and

�TSa`b	 , respectively. However, this apparent contradictory trend seems to be more

the result of the small sample than a characteristic of interacting domains.

Scale-freedom vs. Small-worldedness

It is significant that the interaction networks differ from domain sequence

networks in their lack of distinct small-worldedness. Small-world networks

employ rewiring of an otherwise regular graph as the crucial point in their set up.

In contrast, preferential attachment of newly introduced nodes results in the

occurrence of highly connected hubs in scale-free networks. Obviously, the

emergence of scale-free networks is a rough representation of evolution.

However, recent works which considered loss of interactions by ’incomplete’

implementation of interactions upon duplication of particular proteins [29] lead

to networks which exhibit scale-free topology and fit the experimentally observed

results very well. Thus, continuous addition and subsequent preferential
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attachment are considered to be indirect consequences of this particular process.

In contrast, protein domain sequence networks also employ small-world features

which emphasise ’rewiring character’ within the domain space. Studies of

proteomes reveal a variety of domain architectures in higher eukaryotes which

allow cellular operations to be maintained without tremendously expanding the

size of the genome [4]. Extensive domain shuffling and domain accretion

increases the combinatorial diversity of protein sets and is therefore procedurally

more similar to the ’rewiring’ of already existing domain nodes.

Evolutionary aspects

Compared to the Yeast proteome, domain fusions in the proteomes of higher

organism are more frequent [27]. On the one hand, proteome complexity is

particularly assumed to be the consequence of protein innovations. On the other

hand, proteomes are generated by expansion of protein families and subsequent

combinatorial arrangements of domains. Combinatorial diversity provides

protein sets which are sufficient to preserve cellular procedures without

dramatically expanding the absolute size of the protein complement. The list of

highly connected domains in domain sequence networks immediately reveals a

substantial lack of overlap in the compilation of single interacting domains.

Although the ratios of fusions grow constantly towards organisms of increasing

complexity, they remain considerably low. Subsequent fusion of interacting

domains seems to be rather an exceptional than a common feature. Accordingly,

single domain interactions seem to be no driving force for fusing domains in one

sequence. Naturally, one might argue that the number of fusions will be subject
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to tremendous change when the Yeast interactome will be further explored. Since

the knowledge about the Yeast interactome is far from being complete, the

overall trend of increasing numbers of fusions per domain interaction will still be

reflected by improved numbers.

Considering highly connected domain nodes in Table 3, the abundance of

domains involved in signal transduction pathways like kinases and zinc-finger

motifs is conspicuous. Proteins which emerged by fusion of domains or

combinatorial diversification of domain architectures are important parts of

signal transduction and cell-cell communication pathways of Yeast emphasizing

its role as a single cellular organism leading the way to multicellularity. Domains

which proved to be fit in different cellular aspects of Yeast are rewarded with an

increasing degree of connections in higher eukaryotes emphasizing a sort of

’fit-get-rich’ regime [4]. Thus, it might be expectable that these partially highly

connected proteins and domains identify as very crucial for the survivability of

the cell. However, it turned out that this is not the case. Although perturbation

analysis of all three types of networks indicates a tendency of lethal proteins and

domains to slightly assemble more crucial effects on the networks, the results are

far from offering a clear distinction between lethal and viable sets of proteins and

domains. However, it should be kept in mind that this results might be based on

the low complexity of Yeast and absence of highly comprehensive data sets.

With protein specific data of higher organism, this question will be revisited.
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Table 1 Some basic data for the domain sequence,
�c�

, domain

interaction,
�[�����

, and protein-protein interaction graphs,
�������

.

�[� �[����� �d�e���

f ( 1196 394 3212

>?��(g@ 1,49 3,06 3,79

f�h J HgHbi h J:K�� i 653 19 89
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Table 2 Mean path lengths, ' , clustering coefficient, * , and transitivity

coefficient, 5 of the domain sequence,
���

, domain interaction,
�[�����

,

protein-protein interaction graphs,
���e���

, and respective random graphs ( E ).

') �'jE *k �*lE 5d �5mE
�[�

5,25/13,33 0,1989/0,0012 0,0401/ _�no�e� �qp

�r�s���
4,01/5,18 0,0816/0,0031 0,0296/0.0031

�d�e���
4,85/6,18 0,0806/ _�nt�e� �qp 0.1288/ 	uno�e� �qp
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Table 3 The 15 most highly connected nodes of the protein-protein

interaction graph,
�������

, the domain interaction graph,
�/�����

, and the

domain sequence graph,
�/�

.

&�v�wyxWw ��( &^vTz x z ��( &�v|{ ��(

JSN1 230 WD40 53 zf-C3HC4 21

Importin Z subunit 123 RRM 46 pkinase 19

ATP14 108 Zn2-CY6-fungal 39 Ser-Thr-kin-actsite 19

TIR1 precursor 107 snRNP-Sm 28 AAA 19

NUP116/NSP116 107 vATP-synt AC39 24 PH 18

SRB4 92 zf-C2H2 22 EF-hand 16

TFIIB 81 cyclin 20 C2 15

YHR4 72 Ser/Thr-phosphatase 18 WD40 14

VMA6 71 TPR 16 DEAD 14

PGDH 69 SH3 15 helicase C 14

MEC3 65 bZIP 12 ATP-GTP-A 14

TEM1 protein 61 TFIID 11 AA-tRNA-ligase-II 14

SOH1 protein 50 Myb-DNA-bind 11 CPSase 14
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LYS14 protein 50 zf-CCHC 11 GATase-1 13

Importin Y -1 subunit 40 Histone-core 11 FMN-binding enzyme 12

28



Table 4 The 15 most transitive nodes of the protein-protein interaction

network,
�d�e���

, domain interaction network,
�/�����

, and domain sequence

network,
�[�

.

& v�wyxWw 56( & v z x z 5m( & v { 5m(

WBP1 0,92 STT3 0,50 DNAtopI-DNA-bind 1,0

PMT3 0,91 DAD 0,50 DNAtopI-ATP-bind 1,0

PMT4 0,91 RNA pol Y s.u. 0.44 DNA pol Y -like 1,0

PMT2 0,91 MCM 0,40 Interleukin-1 1,0

OST5 0,90 WD40 0,39 RNA-polII-repeat 1,0

OST3 0,90 T-SNARE 0,38 ATPase- Z - Y 1,0

OST2 0,90 Ribosomal-S12 0.36 Tubulin 1,0

STT3 0,90 BK-channel- Z 0,33 CytC-heme-bind 1,0

SWP1 0,89 TFIID-31 0,31 6-P-fructo-2-kinase 1,0

UBC5 0,80 Synaptobrevin 0,31 RNA-pol-A 1,0

UBC4 0,80 TFIID-18 0,28 Gluc-transporter 1,0

OST4 0,79 Znf-CCHC 0,28 Dynamin 1,0

ALG5 0,76 Histone-core 0,28 Helix-hairpin-helix motif cl. 2 1,0
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VPS16 0,75 Znf-C2H2 0,27 Middle domain of eIF4G 1,0

PEP3 0,75 DNA-RNApol-7kD 0,25 GHMP-kinase 1,0
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Figure 1 Models of exponential and scale-free networks.

Diameters of circles indicate the number of connections respective nodes have.

798:��; is the frequency that nodes have � connections. Top: Exponential networks

consist of nodes which show similar numbers of links to other nodes. Thus, the

frequency distribution peaks at an average and decays exponentially. Bottom: In

fact, biological networks adopt scale-free topology. A fairly small amount of

highly connected nodes which show much higher numbers of connection than the

average shapes a straight line in the log-log plot of the connectivity distribution.

Figure 2 The frequency distribution of the protein-protein interaction

graph,
�,�����

, domain interaction graph,
�[�����

, and domain sequence graph,
�/�

.

The numbers of links to other vertices were logarithmically binned and

frequencies thus obtained.

Figure 3 Scatterplot of mean clustering coefficient *+( vs. mean transitivity

coefficient *}( concerning the protein-protein interaction graph,
���e���

,

domain interaction graph,
�/�����

, and domain sequence graph,
�/�

.

Figure 4 Frequency distributions of links which are set up by interactions

of lethal and viable proteins.

The compilation of lethal and viable proteins was retrieved from the YPD

database.

Figure 5 Frequency distributions of mean transitivity coefficient 5X( which

are set up by interactions of lethal and viable proteins.
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The compilation of lethal and viable proteins was retrieved from the YPD

database.

Figure 6 Frequency distributions of fraction of lethal and viable links per

domain in domain interaction and domain sequence networks.

The compilation of lethal and viable proteins was retrieved from the YPD

database.

Figure 7 Distributions of the mean path length '#( and mean clustering

coefficient *}( of the protein-protein interaction network.

Lethally and viably mutated proteins were clipped and network parameters thus

obtained. Protein information was retrieved from the YPD database.

Figure 8 Histogram of domain fusion events per domain interaction.

The co-occurrence of domain interactions found in S.cerevisiae and domain

fusion events were detected in S.cerevisiae, A. thaliana, C.elegans, Drosophila

and H.sapiens. Domain information was obtained from InterPro domain

database.
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