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ABSTRACT

The architecture of the network of protein–protein
physical interactions in Saccharomyces cerevisiae
is exposed through the combination of two comple-
mentary theoretical network measures, betweenness
centrality and ‘Q-modularity’. The yeast interactome
is characterized by well-defined topological modules
connected via a small number of inter-module protein
interactions. Should such topological inter-module
connections turn out to constitute a form of functional
coordination between the modules, we speculate
that this coordination is occurring typically in a pair-
wise fashion, rather than by way of high-degree hub
proteins responsible for coordinating multiple mod-
ules. The unique non-hub-centric hierarchical organ-
ization of the interactome is not reproduced by
gene duplication-and-divergence stochastic growth
models that disregard global selective pressures.

INTRODUCTION

The set of all physical protein–protein interactions in a cell—
the interactome—presents a foundational picture for biology,
sitting at the lowest level of description at which it is possible
to have an holistic view of a cell rather then just an isolated
study of its individual components. In this article, we make
a small contribution to the ongoing effort to understand the
global architecture of this fundamental physical network
(1–10). The interactome can be represented in an abstract
way as a network of nodes connected by links, where nodes
stand for proteins and links for direct physical interactions
between proteins. In recent years, there has been much
interest in applying statistical mechanics to the study of
such complex networks (11,12). However, the validity of
such an approach is always conditional on the fundamental
assumptions of statistical mechanics being satisfied.
For instance, many statistical measures will not be able to

distinguish between a network with an intrinsic hierarchical
topology and one without it (Figure 1).

RESULTS AND DISCUSSION

Our approach sidesteps the limitations alluded to in the pre-
ceding paragraph and focuses directly on how the interactome
topology relates to two broad biological concepts. The first of
these, hierarchical organization, is in this context the notion
that there may exist a hierarchy in the role of proteins (10).
On one hand, there are proteins that perform very specific,
local functions, relevant only within the context of a particu-
lar biological process. On the other hand, some proteins may
possess a global, high level role, perhaps acting as mediators
of distinct biological processes. To study the topological hier-
archy in the interactome, we use the graph theoretical
betweenness centrality measure (13–15) (Supplementary
Data). Betweenness centrality (denoted ‘traffic’, henceforth)
for a node is the total number of shortest paths (between
any two other nodes) in the network that pass through that
node. A high traffic value for a protein therefore correlates
with that protein being topologically central in the inter-
actome. The second of these is the concept of biological func-
tional modularity (16). In the context of proteins, at the
extreme, this takes the form of protein machines performing
specific functions in a cell (7). More generally, it consists of
an expectation that the density of protein–protein interactions
will rise as we zoom into an increasingly functionally related
set of proteins. To assess modularity in the interactome topo-
logy, we use the ‘Q-modularity’ measure of Newman (17),
which assigns a modularity score, Q, to any given partition
of the network into modules. The modularity Q is defined
as the difference between the ratio (intra-module edges)/
(total edges) for the network in question, and the expected
value for this ratio if edges in the network were randomized,
subject to every node maintaining its original degree. We use
the algorithm of Clauset et al. (18) to find an interactome
partition into modules that corresponds to a large Q value.
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We now explain how to produce an interactome polar map
(Figure 2) by combining the information contained in the
modularity and traffic analyses. The position of every protein
in the map is specified in terms of its radial and angular
coordinates. The radial coordinate is a function of its traffic
(19). More precisely, it is proportional to log(max traffic/
protein’s traffic), where ‘max traffic’ is the maximum node
traffic in the network (Supplementary Data). A logarithmic
scale is used due to the long tail of the traffic distribution
(20). The protein angular coordinates are assigned such that
all proteins in the same module fall within the same angular
range (Supplementary Data). This way, an interactome map
is created where topologically increasingly central proteins
are radially increasingly closer to the center of the map,
while angular sectors correspond to topological modules.
To determine the circular ordering of the modules in the
map, we introduce a Ring Ordering Algorithm that, based
on the interactome inter-module connectivity, attempts to
place closer to each other, to the extent that it is possible,
modules that are more topologically related (Supplementary
Data).

We apply this analysis and discuss its implications in the
context of the Saccharomyces cerevisiae interactome. The
interactome dataset we use is the higher confidence ‘filtered
yeast interactome’ (FYI) (10), consisting of interactions sup-
ported either by small-scale screens as reported in the MIPS
database (21) or by at least two distinct methods from
amongst (i) high-throughput yeast two-hybrid experiments
(22,23), (ii) computational predictions based on gene
co-occurrence (24,25), gene neighborhood (24,26) or gene

fusion (24,25), (iii) high-throughput affinity purification/
mass spectrometric protein complex identification experi-
ments (27,28) and (iv) small-scale or module-scale experi-
mental identification of protein complexes as reported in
MIPS (21) (Supplementary Data). We consider only the
giant connected component produced by this dataset, a net-
work containing 1741 interactions amongst 741 proteins.
Our dataset choice reflects a desire to bias the data towards
a thorough and accurate coverage of a limited region of the
interactome as opposed to a wider, but likely shallower and
more error prone, sampling. Note that when defining whether
two proteins interact, a binary description is being imposed
on what ideally would be characterized in terms of an affinity
constant. Experimentally, effectively the aim has been for a
cut-off that is high enough to exclude indiscriminate low-
affinity interactions, such as those that occur between a
general protein and proteasomal, ribosomal, or heat shock
proteins, since in principle these are less informative interac-
tions (29,30). Hence, such interactions are largely absent
from datasets. With the vast majority of the proteins at the
periphery of the map and well-defined modules connected
through a handful of more central proteins, the yeast inter-
actome polar map (Figure 2) presents what we term a
coordinated-functionality architecture. Next, we discuss how
this interactome architecture fits in with the biology of the cell.

An examination of the MIPS database functional (biolo-
gical process) annotation of the proteins (21) demonstrates
that the topological modules make very good sense as biolo-
gical functional modules. On average 88.8% of the proteins in
a module share a similar function based on their MIPS clas-
sification (21) (Supplementary Data), confirming earlier stud-
ies connecting topology and function (31–40). Part of the
mismatch between the topological modules and current pro-
tein functional annotations will likely vanish, once more
complete and accurate interactome datasets become avail-
able. However, it is the disparities not due to dataset limita-
tions that are truly interesting, for those are instances where
the functional modules based on the interactome topology
are not the ones we currently assign in functional classifi-
cation schema. In view of (i) the good overall match
found and (ii) the foundational role of the interactome in
the cell, we propose that the interactome topology represents
a fundamental source for the division of proteins into func-
tional groups. As such, its modularity analysis provides a rig-
orous alternative to the currently subjective functional
annotation present in protein databases. In accordance, we
name the topological modules found so as to reflect their per-
ceived biological roles (Figure 2).

The average degree of essential (41,42) proteins in the
dataset is 5.7, while that of non-essential proteins is 3.9, a
difference that is too large to be attributable to chance
alone (43) (Supplementary Data). This difference may indeed
be biologically meaningful. Although physically knocking
out a gene associated with a high or a low degree protein,
say of degree 2 or 10 respectively, may be considered equi-
valent, from a mathematical network perspective it is not.
In one case, it involves deleting 1 node and 2 links, in the
other it involves deleting 1 node and 10 links. Note that
such an explanation would not involve ascribing any out of
the ordinary, higher-level role to hubs, the large degree
proteins. Alternatively, the observed higher average degree

(a)

(b)

Top level:
Linear string

...

...

Lower level:
Scale-free distribution
but otherwise random

Scale-free distribution
but otherwise random
network

Figure 1. Hidden intrinsic hierarchy in networks. In this example sketch,
network (a) has two hierarchical levels: it consists of a linear string of nodes
at the top level that connect to a lower level set of subgraphs possessing scale-
free degree distributions, but that are otherwise random. Network (b) has only
one hierarchical level, also with a scale-free degree distribution and random in
other respects. Arguably, for many applications the difference between topol-
ogy (a) and topology (b) is of relevance. Yet, an analysis based on common
measures such as degree distribution (11,12), clustering coefficient as a func-
tion of degree (11,44), or degree correlation measures (61), to name a few,
would indicate networks (a) and (b) to be topologically identical. This is due to
the much larger number of nodes at the lower hierarchical level statistically
overwhelming, and therefore hiding, the top level structure.
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of essential proteins could still stem from lingering system-
atic biases in the FYI dataset.

While the translation of the interactome modular topology
into biological functional modularity is straightforward, this
is not the case for the interactome topological hierarchical
organization. A fundamental question that the traffic analysis
gives rise to is how the interactome topological hierarchical
organization phenomenologically expresses itself. For
instance, do more hierarchically central proteins in fact per-
form a higher-level, coordinating role in the cell? At present,
these are open biological questions.

Comparing proteins of equal degree, we find no significant
correlation between a protein’s traffic and its essentiality
(41,42) (Supplementary Data), something not too surpris-
ing, as knocking out a key protein that renders an essential
functional module inoperant is plausibly more damaging
than knocking out a protein that mediates two distinct

processes that nonetheless can still function independently.
An intriguing, though at the moment still unsupported hypo-
thesis is that, if a protein is disrupted, its traffic level correl-
ates with the likelihood of causing non-lethal side effects in
multiple areas of the biology of the cell. Speculating further,
perhaps our representation of the interactome can provide
clues as to where those side effects may arise—a matter of
critical importance in drug development. A different possib-
ility is that, for some of these module-connecting proteins,
interacting with multiple modules is not a sign of a role in
coordinating the functionality of the modules, but rather
just a result of the protein being independently used in
those modules. In opposition to a true functional ‘connector’,
we would call such a protein a ‘bolt’ (alternatively, ‘widget’),
in reference to how, analogously, a mechanical bolt can be
used in multiple functional modules of a human engineered
machine, while playing no role in coordinating their
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Figure 2. S.cerevisiae interactome polar map. The map is constructed, in an unsupervised manner, based solely on protein–protein interaction data. The module
captions (blue text boxes) were manually chosen, a posteriori, to reflect the biological role of each module. The map suggests a ‘coordinated-functionality’
architecture for the interactome, arguably an ideal framework for the cell to physically implement the concept of distinct, yet coordinated, biological functional
modules. This would be a pairwise-coordination, as inter-module physical interactions occur in a pairwise fashion: of the 76 proteins that possess inter-modular
connections, only four connect their module to more than a single other module (TAF25 in module #21 and SRP1 in module #13 have links to four other modules,
while NUP1 in module #13 and CLB2 in module #1 have links to two other modules). The map is based on the higher confidence FYI protein–protein interaction
dataset (10), consisting of interactions validated either through small-scale experiments or through at least two distinct procedures. The giant connected component,
shown here, consists of 741 proteins and 1752 protein–protein interactions.
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functionality. Finally, note that a priori the observed 47 inter-
module interactions are particularly susceptible to be false-
positives, because a false-positive interaction between two
random unrelated proteins is likely to result in an inter-
module, high traffic interaction. However, significantly,
45 out of these 47 inter-module interactions belong to the
set of interactions supported by small-scale targeted experi-
ments and arguably it is not very likely that a false-positive
interaction of the type just described would go unnoticed in
a targeted experiment and further make it into the peer-
reviewed literature. Of the remaining 2 inter-module interac-
tions, one is reported in the Ito et al. (23) and Uetz et al. (22)
high-throughput yeast two-hybrid datasets as well as in the
MIPS dataset of protein complexes identified via small- or
module-scale experiments (21), while the other is reported
in the Gavin et al. (27) high-throughput protein complex
identification study and again in the Uetz et al. (22) yeast
two-hybrid dataset. Out of the 45 supported by small-scale
experiments, four are also reported in a high-throughput
yeast two-hybrid study (22,23), three in a high-throughput
protein complex identification study (27,28) and two in the
MIPS dataset of protein complexes identified via small or
module-scale experiments (21). Whatever biological role
central proteins turn out to play, we submit that they call
for further experimental investigation, given their unique
topological placement in the interactome.

Having hierarchically classified the proteins with the traffic
measure, we are now in a position to consider network degree
distribution related questions without falling prey to previ-
ously noted statistical problems (Figure 1). Of particular
interest is how degree changes as one moves hierarchically
across the interactome (14) (Figure 3a). Surprisingly, nodes
of different degree are rather homogeneously hierarchically
spread across the interactome: note the large spread between
the green, red and blue curves relative to their small positive
slopes; or, for a more quantifiable attribute, how the 10% of
nodes with the largest degree in the periphery of the inter-
actome have a significantly larger degree than the average
degree at the center of the interactome. Thus, the interactome
is not hierarchically stratified by degree. In particular, the
interactome has a non-hub-centric hierarchical organization.
Further, note that should the inter-module protein interactions
indeed represent a form of functional coordination, then this
coordination is apparently occurring overwhelmingly in a
pair-wise fashion: out of the 76 proteins that possess links
to modules outside their own, only 4 connect their home
module to more than one other module (TAF25 and SRP1
have links to four other modules, NUP1 and CLB2 to two
other modules). The other 72 proteins connect their home
module to a single other module (Supplementary Data). It
is also noteworthy that, amongst these 76 connecting pro-
teins, the higher degree ones in general belong clearly in
their assigned home modules (specifically, for connecting
proteins of degree 4 or higher, let us exclude the two interac-
tions that each of these proteins must have by default to con-
nect it to its home module and to one linked module; then,
95.3% of the remaining interactions of connecting proteins
are with the protein’s respective home module. Supplement-
ary Data). This pairwise-coordination is in sharp contrast with
the picture of a hub protein connecting and mediating mul-
tiple modules (11,43,44).

The non-hub-centric organization runs contrary to a num-
ber of network growth models that have been proposed to
explain the topology of the interactome (11,45–48). The mod-
els are based on evolution by stochastic gene duplication and
divergence (49,50). Amongst other reproduced statistics, the
models are able to generate the power-law degree distribution
observed in early interactome datasets (51). Since these mod-
els do not make an appeal to evolutionary selection pressures,
a major conclusion taken from their success was that natural
selection is not required to reproduce the global structure of
the interactome; instead, stochastic gene duplication and
divergence suffices to give rise to that topology (45,47).
However, here we report that these gene duplication models
lead to hierarchically hub-centric networks. In Figure 3b, we
show data pertaining to an interactome built using the model
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Figure 3. A non-hub-centric hierarchical organization. In the yeast inter-
actome (a), the degree distribution does not change greatly as one moves from
the periphery to the center of the Figure 2 polar map (i.e, as one moves from a
low to a high traffic region). In other words, hubs are not hierarchically central
in the yeast interactome. In contrast, gene duplication and divergence inter-
actome stochastic growth models [45–47] produce hub-centric interactomes,
where the average degree markedly increases with traffic and the hierarchical
center of the interactome is therefore dominated by hubs. (a) Analysis for the
yeast interactome giant connected component, based on the FYI data set
(741 proteins, 1752 interactions) [10]. Red curve—the average degree for
the set of nodes whose log (traffic) value falls within 0.3 of the log (traffic)
value indicated in the x-axis. That is, a log (traffic) bin of size 0.6 is continuously
slid along the log (traffic) axis and the average degree for all the nodes that fall
within the bin is calculated. The last bin also includes all nodes with a
log (traffic) value larger than the range shown in the figure. The bins cover
the entire data set, with every bin containing at least 26 nodes. The first bin
contains 417 nodes. The last bin contains 37 nodes. Green curve—similar to the
red curve, except this time the degree average is done only over the 10% largest
degree nodes in the bin. Blue curve—similar to green curve, but this time
averaging over the 10% lowest degree nodes in the bin. The average degree
in the highest traffic bin (rightmost data point in the red curve) is only 0.42 times
the average degree of the 10% largest degree nodes in the lowest traffic bin
(leftmost data point in the green curve). (b) Corresponding plots for the giant
component of an interactome evolved under the gene duplication and diver-
gence stochastic growth model of Pastor-Satorras et al. [45]. In this case, the
giant component contains 759 nodes and 1542 interactions. Every bin contains
at least 26 nodes. The first and last bins contain 432 and 40 nodes, respectively.
The average degree in the highest traffic bin is now 4.6 times larger than the
average degree of the 10% largest degree nodes in the lowest traffic bin. Similar
results were achieved under multiple trials, model parameters and gene dupli-
cation growth models (Supplementary data.).
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Figure 4. Overlay of 20 min post heat shock mRNA expression data (62) upon the interactome polar map. Maps are constructed as in Figure 2 and Supplementary
Fig. 8 (proteins connected to other modules in the global map have names in blue). In addition, node color indicates mRNA expression level. As previously reported
(62), there is a sharp decline in expression of mRNA for ribosomal proteins. Other modules with a significant proportion of constituent proteins showing a decline are
the Translation Initiation and Core RNA Polymerase modules. These observations are consistent with the repression of genes involved in RNA and protein synthesis
upon heat shock (62). Modules with a significant proportion of constituent proteins showing an increase in expression are the small Cell Cycle Checkpoint Control
module and parts of the Signal Transduction and Cell Cycle Progression modules. Overlay of mRNA expression data upon the single module maps of the latter two
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of Pastor-Satorras et al. (45). By comparison with the same
plot for the yeast interactome, this time the network is clearly
stratified by degree, with the larger degree nodes concen-
trated at the hierarchical center of the network. Now it is
the average degree at the center of the network that is signi-
ficantly larger than the average degree of the 10% of nodes
with largest degree at the periphery. The models of Vázquez
(46) (slightly different implementation of the gene duplica-
tion and divergence process) and of Wagner (47) (emphasiz-
ing a continuous divergence in the form of gain and loss of
interactions amongst existing proteins) produce similar hub-
centric networks (Supplementary Data). In summary, there
are at least three possible explanations for the non-hub-
centric hierarchy we observe in yeast: (i) it is a spurious
effect associated with the limitations of existing data and
the interactome is in fact hub-centric; (ii) there is some cru-
cial feature of the gene duplication and divergence mechanics
that is not understood and/or is not captured by current mod-
els or (iii) the non-hub-centric hierarchy is in fact shaped by
natural selection pressures on the global interactome struc-
ture.

Our study is based on the present-day knowledge of the
yeast interactome, which is still rather deficient (52–58).
We minimized false-positives using the higher confidence
yeast FYI dataset as the source for our study. The good cor-
respondence between the topological modular breakdown of
the interactome and the known functional annotation of pro-
teins corroborates that false-positives are not an overriding
problem in this dataset. Nonetheless, we repeated the inter-
actome analysis using a dataset of interactions reported in
the MIPS database that are validated through small-scale
screenings, the most reliable source of data (55) (giant com-
ponent: 392 proteins, 675 interactions. Supplementary Data).
The correspondence between topological and functional mod-
ules (now on average 92% of the proteins in a module shared
a similar function based on their MIPS classification), as well
as the reported non-hub-centric hierarchy were again
supported by this small-scale dataset (Supplementary Data).
Regarding the limited coverage of our datasets [FYI
�12% coverage, small-scale �7% coverage, assuming
�6000 proteins in yeast (23)], it is of note that the doubling
in size of the network, going from the small-scale to the FYI
dataset, did not dilute the observed non-hub-centric topology
nor the pair-wise inter-module connectivity pattern. In fact,
the FYI dataset produces an even slightly less hub-centric
interactome than the small-scale dataset (Supplementary
Data). Likewise, the pairwise inter-module connectivity pat-
tern is no less present in the FYI than in the small-scale
dataset (where out of the 47 proteins with inter-module
links, four connect their home module to more than one
other module. Supplementary Data). The observation that
higher degree connecting proteins are in general strongly
attached to their home modules is equally confirmed in
both datasets (the earlier mentioned 95.3% of home module
interactions for the FYI higher degree connecting proteins,
now becomes 95.7% in the small-scale dataset). Still, it is
important to bear in mind the limitations of current datasets.
For instance, regarding the typical pairwise coordination, the
possibility that this observation is only the result of a high-
number of false-negatives for inter-module protein inter-
actions cannot be ruled out. Note, for example, how in the

map there are no interactions between the translation
initiation module and the ribosomal subunit modules, even
though such interactions must certainly exist. Ultimately,
only the generation of more accurate and comprehensive
interactome datasets can unequivocally confirm or disprove
some of the results and hypotheses put forward in this art-
icle (52,53).

So far our analysis has focused on the global interactome
topology. Now we would also like to highlight its potential
as a framework for exploiting the wealth of interactome
data. The interactome can form a valuable platform for crys-
talizing biological thought. We briefly introduce two relevant
extensions to our work. First, one may zoom into a module of
interest in the interactome and locally repeat the analysis,
producing a single module polar map (Figures in Supple-
mentary Data). Such a local map provides one with a starting
point to discuss the biology of the process under study, inter-
pret and design experiments, and generate new biological
hypotheses. Second, we note that the entire proteome is
rarely, if ever, evenly expressed by the cell (49). Therefore,
perhaps the interactome is best viewed as a potential network
at the cell’s disposal, with different parts of it being turned on
and off to different degrees, as biologically required. Integrat-
ing mRNA expression data with the interactome polarmap
(59) (Figure 4), permits a proper, unified analysis of this
dynamical network.

The interactome represents an elementary abstraction of
the multitude of complex biochemical interactions taking
place in the rich physiological environment of the cell. In
the trade-off between simplicity and realism, arguably some
facts may be beneficially incorporated in future interactome
models: For instance, protein interactions vary within a con-
tinuum of binding affinities and post-translational modifica-
tions, as well as allosteric interactions effectively change
the possible binding partners of a protein, to name a few of
the more prominent omissions at present (49). We end by not-
ing that the organization of a network through a procedure
akin to the one used in this paper may also be of relevance
to the problem of network motif finding (60), as certain motifs
may turn out to occur sparsely overall and yet be statistically
significant in specific regions of the network (e.g. only in the
high traffic central area, or only in a particular module).

SUPPLEMENTARY DATA

Supplementary data are available at NAR online
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