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Abstract

We present E-CELL, a generic computer software environment for modeling a cell and con-

ducting experiments in silico. The E-CELL system allows a user to de�ne functions of proteins,

protein-protein interactions, protein-DNA interactions, regulation of gene expression and other fea-

tures of cellular metabolism, in terms of a set of reaction rules. The system then executes those

reactions iteratively, and the user can observe, through a computer display, dynamic changes in

concentrations of proteins, protein complexes and other chemical compounds in the cell.

Using this software, we constructed a model of a hypothetical cell with only 127 genes su�cient

for transcription, translation, energy production and phospholipid synthesis. Most of the genes are

taken from Mycoplasma genitalium, the organism having the smallest known chromosome, whose

complete 580kb genome sequence was determined at TIGR in 1995.

We discuss future applications of the E-CELL system with special respect to genome engineering.
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1 Introduction

Complete genomes of a dozen microbes have been sequenced, and it has led to the emergence of the

next phase of genome biology: proteome analysis. Systematic analyses of genes/proteins are now

under way, and catalogues of all the protein functions of those microbial species will be constructed.

The challenge we face is to understand how those proteins work collectively as a cellular system.

If we can successfully understand the proteome system, we should be able to predict consequences

of changes introduced into the cell and/or its environment, such as knocking out a gene or altering

ingredients of the culture medium. Possible consequences of such intervention include cell death,

changes in growth rate, and increase or decrease in expression of speci�c genes.

Computer simulations are essential in understanding such complex systems. Many attempts have

been made to simulate important molecular processes in both cellular and viral systems. Several

groups have proposed and analyzed gene regulation and expression models by simulation (Koile and

Overton 1989, Karp 1993, Arita et al. 1994, McAdams and Shapiro 1995). The cell division cycle has



also been an active area of research for biological modeling and simulation (Tyson 1991, Novak and

Tyson 1995). Signal transduction mechanisms have also been simulated. (Bray et al. 1993).

Many of these simulations utilize qualitative models to deal with the general lack of information in

molecular biology, especially quantitative kinetic data. However, while qualitative models are generally

useful when information is incomplete (Kuipers 1986), it often generates ambiguous results(Kuipers

1985) the behaviors of which are di�cult to predict due to combinatorial explosion. For a review on

computer simulations in biology, see Galper and Brutlag (1993).

We present E-CELL, a computer software environment for modeling and simulation of the cell.

The E-CELL system is a generic object-oriented environment for simulating molecular processes in

user-de�nable models, equipped with interfaces that allow observation and interaction. Thus, the

E-CELL system can be thought of as a framework for conducting experiments in silico.

The E-CELL system allows the user to utilize qualitative, quantitative or hybrid qualitative/quantitative

models. This facilitates the incorporation of quantitative information where possible, while alleviating

much of the limitations of qualitative models (deKleer 1977, Koile and Overton 1989).

The hypothetical cell we have modeled using E-CELL uptakes glucose from the culture medium

using a phosphotransferase system, generates ATPs by catabolizing glucose to lactate by glycolysis

and fermentation pathways, and exports lactate out of the cell. Since enzymes and other proteins

are modeled to degrade spontaneously over time, they must be constantly synthesized in order for

the cell to sustain \life". The protein synthesis is implemented by modeling the molecules necessary

for transcription and translation, namely RNA polymerase, ribosomal subunits, rRNAs, tRNAs and

tRNA ligases. The cell also uptakes glycerol and fatty acid and produces phosphatidyl glycerol for

membrane structure using a phospholipid biosynthesis pathway.

The genome of the cell consists of 127 genes including 20 tRNA genes and 2 rRNA genes. Out of

the 127 genes, 120 are taken from Mycoplasma genitalium, the organism having the smallest known

chromosome, whose complete 580kb genome sequence was determined at TIGR (Fraser et al. 1995).

Since 7 genes which are essential for the model cell are not found inMycoplasma genitalium, 2 are taken

from E. coli and 5 are from no speci�c organism. We have been utilizing the wealth of information

on metabolic pathways now available through knowledgebases such as EcoCyc (Karp et al. 1996) and

KEGG(Kanehisa 1996). As an example, the pathway for phospholipid biosynthesis in the model cell

is illustrated in �gure 1.

2 Modeling a Cell

We de�ne all possible objects in the cell and culture medium as O1; O2; ::::; On. Objects which make

up a cell are proteins, RNAs, DNAs, and small molecules. Multi-subunit complexes, such as RNA

polymerase and the ribosome, are also de�ned as separate objects. Since we are dealing with a

procaryotic species in the present work, small organelles such as mitochondria are not considered. We

then represent a state of the cell as a list of real numbers C1; C2; :::; Cn, where Ci is the approximate

concentration of Oi (or the number of molecules) in the cell, along with a few global values such as cell

volume, pH and temperature. Operators to change a state into another state are called reactions, and

are represented as R1; R2; ::::; Rn. Each reaction consists of a list of substrates, a list of products, a list

of catalysts, and a function to compute the rate of reaction from substrate and catalyst concentrations.

Substrates, catalysts and products are de�ned as objects.

2.1 Object De�nitions

Proteins Each protein/polypeptide is de�ned as an object. A separate object is de�ned for a

modi�ed version of the protein, such as a phosphorylated protein.



Figure 1: The phospholipid biosynthesis pathway.

DNAs Each gene is de�ned as an individual object. Positive and negative control regions (protein

binding sites) of each gene are also de�ned as separate objects.

RNAs A messenger RNA for each gene is de�ned as an object. Other RNAs such as ribosomal

RNAs and transfer RNAs are also de�ned as objects.

Small Molecules Other small molecules in the cell de�ned as objects include sugars, lipids, amino

acids, ATPs, etc.

2.2 Reaction Rules

Enzyme reaction A typical reaction in a metabolic pathway is transformation of a small molecule

into another molecule catalyzed by an enzyme which remains unchanged. An enzyme e transforming

a substrate s into a product p can be represented as:

[e]

s ---> p

An object within square brackets is a catalyst. If there are two substrates, then:

[e]

s1 + s2 ---> p.

In this way, a reaction with any number of substrates and products can be dealt with. If the reaction

requires energy, then it can be represented as:



[e]

s + ATP ---> p + ADP.

Phosphorylation Protein phosphorylation can be represented as:

[e]

s + ATP ---> ps + ADP

where s is an unphosphorylated protein, ps is a phosphorylated protein, and e is a protein kinase.

Dimer formation Two monomers forming a dimer can be represented as

2 x <--> d.

Similarly, reactions of two di�erent subunits forming a complex can be represented as:

x + y <--> c.

Oligomer formation Trimer formation can be represented by a single rule as

3 x <--> t.

Alternatively, the following two rules would give a more precise model for trimer formation:

2 x <--> d

x + d <--> t.

Protein-DNA Interaction Protein-DNA interactions can be represented as:

p + d <--> pd

where d is a protein binding region of DNA, p is a DNA binding protein, and pd is a protein-DNA

complex.

Translocation and transport Besides quantitative information (concentration) of each object,

information concerning the location of an object is sometimes important. For example, transmembrane

proteins are synthesized in the cytoplasm and then transported to the cell membrane in order to

function in their assigned roles. If transportation is blocked, then they cannot function.

We can deal with those phenomena by de�ning the same objects at two di�erent locations (x and

y), as two di�erent objects, Ox and Oy. Translocation of an object can then be represented by a

simple reaction rule:

Ox --> Oy.

It is necessary to de�ne in advance a �nite set of locations or subregions of the cell.

The transport of nutrients from exterior medium into the cell can be modeled in this way.

Transcription and translation The synthesis of mRNAs can be modeled as a series of many

detailed reactions, including: binding of RNA polymerase to the DNA promoter region, initiation of

the RNA chain, chain elongation by addition of ribonucleoside triphosphates, and release of polymerase

and completed RNA chain.



Gene regulation and cell cycle By modeling transcription and translation, along with DNA-

protein interactions of regulatory factors, various gene regulation networks can be implemented.

Similarly, reactions related to the cell cycle such as DNA replication and cell division can be

modeled as a series of a large number of primitive reactions, or a small number of abstracted reactions.

2.3 Reaction Rates

The rate (velocity) of each reaction can be de�ned by a mathematical equation which speci�es the

amount of change (the number of molecules) in a single time unit. One such equation for enzyme

reaction is the Michaelis-Menten equation:

v =
Vmax � [s]

[s] +Km

where [s] is substrate concentration, Vmax is maximal velocity, and Km is the Michaelis constant.

Some reactions, such as dimer formation and DNA-protein binding, reach equilibrium within a sin-

gle time unit. In those cases, dissociation constants can be used to directly compute the concentration

of each molecule at the equilibrium. For a reaction such as

a + b <--> ab

the following equation holds at the equilibrium.

Kd =
[a][b]

[ab]

where Kd is the dissociation constant of the reaction, [a], [b], and [ab] are concentrations of a, b and

ab, respectively.

3 Implementation of the E-CELL System

3.1 System Architecture and Data Representation

The E-CELL system is implemented as a rule based simulation system and is written in C++, an

object oriented programming language. It allows the use of qualitative, quantitative or hybrid quali-

tative/quantitative models for simulation. The model consists of two lists, and is loaded at runtime.

The substance list de�nes all objects which make up the cell and the culture medium. The rule list

de�nes all of the reactions which can take place within the cell. The state of the cell at each time

frame is expressed as a list of concentration values of all substances within the cell, along with global

values for cell volume, pH and temperature. The simulator engine generates the next state in time

by pseudo-parallel computation of all of the functions de�ned in the reaction rule list. In addition to

using the sample qualitative models provided with the system, the user can create user-de�ned models

by writing original substance and rule lists which may be either qualitative or quantitative. Graphical

interfaces are provided to allow observation and interaction throughout the simulation process.

A substance can be a substrate, catalyst or product of a reaction. Typical substances include pro-

teins, protein complexes, DNA(genes), RNA, and small molecules. The list of substance concentrations

is updated with the new values computed by the simulator engine after each time unit.

Each rule in the rule list is called upon by the simulator engine to compute the concentration of

each substance in the next time unit. The summation of all changes in concentrations of a substance

resulting from each reaction occurring in a time unit are added to the concentrations in the present

state to generate the next state of the cell.

In qualitative simulations where the rates of the de�ned reactions can serve as a measure for

assessing time, it is not necessary to de�ne an absolute value for the size of the time unit, �t. However,

the E-CELL system provides the option of de�ning an absolute value for �t, allowing the user to assess

quantitative time, when there is su�cient information to quantify the rate of the reactions.



Figure 2: A screen dump of the E-CELL system

3.2 User Interfaces

The E-CELL system provides a graphical interface which allows the user to select substances of interest

and observe dynamic changes in their concentration (�gure 2). The interface is implemented as a

window displaying a two dimensional plot in which line graphs represent changes in the concentration

of selected substances. Each window can display up to 6 substances at once for comparison, and

multiple windows may be opened when it is necessary to observe more than 6 substances at a time.

The interface also allows the user to conduct experiments in silico by changing the concentration

values at will during the simulation process.

The graphical user interface of the E-CELL System allows the user to observe the dynamic changes

in concentrations of substances.

3.3 Future Enhancements

Our model cell's gene set of 127 genes is much smaller than the \minimal gene set" derived through

sequence comparison by Musheginan and Koonin (1996). This is not surprising since our model lacks

several important features present in all real living cells. It has no ability to proliferate; we are

currently modeling cell growth, DNA replication, chromosome segregation and cell division.

Furthermore, the present cell model relies on unrealistically favorable environmental conditions. All

of the amino acids and nucleotides must exist, and pH and osmolarity must be kept at physiologically

stable levels at all times. The model also lacks cell structure proteins, which would be indispensable

in any natural environment because of physical pressure.

To address these problems, we are currently modeling amino acid and nucleotide biosynthesis

pathways. We also plan to model homeostasis of pH and osmolarity, and structure proteins for



membrane structure and cytoskeleton.

4 Application to genome engineering

One of our ultimate goals is to model the real cell of M. genitalium, the organism having the smallest

known chromosome. Because of the small number of genes (470 proteins, 37 RNAs), M. genitalium is

a prime candidate for exhaustive functional (proteome) analysis. Because there are still many genes

whose function is not yet known, it will probably be necessary to hypothesize putative proteins to

complement missing metabolic functions, in order for the model cell to work in silico.

4.1 Metabolic requirements

The evaluation of metabolic requirements of the cell provides an excellent example of a potential

application for the E-CELL. At present M. genitalium is grown in a complex medium containing

several chemically unde�ned components including fetal bovine serum, and also extracts of yeast and

beef. At TIGR experiments are in progress to produce a chemically de�ned medium which supports

growth of M. genitalium. This problem could be attacked from a purely empirical point of view,

however a more interesting approach is one that is informed by knowledge of the complete genome

sequence. By combining knowledge of the metabolic enzymes present in the cell with information

concerning protein transporters of metabolites across the cell membrane, it should be possible to

evaluate whether a particular de�ned medium can support growth, by using the E-CELL model. The

main di�culty in this approach is that identi�cation of gene function solely on the basis of sequence

is uncertain. Comparison of laboratory results with E-CELL predictions should help to overcome this

di�culty. Agreement between the model and laboratory growth experiments will be evaluated for a

large number of di�erent chemically de�ned media. Di�erences between experimental observations

and the E-CELL predictions will be used to re�ne the model. This could lead to the identi�cation

of new enzymes or transporters among genes with previously unassigned roles, or to the removal of a

questionable role assignment based on a marginal level of sequence similarity.

4.2 Gene expression

Another area in which we plan to apply the E-CELL model concerns the control of gene expression.

Gene expression patterns of M. genitalium are currently being determined at TIGR under a variety

of growth conditions. We expect that these results will suggest speci�c mechanisms for control of

transcript levels which can be modeled by rules in the E-CELL system. We will conduct parallel

experiments in the laboratory and in silico with the E-CELL system; given an appropriate model of

the cell, we can change initial values of ingredients of the culture medium and observe increases and

decreases of messenger RNA levels. The results of those in silico experiments should be consistent

with results of biological and biochemical experiments. The computer model will then be re�ned as

necessary.

4.3 Minimal gene set

We expect that the E-CELL system will be useful in de�ning the minimal set of genes required for

a self replicating cell under a speci�c set of laboratory conditions. At TIGR work is underway to

identify the genes of M. genitalium which are non-essential, by gene disruption experiments using

transposons. If the E-CELL model is su�ciently detailed and accurate, then these gene disruption

experiments can be modeled in silico to predict a minimal gene set. The laboratory experiments

will lead to the prediction of a reduced gene set which should be a close approximation to the truly

minimal Mycoplasma genome. Alternative predictions of a minimal gene set can also be proposed on

theoretical grounds, or by deducing a core set of genes conserved between M. genitalium and other



microbial genomes. The E-CELL system should be useful in modeling cells based on these alternative

proposals for a minimal cellular genome.

We expect that a combination of laboratory experiments and in silico modeling using the E-CELL

system, will lead to a more reliable prediction of the minimal gene complement for a self-replicating

cell than could be obtained by either method alone.

5 Concluding Remarks

We have constructed a hypothetical cell using the �rst version of E-CELL, and have developed hun-

dreds of reaction rules for a partial set of metabolic pathways of M. genitalium, including glycolysis,

lactate fermentation, glycose uptake, glycerol and fatty acid uptake, phospholipid biosynthesis, gene

transcription, protein synthesis, polymerase and ribosome assembly, protein degradation and mRNA

degradation.

Its application to genome engineering has just begun. The approaches to de�ning a minimal gene

set, described in section 4, are testable in principle. At TIGR a longer term goal of this work is the

engineering of the genome to produce living cells with substantially reduced genomes. This will allow

us to test proposals for minimal gene sets directly. It will be interesting to compare real cells so created

with their computer models. Comparison of the models with the results of laboratory experiments will

allow further re�nement of the computer models. This in turn will lead to a better understanding of

the biological and biochemical results, and hence a better understanding of the essential requirements

of a minimal living cell. In this way we can think of the E-CELL system as the �rst step toward a

tool for the computer assisted design of novel cells.

Acknowledgments

We would like to thank Peter Karp and Doug Brutlag for useful comments on the early draft of this

paper. Masanori Arita kindly helped us in reviewing literature on biological simulations. Many of

the ideas presented in this paper were inspired by discussions with other members of Tomita Lab. at

Keio University, including Junko Shinada, Keiko Miura, Hisako Nakano and Daisuke Kamiyoshikawa.

We also thank for useful comments Scott Peterson and Karen Ketchum of The Institute for Genomic

Research, as well as Nobuyoshi Shimizu and his colleagues at Department of Molecular Biology, Keio

University.

This work was supported by Eizai Research Institute and also in part by a Grant-in-Aid for

Scienti�c Research on Priority Areas `Genome Science' from The Ministry of Education, Science,

Sports and Culture of Japan.

References

Arita, M., Hagiya, M., and Shiratori, T. 1994. GEISHA SYSTEM: An Environment for Simulating Protein

Interaction. In Proceedings, Genome Informatics Workshop 1994. Bunkyou-ku, Tokyo: Universal Academy

Press. 81{89.

Bray, D., Bourret, R.B., and Simon, M.I. 1993. Computer Simulation of the Phosphorylation Cascade Control-

ling Bacterial Chemotaxis. Molecular Biology of the Cell 4:469{482.

deKleer, J. 1977. Multiple Representations of Knowledge in a Mechanics Problem-Solver. In Proceedings of

IJCAI-77 299{304.

Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., Fleischmann, R.D., Bult, C.J., Kerlavage,

A.R., Sutton, G., Kelley, J.M., Fritchman, J.L., Weidman, J.F., Small, K.V., Sandusky, M., Fuhrmann, J.,

Nguyen, D., Utterback, T.R., Saudek, D.M., Phillips, C.A., Merrick, J.M., Tomb, J.-F., Dougherty, B.A., Bott,



K.F., Hu, P.-C., Lucier, T.S., Peterson, S.N., Smith, H.O., Hutchison, III, C.A., and Venter, J.C. 1995. The

Minimal Gene Complement of Mycoplasma genitalium. Science 270:397{403.

Gaasterland, T., and Selkov, E. 1995. Reconstruction of Metabolic Networks Using Incomplete Information.

In Proceedings, Third International Conference on Intelligent Systems for Molecular Biology. Menlo Park, CA:

AAAI Press. 127-135.

Galper, A., and Brutlag, D. 1993. Computational Simulations of Biological Systems. In Smith, D., ed., Bio-

computing: Informatics and Genome Projects. San Diego, CA: Academic Press.

Kanehisa, M. 1996. Toward pathway engineering: a new database of genetic and molecular pathways. Science

& Technology Japan 59:34{38.

Karp, P.D. 1993. A Qualitative Biochemistry and Its Application to the Regulation of the Tryptophan Operon.

In Hunter, L., ed., Arti�cial Intelligence and Molecular Biology. Menlo Park, CA: AAAI Press. 289{324.

Karp, P.D., Riley, M., Paley, S.M., and Pelligrini-Toole, A. 1996. EcoCyc: Encyclopedia of E. coli Genes and

Metabolism. Nucleic Acids Research 24(1):32{40.

Kuipers, B. 1985. The Limits of Qualitative Simulation. In Proceedings of IJCAI-85 128{136.

Kuipers, B. 1986. Qualitative Simulation. Arti�cial Intelligence 29:289{338.

Koile, K., and Overton, G.C. 1989. A Qualitative Model for Gene Expression. In Proceedings of the 1989

Summer Computer Simulation Conference 415{421.

McAdams, H.H., and Shapiro, L. 1995. Circuit Simulation of Genetic Networks. Science 269:650{656.

Mushegian, A.R. and Koonin, E.V. 1996. A minimal gene set for cellular life derived by comparison of complete

bacterial genomes; Proc Natl Acad Sci USA 1996 Sep 17;93(19):10268{10273

Novak, B., and Tyson, J.T. 1995. Quantitative Analysis of a Molecular Model of Mitotic Control in Fission

Yeast. Journal of theoretical Biology 173:283{305.

Tyson, J.T. 1991. Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings of the National

Academy of Science USA 88:7328{7332.


