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Abstract

Background
High-throughput methods identify an overwhelming number of protein-protein

interactions. However, the limited accuracy of these methods results in the false
identification of many spurious interactions. Accordingly, the resulting interactions
are regarded as hypothetical and computational methods are needed to increase their
confidence. Several methods have recently been suggested for this purpose including
co-expression as a confidence measure for interacting proteins, but their performance

is still quite poor.

Results

We introduce a novel computational method for verification of protein-protein
interactions based on the co-expression of orthologs of interacting partners. The
performance of our method is analysed using known S. cerevisiae interactions, and is
shown to overcome limitations of previous methods. We present specific examples of
known and putative interactions that are detected by our method and not by previous
methods, and suggest that they represent transient interactions that might have been

conserved and stabilized in other species.

Conclusions

Co-expression of orthologous protein-pairs can be used to increase the confidence of
hypothetical protein-protein interactions in S. cerevisiae as well as in other species.
This approach may be especially useful for species with no available expression

profiles and for transient interactions.



Background

Protein-protein interactions (PPIs) have a central role in most biological processes,
and identifying these interactions is an important goal of biological research. PPIs are
the subject of extensive experimental studies, but the majority of them remain
unknown. In the last few years, high-throughput techniques were developed for the
identification of PPIs on a genomic scale. Yeast two-hybrid [1, 2] and mass
spectrometric analysis of protein complexes [3, 4] were used to produce large sets of
PPIs. However, these techniques are known to suffer from many false positives and
the resulting PPIs are typically regarded as putative [5, 6]. Thus, the development of
computational methods for assessment and verification of putative PPIs is crucial [7-
10]. Two such methods were proposed, that are based on the co-expression [11] and
conservation [9] of PPIs, respectively. Here we propose to extend these methods by
considering co-expression of orthologous protein pairs. We demonstrate the predictive

power of our approach and discuss its advantages.

Results

Verification by mRNA co-expression

It was previously shown that interacting pairs of proteins are often correlated in their
expression profiles [11, 12]. The correlation of expression profiles was therefore
proposed as a confidence measure for putative PPIs [7, 10, 13]. However, this
approach has three major limitations. First, many pairs of non-interacting proteins are
also co-expressed (false positives). Second, many pairs of interacting proteins are not
co-expressed (false negatives). Third, to properly determine co-expression, mRNA
expression profiles from a large and diverse set of conditions are needed, rendering
this approach inapplicable for most organisms.

Former studies that used co-expression to identify PPIs did not explicitly
examine its predictive power, or did not use a random set of protein-pairs as control
for evaluating its performance. We thus carried out an analysis to evaluate the
predictive power of this approach for S. cerevisiae, in order to later compare it to our
new method. High quality S. cerevisiae expression data is available for many
conditions, making it an ideal organism for the use of co-expression for validation of

PPIs. We extracted a reference set of 1656 known interaction from the MIPS database



[14], and generated a random set by randomly choosing pairs of proteins. Cosine
correlation over our entire set of S. cerevisiae conditions was used to compare the
levels of co-expression between the reference set and the random set (see methods).

The results of this analysis are summarized in Figure 1. The cumulative
distributions of expression correlations in both sets are compared, showing higher
degrees of co-expression in the reference set than in the random set (Figure 1a). The
resulting predictive power is shown in Figure 1b, where each dot represents a possible
correlation threshold for PPIs prediction. The percentages of protein-pairs passing
each threshold from the random and reference sets are shown in the horizontal and
vertical axes, respectively. For example, the threshold shown in Figure 1 (0.155)
which leads to the correct verification of 30% of the reference set (497 true positives),
results also in the false verification of approximately 9% of the random set (~149
false positives). Applying this to a set of putative PPIs with 50% false positives (as
estimated for the S. cerevisiae yeast two hybrid sets [5, 6]) results in a filtered subset
with approximately 23% false positives (9% divided by 39%).

We verified that the performance of this method is largely independent of the
exact set of conditions that is used, and that filtering the conditions or choosing them

specifically for each pair of proteins does not improve the performance (not shown).

Conservation of PPIs

Another approach that was proposed to verify or predict PPIs is based on conservation
of interactions [9, 15, 16]. In this approach (termed "interologs"), pairs of proteins
whose orthologs are known to interact in other species are assumed to interact. Such a
method can potentially reveal many conserved PPIs, but it is currently limited by the
availability and accuracy of interaction data. Without relying on putative interactions,
the available set of S. cerevisiae PPIs only correspond to a small fraction of the
biologically meaningful interactions, and the situation is much worse for other
species. Consequently, this method has so far been based only on S. cerevisiae PPIs,
including putative ones, to predict interactions in other organisms. Giot et al. used
putative S. cerevisiae PPIs from mass spectrometric analysis to verify Drosophila
PPIs found by yeast two-hybrid. Only 65 out of the ~2000 Drosophila putative
interactions were identified as having an orthologous interaction in S. cerevisiae. This

set was then used to train a statistical model for assignment of confidence scores to



putative PPIs. Li et al. used putative S. cerevisiae PPIs gathered from several sources
to predict C. elegans PPIs (rather than verify an existing set of putative PPIs). Out of
the 5534 predicted C. elegans PPIs, only 949 were identified as having an orthologous
interaction in S. cerevisiae [16].

The use of conserved interactions to verify a putative set of PPIs is therefore
very limited, since only a small fraction of the putative set would have a known
orthologous interaction. Furthermore, using putative PPIs in order to increase the
coverage of this approach will decrease its accuracy and introduce many more false

positives.

Orthologous co-expression

Motivation

In order to overcome the limitations of the two methods described above, we propose
to integrate them and detect PPIs by orthologous co-expression, i.e. co-expression of
the orthologs of the interacting partners (Figure 2a). A conserved interaction may be
co-expressed only in a subset of the organisms in which it is present, so combining
knowledge of co-expression from multiple organisms can be informative.

The use of orthologous co-expression for verification of PPIs is also supported
by three previous observations. First, in order to preserve their interaction and
functionality, interacting partners should co-evolve [17]. Sequence analysis was
previously used to uncover co-evolution at the sequence level [18], but it may also be
present at the level of gene expression. Second, as shown in two recent papers, co-
expression of functionally linked proteins is more likely to be conserved than the co-
expression of random pairs of proteins [19, 20]. Hence, orthologous co-expression can
replace co-expression, and serve as a better measure to identify functional links in
general and PPIs in particular. Third, interacting protein-pairs are more likely to have
pairs of orthologs in other species than randomly selected protein-pairs. This
observation was made previously for different ascomycota species [21], and can also
be seen in our analysis of more distant organisms (Figure 2b). Since orthologous co-
expression can only be computed for conserved protein-pairs, the increased
conservation of interacting protein-pairs will also increase the percentage of
interacting pairs where orthologous co-expression can be computed, and lead to

higher percentage of real PPIs out of the total predicted protein-pairs.



Performance
To examine whether orthologous co-expression can indeed be used to predict PPIs,
we focused on S. cerevisiae orthologs from five species (C. elegans, E. coli, A.
thaliana, D. melanogaster, and H. sapiens). Orthologous pairs of the protein-pairs in
the reference and random sets were identified by BLAST [22], and their co-expression
was measured using cosine correlation over the entire sets of mRNA expression data
(see methods). Co-expression values of the random set orthologs in each organism
were used to determine the 5% significance correlation thresholds. The percentage of
interactions with significant orthologous co-expression in each organism (out of all
the interactions where orthologous co-expression can be computed, i.e. interactions
with both orthologs and expression profiles at that organism) is shown in figure 2c.
Indeed, for all five organisms we found that orthologous-pairs of known PPIs are
more likely to be co-expressed than that of random protein-pairs. Interestingly, the
percentages of orthologous-pairs of PPIs with significant co-expression in E. coli and
D. melanogaster are even higher than the percentage of PPIs with significant co-
expression in S. cerevisiae (Figure 2c). Note, however, that less than 3% of the
reference set had orthologous-pairs in E. coli and orthologous co-expression was
computed only for 38 PPIs, so the high E. coli value might be a result of insufficient
statistics.

The ability to predict PPIs by orthologous co-expression strongly depends on
the percentage of interactions where orthologous co-expression can be computed (i.e.
where both proteins are conserved and have expression profiles), so the percentages of
PPIs that can be predicted by each organism is lower than 7% for all five organisms
(Figure 2c). To overcome the lower coverage of each organism we combined the
information from all five organisms. We examined the predictive power of this
approach by repeating the analysis shown in Figure 1, when the yeast co-expression is
replaced by the sum of the orthologous co-expression from the five other species
(figure 2d). To avoid over-fitting, we only considered simple summation of the co-
expression in different species. Notably, although S. cerevisiae co-expression was
omitted from the analysis, the predictive power of this approach was better than that

of S. cerevisiae co-expression alone (Figure 2d).



Combining S. cerevisiae and orthologous co-expression

The correlation between S. cerevisiae co-expression and orthologous co-expression of
the true interactions in the test set is only 0.34. This means that the two methods are
complementary, and that except for detecting interactions between co-expressed
proteins, orthologous co-expression can also detect interactions between proteins that
are not co-expressed in S. cerevisiae, but their corresponding orthologous are co-
expressed in other species. Examples of known interactions from the test set with low
co-expression in S. cerevisiae but high orthologous co-expression are shown in Table
1. In these 30 cases, the co-expression in S. cerevisiae is very low or even negative,
but the orthologous co-expression is high in at least two species, such that they are
easily detected by our approach.

Based on the complementarities of the two methods, namely S. cerevisiae and
orthologous co-expression, we proceeded by adding the orthologous co-expression to
S. cerevisiae co-expression (figure 2d). The addition significantly improved the
results of both methods. Using the same example as mentioned above, the percentage
of protein-pairs identified from the random set is reduced from 9% to 5%, while the

percentage of proteins-pairs identified from the reference set remained 30%.

Transient interactions

In a previous study relating gene expression to PPIs, Jansen et al. classified protein
complexes as 'permanent' and 'transient' [12]. The subunits of permanent complexes
were shown to be highly co-expressed, in contrast to transient complexes where co-
expression was very low. Transient interactions are therefore harder to detect by co-
expression as well as by experimental methods.

To test the performance of our method on transient interactions we examined
the nine protein complexes classified as transient: pre-replication complex, replication
complex, anaphase promoting complex (APC), TAFIIs, SAGA complex (Spt-Ada-
GcenS-acetyltransferase), CCR4 complex, RSC complex, SRB complex (kornberg's
mediator) and SWI/SNF complex. Assuming all pair-wise interactions in these
complexes, we compared the percentage of protein-pairs with significant S. cerevisiae
or orthologous co-expression for each complex and for the combined set (Figure 3a).

Orthologous co-expression is slightly better than S. cerevisiae co-expression at
identifying interactions in the reference set, but the differences in performance

increase considerably when transient complexes are examined. In the combined set of



764 transient interactions, orthologous co-expression identifies almost three times
(2.68) more interactions than S. cerevisiae co-expression. Moreover, for five out of
the nine transient complexes, orthologous co-expression identifies at least three times
more interactions than S. cerevisiae co-expression, while the opposite occurs only in
one complex - RSC, which is also the smallest complex examined. These results
suggest that orthologous co-expression is especially useful for detection of transient

interactions.

Specialization of interacting proteins can lead to high orthologous co-expression

Why are there interacting protein-pairs which are not co-expressed in S. cerevisiae,
while their corresponding orthologs are co-expressed in other species (Table 1; Figure
3a)? The observation that interacting protein-pairs are co-expressed is believed to be
a result of their need to be present in similar amounts at different conditions.
However, for transient interactions occurring only in specific processes, this
requirement might affect only a small number of conditions, and hence might have a
slight influence on the global levels of co-expression. In contrast, the orthologs of
such interacting proteins might have adopted a stable interaction, resulting in co-
expression at many conditions. Such transient interactions will not be detected by co-
expression, and might also be hard to find using experimental methods, but
orthologous co-expression may help to identify them. Moreover, one of the interacting
proteins may be multifunctional, interacting with several proteins depending on
context. The expression of such pleiotropic proteins is likely to be constitutive, and
will not show correlation to that of its interacting partners. However, the pleiotropic
protein might have several specialized orthologs in other species, each performing
distinct functions, and co-expressed with the corresponding orthologs (Figure 3b).
Note that in such cases the specialized ortholog may not be the closest one in
sequence. However, allowing each protein to have multiple orthologs and choosing
the maximal correlation can also increase the orthologous co-expression of false
interactions. Consequently, such an approach only reduced the performance of our

method (not shown).



Specific examples

To examine if specialization of interacting proteins can account for the high
orthologous co-expression of protein pairs in Table 1 and in the transient complexes,
we looked in more details at specific examples. Here we provide three examples
supporting this notion.

1. CDC28 is the only cyclin-dependent kinase (CDK) in S. cerevisiae involved in cell
cycle transitions [23]. CDC28 interacts with different proteins at different stages of
the cell cycle, including G1 and B-type cyclins (CLNs and CLBs, respectively) and
CDC6. Indeed, no detectable co-expression is found between CDC28 and its
interacting partners (Table 1; not shown for CLNs). In contrast, CDC28 has several
orthologs in higher eukaryotes (up to five distinct CDKs in mammals), each devoted
to specific processes or tissues [23], and the orthologs that were found by our analysis
in H. sapiens, D. melanogaster and C. elegans (CDK2, CDC2 and CDK-I,
respectively) are highly co-expressed with the corresponding orthologs of CDC6 and
the B-type cyclins (Table 1).

2. Yeast TAF5 is a component of at least two transient complexes, the general
transcription factor TFIID and the SAGA complex [24]. However, its human ortholog
(TAF5) is only known to be a part of the TFIID complex, while a second ortholog
(TAF5L) is known to be in both TFIID, and the human equivalent of SAGA [25]. As
expected, the co-expression of human TAF5 and the other proteins in human TFIID is
higher than that of yeast TAF5 and the other proteins in yeast TFIID (not shown).

3. The opposite case of two S. cerevisiae paralogs with only one ortholog in higher
eukaryotes, though less common, may also help to identify PPIs. The nascent
polypeptide associated complex (NAC), consists of an alpha subunit (EGD?2) and a
beta subunit (either EGDI or BTTI) [26]. BTTI is not co-expressed with EGD2,
presumably since EGDI and BTTI are alternating beta subunits that bind both the
ribosome and the alpha subunit (EGD?2). In contrast, D. melanogaster and C. elegans
have only one known orthologous beta subunit, which are co-expressed with the

corresponding orthologs of EGD2 (Table 1).



Predictions

Table 2 shows examples of low confidence putative interactions with low co-
expression but high orthologous co-expression. These interactions were found by
high-throughput yeast two-hybrid [1], and considered low confidence (they had less
than 3 interaction sequence tags and were not included in the core data; also not
supported by co-expression). However, in light of the high orthologous co-expression
from at least two species, we predict that they represent true interactions. In support of
that, both proteins in all these examples are localized to the same -cellular
compartment (according to the MIPS database [14]).

Some of these proposed interactions might also fit the model in Figure 3. For
example, SMT3 is the only SUMO gene in S. cerevisiae, which is known to modify
TOP2 (DNA Topoisomerase II) and other proteins [27]. However, in vertebrates there
are three known SUMO genes: SUMOI1, SUMO2, and SUMO3. As suggested by the
model in Figure 3, SMT3 is not co-expressed with TOP2, but one of its human
orthologs (SUMOI), is highly co-expressed with the human ortholog of TOP2
(TOP2A; see Table 2).

Discussion

We presented here a new computational method for verification of PPIs that is based
on the co-expression of orthologous protein-pairs, and demonstrated its predictive
power using PPIs identified in S. cerevisiae.

This method extends two of the former methods, namely co-expression of
interacting proteins and conservation of interactions (interologs). The first method can
only be applied to organisms with expression data and its performance depends on the
amount and quality of that data. Our method overcomes this limitation by integrating
sequence and expression data from other organisms. It can thus be applied to any
sequenced organism, particularly for those without available expression data, thereby
replacing the missing data. Moreover, it performs better than the former method even
for S. cerevisiae, where many high quality expression data is available, and is
especially better in identifying transient interactions. It is difficult to evaluate our
approach for other species, since we do not have large representative sets of known

interactions, but the success in yeast is promising.



The proposed method also overcomes the limitation of the interologs
approach, namely the small fraction of interactions that is known to date. Our method
uses expression rather than interaction data, which makes it capable of giving
evidence for a much larger number of interactions.

mRNA expression profiles are being generated by many different labs for a
wide range of organisms. The improved quality of existing expression profiles as well
as the addition of profiles for other organisms will improve the performance of our
method. Further improvements can be achieved by giving different weights to the co-
expression from different organisms (not shown). A weight can be given to each
organism according to the reliability of its expression profiles, or according to its
evolutionary distance from the studied organism.

During the writing of this manuscript, a related approach was suggested [28].
Based on the codon adaptation index (CAI) as an estimator for average expression
levels, Fraser et al. examined co-evolution of expression levels from four fungi
closely related to S. cerevisiae, and used that to predict PPIs in S. cerevisiae. This
approach is complementary to the one that we have proposed. Thus, mRNA
expression should be used directly when possible, even from relatively distant species
(such as D. melanogaster), and CAI should be used from closely related species
without available expression data.

Finally, the methods described here are still not accurate enough to verify
specific PPIs, but they provide additional evidences and are useful for assessment and
filtering of high-throughput PPIs data sets, in order to produce smaller sets of higher
confidence, and direct further investigations. Complementary methods should be
combined to create a general scheme for verification of putative PPIs, for example by
considering only those interactions that are verified by at least two or three methods
[7] or using supervised machine learning approaches [29], thus improving the

performance of each method alone.



Conclusions

We have shown that expression data from multiple organisms can be used to increase
the confidence of hypothetical PPIs by considering co-expression of orthologs of the
presumed interacting partners. For organisms such as S. cerevisiae, with highly
characterized expression profiles, orthologous co-expression may be combined with
co-expression of the actual proteins, whereas for other, less studied organisms, it may
replace the missing expression profiles. Notably, this method is especially useful for
detection of transient interactions which presents a known weakness of most
prediction methods. The success of this method also implies that PPIs tend to be
conserved in different organisms, even as distant as yeast and human, further

supporting the use of comparative approaches in proteomics.

Methods

Interactions sets - a reference set of S. cerevisiae interactions was extracted
from the MIPS (Munich Information Center for Protein Sequences) PPI database [14]
at 22/01/04. We excluded genetic interactions, self-interaction, interactions found by
high-throughput experiments, interactions without expression data, and redundancies,
resulting in a set of 1656 interactions. We did not use larger databases such as the one
compiled by von Mering et al. [7] since they are more likely to contain false
interactions and are also biased towards co-expression since this information was used
in their construction. Randomly generated set of the same size was used as control,
and averaged over ten trials. Self-interactions were excluded from the random set. The
random set may include real interaction, but their expected frequency is much less
than 1%. Transient complexes were taken from Jansen et al. [12]. The transient set
was constructed by combining the pair-wise interactions from each transient
complexes and removing redundancies (some protein pairs were present in more than
one complex).

mRNA expression data — datasets for six organisms were collected from
different sources, as described in [19], and can be downloaded from our home page
[30]. All datasets were normalized to have a mean of 0 and standard deviation of 1 for
each condition.

Expression correlation — cosine correlation over the entire expression data of

each organism was used as a measure of co-expression. Former analysis suggested



that cosine correlation is the optimal measure of co-expression for the purpose of
detecting PPIs [13]. Many genes in all six organisms have missing values in the
expression data, so the expression correlations of many orthologous pairs cannot be
calculated. To decrease the dependency of our approach in the availability of
expression data and to improve its performance, we replace the missing correlations
by estimated values. We used the corresponding yeast co-expression when the yeast
and orthologous co-expression are combined (green curve in figure 2d). In contrast,
when orthologous co-expression is used alone (red curve in figure 2d), the yeast
expression data is assumed to be unavailable (in order to show the applicability of the
method to organisms without expression data) and an expected correlation is
calculated for each species, based on the union of the reference and random sets
(average expression correlation of orthologous pairs in a specific species, over the
reference and random sets combined with equal weights). The expected correlations
are greater than zero for all five species; so putative PPIs are actually given positive
scores for the existence of an orthologous pair, corresponding to the notion that PPIs
are more likely to have pairs of orthologs [21].

Orthologous proteins — orthologs were found using blastp [22] with a P-value
threshold of 107, and alignment length threshold of 0.3. The ortholog with the most
significant p-value that had available expression data was used to measure co-
expression. Other studies had used a reciprocal best-hit BLAST search for finding
orthologous; we use a less strict criterion in order to apply the orthologous co-
expression method to more protein-pairs.

P-values and Significance — by sampling 100,000 protein pairs we determined
p-values for S. cerevisiae and orthologous co-expression as the fraction of pairs with
equal or greater correlation of expression profiles; P-values of 0.05 (not corrected for

multiple testing) were used as thresholds for significance.
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Figure legends

Figure 1. Higher correlation of expression profiles among interacting protein-pairs.
(a) Cumulative distributions of correlations between expression profiles of protein-
pairs from a reference set of 1656 known interactions taken from the MIPS database,
and a set of randomly chosen pairs of proteins (averaged over ten trials). The dashed
line represents a possible correlation threshold (0.155) that can be used for prediction
of PPIs. (b) The predictive power of this approach. Each point in this plot represents a
specific correlation threshold for the prediction of PPIs. The vertical axes shows the
percentage of interaction identified from the reference set (true positives) and the
horizontal axes shows the percentage of interaction identified from the random set
(false positives). The dashed lines represent the performance of the threshold shown

in (a).

Figure 2. Orthologous co-expression can be used to predict PPIs. (a) Schematic
representation of the method. (b) Interacting proteins are more likely to have an
orthologous pair in other species. The percentage of yeast protein-pairs with an
orthologous pair from five species (C. elegans, E. coli, A. thaliana, D. melanogaster,
and H. sapiens) is shown for the reference and random sets. This property is seen for
the four eukaryotes, but not for E. coli. (c) Orthologous pairs of interacting proteins
are more likely to be co-expressed than orthologous pairs of random protein-pairs.
The percentage of orthologous pairs having significant (P-value<0.05) correlation of
expression out of the total orthologous pairs with available expression data
(conserved+expression), and out of the entire reference set (all interactions) is shown
for all organisms (including S. cerevisiae). (d) Orthologous co-expression from five
species was added and used to predict S. cerevisiae PPIs (red). The resulting
predictive power is shown along with the predictive power of S. cerevisiae co-
expression (dashed blue), as shown in Figure 1b. Orthologous co-expression was also
added to S. cerevisiae co-expression, resulting in an improved predictive power

(green).



Figure 3. Detection of transient interactions. (a) Each circle shows the percentage of
protein-pairs in a specific set/complex with a significant level (P-value<0.05) of S.
cerevisiae and orthologous co-expression in the horizontal and vertical axes,
respectively. Blue circles represent all pair-wise interactions in a single transient
complex; Red circles represent the three sets of protein-pairs (random, reference and
transient). The dashed line indicates similar performance of both methods. The table
also shows the number of protein-pairs in each set/complex, and the ratio between the
percentage of pairs with significant orthologous and S. cerevisiae co-expression,
respectively. (b) Proposed model for transient yeast interactions with low co-
expression, but high orthologous co-expression. Protein A interacts with protein B,
but also performs other functions or interacts with other proteins, such that it is not
co-expressed with protein B. However, in higher eukaryotes, a specialized ortholog of

A exist, which is co-expressed with the ortholog of B.



Tables

Table 1.

S. cerevisiae and orthologous co-expression of known Protein interactions

S. cerevisiae Orthologous Co-expression
GENE 1 | GENE 2 Co-expression

correlation | p-value | D. melanogaster | C. elegans | H. sapiens p-value

CLB2 -0.07 0.74 * 0.77 0.59 3.7e-04

CLB4 -0.06 0.71 0.85 0.77 0.59 1.0e-05

CDC28 CDCé6 -0.03 0.60 0.77 0.32 0.37 2.6e-04
CLB3 -0.01 0.52 0.85 0.77 0.59 1.0e-05

CLB1 0.05 0.30 * 0.65 0.59 7.3e-04
CLB5 0.06 0.27 0.87 0.65 0.45 3. 0e-05

PDC5 -0.09 0.80 0.59 * 0.17 6.8e-03

DMC1 PDC1 -0.05 0.67 0.59 * 0.17 6.8e-03
RIS1 -0.02 0.56 * 0.34 0.52 4.3e-03

RIS1 0.02 0.41 * 0.28 0.62 3.7e-03

PRP9 PRP11 0.05 0.30 0.88 0.35 0.33 1.6e-04
NOG2 0.07 0.24 0.41 0.33 0.66 3.5e-04

CUST1 -0.06 0.71 0.76 0.32 * 5.4e-04

SSN6 SNP1 0.08 0.21 0.79 0.21 * 2.1e-03
SGN1 -0.17 0.93 0.56 0.19 0.26 2.4e-03

PAB1 RNA14 -0.06 0.71 0.42 0.17 0.24 5.8e-03
PFS2 RNA14 -0.03 0.60 0.44 0.31 - 8.5e-03
HAT1 HAT2 -0.04 0.33 0.86 0.19 0.22 7.3e-04
SIT4 TAP42 -0.16 0.92 0.54 - 0.36 4.3e-03
TRS23 BET3 -0.10 0.82 * 0.20 0.52 8.1e-03
DNA2 RAD27 -0.01 0.52 * 0.41 0.47 3.9e-03
PRPS8 SNU114 0.05 0.30 * 0.60 0.57 8.7e-04
HRB1 MTR10 -0.07 0.74 0.56 0.27 0.27 1.5e-03
BTT1 EGD2 -0.08 0.77 0.42 0.52 0.59 2.0e-04
GPA1 STE11 0.07 0.24 0.55 0.25 0.37 1.1e-03
UBA2 AOS1 0.08 0.21 0.74 0.17 0.41 5.4e-04
SPT15 BRF1 0.09 0.19 0.72 0.21 0.23 1.1e-03
TAF5 TAF9 0.05 0.30 0.86 - 0.18 2.1e-03
LSM5 KEM1 0.04 0.33 - 0.37 0.65 2.3e-03

RPB3 MED7 0.01 0.45 * 0.49 0.32 5.3e-3

* denotes that at least one of the corresponding orthologs did not have expression data.
- denotes that there is no pair of corresponding orthologs.




Table 2.

S. cerevisiae and orthologous co-expression of hypothetical Protein interactions

S. cerevisiae Orthologous Co-expression
GENE1 | GENE2 Co-expression

correlation | p-value | D. melanogaster | C. elegans | H. sapiens p-value
TAF5 PIF1 -0.05 0.67 0.74 0.05 0.42 8.7e-04
COR1 XDJ1 -0.01 0.52 * 0.43 0.39 5.0e-03
PUS2 LPD1 -0.06 0.71 * 0.23 0.55 6.1e-03
TAF6 PUBT1 0.00 0.49 0.04 0.41 0.50 3.3e-03
PAN3 YNLO92W -0.04 0.64 0.77 0.25 * 1.9e-03
SMT3 TOP2 -0.08 0.77 * 0.47 0.69 9.6e-04

* denotes that at least one of the corresponding orthologs did not have expression data.
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