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The dissection of complex biological systems is a challenging task,
made difficult by the size of the underlying molecular network and
the heterogeneous nature of the control mechanisms involved.
Novel high-throughput techniques are generating massive data
sets on various aspects of such systems. Here, we perform analysis
of a highly diverse collection of genomewide data sets, including
gene expression, protein interactions, growth phenotype data,
and transcription factor binding, to reveal the modular organiza-
tion of the yeast system. By integrating experimental data of
heterogeneous sources and types, we are able to perform analysis
on a much broader scope than previous studies. At the core of our
methodology is the ability to identify modules, namely, groups of
genes with statistically significant correlated behavior across di-
verse data sources. Numerous biological processes are revealed
through these modules, which also obey global hierarchical orga-
nization. We use the identified modules to study the yeast tran-
scriptional network and predict the function of >800 uncharacter-
ized genes. Our analysis framework, SAMBA (Statistical-Algorithmic
Method for Bicluster Analysis), enables the processing of current
and future sources of biological information and is readily extend-
able to experimental techniques and higher organisms.

Modern experimental techniques in biology collect massive
amounts of information on the behavior and interaction of

thousands of genes and proteins across diverse conditions (1–7).
These techniques are used to interrogate complex biological
systems that use highly intricate regulatory mechanisms and
control schemes. One cannot fully characterize such complex
cellular systems by focusing completely on a single control
mechanism, as measured by a single experimental technique. To
gain deeper understanding of the systems, it is pertinent to
analyze heterogeneous data sources in a truly integrated fashion
and shape the analysis results into one body of knowledge.

The challenge of such analysis has become a major bottleneck
in expanding our understanding of biology. In this study, we
analyzed simultaneously a highly heterogeneous collection of
experimental data, spanning many different aspects of biological
regulation, including gene expression, protein interactions, phe-
notypic sensitivity, and transcription factor (TF) binding. The
outcome of our analysis is a set of modules, defined as maximal
groups of genes that manifest a unique, common behavior across
a significant set of the experiments, reflecting a particular
function shared by the proteins that encode these genes. As the
experimental data we use are of different types and sources, the
notion of a module is broad and covers different aspects of
organized behavior in molecular networks. We have developed
algorithms to uncover statistically significant modules in an
unconstrained fashion, without making prior assumption on the
organization of the modules in the system. This approach
exposes global architectural properties of the molecular network
and, at the same time, derives highly specific predictions on gene
functions and relations. Previous works have shown modular
organization in gene expression (8, 9) and hierarchical modular
organization in metabolic pathways and protein networks (10,

11). Here, we provide evidence for hierarchical, modular orga-
nization of the global yeast system. We show that small modules
can be clustered into supermodules, such that supermodules
characterize common behavior of the smaller modules under
specific conditions. We show that specific classes of genes (e.g.,
signaling and transport) form bridges among supermodules,
whereas other classes are typically associated with one particular
supermodule.

In addition to these broad architectural insights, the extensive
collection of identified modules can improve our understanding
of specific biological processes. We used TF binding profiles and
their correspondence to modules to create a detailed represen-
tation of the yeast transcriptional program. We have also
automatically generated �800 function predictions for unchar-
acterized yeast genes and verified some of them experimentally.
Our results are accessible in a highly interactive web site
(www.cs.tau.ac.il��rshamir�samba).

Methods
Integrated Modeling of Genomic Data. We model all genomic
information as a weighted bipartite graph G (see ref. 12 for basic
graph theoretic definitions). Nodes on one side of G represent
genes, and nodes on the other side represent properties of genes
or proteins encoded by them. An edge with weight w between a
property node v and a gene node g represents an assertion that
gene g has property v with probability proportional to w. We may
define several properties for the same measurement. For exam-
ple, for a gene expression measurement, we may define four
properties representing strong and weak repression and strong
and weak induction of expression. For protein interactions we
define properties to express the interaction with a given protein.
We use the graph to define the notion of a statistically significant
module. A module is defined as a set of genes and a set of
properties and is interpreted as a subgraph in G. We score a
subgraph by calculating the logarithm of the ratio of its proba-
bility under two statistical models, one defining the expected
high level of dependency in modules and the other specifying the
background behavior of our graph. To facilitate efficient com-
putation, we express this probability as a sum of edge weights and
transform the problem of finding high-quality modules to the
problem of finding heavy subgraphs in a weighted bipartite
graph. Additional details are available in Supporting Text, which
is published as supporting information on the PNAS web site.

Biclustering and Annotation. The SAMBA (Statistical-Algorithmic
Method for Bicluster Analysis) biclustering algorithm searches
the genes-properties graph for statistically significant subgraphs.
The algorithm uses combinatorial principles to ensure very high

Abbreviations: SAMBA, Statistical-Algorithmic Method for Bicluster Analysis; GO, Gene
Ontology; TF, transcription factor.
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efficiency and scalability. Similar modules are filtered so that no
reported module may have �20% common gene-property vertex
pairs with another (but, still, allowing �20% overlap in their
gene sets). We annotated the modules by calculating the hyper-
geometric functional enrichment score based on the Saccharo-
myces Genome Database Gene Ontology (GO) annotation (13,
14). To search for enriched motifs we used promoters of 600 bp
upstream of all yeast ORFs and exhaustively tested all exact
gapless motifs of length 5–9 and all motifs of length 6–7 with one
gap of length 1–11. For each motif we calculated the hypergeo-
metric P value of independence between the set of genes with the
motif and the set of module genes, adjusted for multiple testing.

Global Analysis. The module graph has all modules as nodes and
an edge whenever at least one-third of the smaller module’s gene
set is also present in the other’s. The distribution of cluster
coefficients in random graphs was computed by using degree-
preserving randomization of 1,000 graph instances. Details on
the randomization and the layout process producing the module
map figure are available in Supporting Text.

Mating Experiments. Yeast strains deleted for candidate genes
were obtained from a deletion library (Research Genetics,
Huntsville, AL). To obtain isogenic a- and �-mating mutants,
each strain was crossed to an isogenic WT strain and subjected
to sporulation and tetrad analysis. Three mutant spores and a
WT control of each mating type were subjected to quantitative
mating analysis in all combinations, as described (15).

Results
The SAMBA Framework. The SAMBA program for integrative analysis
of genomic information has three components: data represen-
tation, analysis, and reporting. To facilitate simultaneous anal-
ysis of heterogeneous information we view data items from all
sources as properties of genes or proteins encoded by them (Fig.
1). We then use a uniform statistical representation of all data
sources and apply highly efficient algorithms (extending ref. 17)
to analyze them in a process called biclustering (18). The
algorithm aims at discovering sets of genes with statistically
significant common properties. We call such sets modules. Our
computational framework has a unique combination of features:
it requires similarity of the genes in a module only across a subset
of the properties, ensures that all modules are statistically
significant, and uses all sources of information in one uniform
framework. Moreover, it allows overlap among modules, which
is essential when analyzing systems with multiple-function genes.
Extant analysis techniques (8, 9, 17, 19–21) lack one or more of
these characteristics. SAMBA is built to exploit the emerging
repositories of very large-scale functional genomics data and is
highly efficient and scalable in both memory and speed. The
software is available as part of the EXPANDER system (www.
cs.tau.ac.il�rshamir�~expander�expander.html).

We applied SAMBA to heterogeneous Saccharomyces cerevisiae
data. The data included �1,000 expression profiles, representing
70 series or sets of conditions from 27 different publications, 110
TF binding location profiles (3), 30 growth profiles (4), 1,031

Fig. 1. Integrated analysis of genomic data. Data items (A) from diverse sources of biological information are transformed to properties of genes and relations
among genes�proteins, together generating a genes-properties bipartite graph (B). The graph is represented here schematically as a collection of gene nodes
(lower, gray) and property nodes (upper) of different types (yellow, TF binding; blue, knockout phenotypes; green�red, expression profiles; gray, protein
interactions). The graph edges represent the (probabilistic) assignment of a property to a gene, with edge weights (not shown here) representing the statistical
strength of the assignment. A module (marked by the red oval) corresponds to a set of genes and a set of properties with higher than expected internal degrees.
As an example, a real module (C) is represented by a matrix of genes by properties. Different types of properties are color-coded differently (using the same color
coding as in B) with shading to indicate the strength of property assignment (weak–strong binding, low–high phenotype sensitivity, down–up expression
regulation). Modules are annotated by testing the enrichment of their genes’ GO annotations. The module shown here is strongly enriched with amino acid
metabolism genes and more specifically with arginine-related genes. The integrative power of SAMBA is exemplified by the inclusion of YOR302W in the module,
based on the phenotype and the TF binding properties in the module, even though its expression profile is not sufficiently correlated to the module profile.
Indeed, YOR302W is CPA1’s upstream ORF and is known to function in its translation regulation (16).
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protein interactions (6), 4,177 complex interactions (5), and
1,175 known interactions from the MIPS (Munich Information
Center for Protein Sequences) database (22). SAMBA generated
665 significant (P � 0.05) modules with maximal overlap of 20%
(see Methods). A complete list of modules and complementary
information can be found at www.cs.tau.ac.il�~rshamir�
expander.

We validated the statistical significance of the modules by
performing a randomized control test (see Fig. 4, which is
published as supporting information on the PNAS web site). We
assigned functions to each module whose gene set showed
significant overrepresentation of a particular GO class (13, 14)
(see Methods).

The Power of Data Integration. The modules we found represent
many aspects of metabolism and energy derivation, cell cycle,
sporulation, mating, protein biosynthesis, RNA processing,
stress response, and more. These categories provide a relatively
good coverage of biological processes involved in various kinds
of adaptation to the environment. Additional data (primarily
better coverage of protein interactions) will be required to
further characterize modules defining cellular organization and
organelles. The SAMBA modules extend previously identified
yeast transcription modules (8), taking advantage of the addi-
tional information on TF binding, phenotype, and interactions,
and based on improved statistical sensitivity that allows for
module detection at finer granularity.

The integration of several types of experimental data are often
crucial for the detection of modules at fine granularity. Most
metabolism modules were identified by combining expression,
TF binding, and phenotype data. For example, the arginine
module (Fig. 1C and Fig. 5, which is published as supporting
information on the PNAS web site) associates several known
arginine genes (Arg-1, -3, -4, -5, -6, and -8) and several other
amino acid-related genes. It is supported by diverse expression
profiles including many knockout experiments and stress con-
ditions. Mere expression profiles, however, do not suffice to
identify that module, and the binding profiles of Arg-80 and
Arg-81 are needed to separate it from other amino acid biosyn-
thesis modules. A second, similar example, involving amino acid
transport genes is shown in Fig. 6, which is published as
supporting information on the PNAS web site. Other biological
processes that are not regulated primarily on the transcriptional
level are revealed by the combined analysis of growth phenotype
and protein interactions. For example, a module involving vesicle
transport was detected based on sensitivity to nystatin combined
with statistically weaker expression profiles of reaction to methyl
methanesulfonate and other agents (Fig. 7, which is published as
supporting information on the PNAS web site). The combination
of phenotype profiles and expression data, noted before as
problematic (4), is in this case essential for the separation of this
module from other yeast subsystems. The integration of protein
interaction data into the module identification process provides
additional information on relations that are not observed in the
transcription or phenotype layers. It also allows the interpreta-
tion of modules in terms of complexes and cascades. For
example, a module related to ubiquitin-dependent protein deg-
radation (Fig. 8, which is published as supporting information on
the PNAS web site) is based on the combination of expression
data indicating up-regulation in many stress conditions and
interactions among various proteins related to ubiquitination.
Protein interactions help in separating this module from other
stress-responsive genes and also shed light on the cellular
mechanisms (complexes, cascades) forming it. Our integrative
approach can also help in the analysis of noise-prone protein
interactions (e.g., two hybrid screens), by allowing corroboration
of interactions by additional functional information.

A Global Map of the Yeast Transcriptional Network. The combined
analysis of gene expression and TF binding location was used
before to study the transcriptional network of specific processes
[e.g., cell cycle (3, 23, 24)]. SAMBA enables the simultaneous
analysis of the entire network and the exploration of the relations
among TF binding profiles, biological processes, and DNA
regulatory motifs in a single map (Fig. 2; for an interactive
version see www.cs.tau.ac.il�~rshamir). The transcriptional net-
work map contains as nodes all processes that are significantly
overrepresented in at least one module and all of the TFs that
are significantly associated with at least one of those modules.
We associate a TF with a process whenever there exists a module
annotated with that process (P � 0.01) that has the TF binding
profile as one of its properties. Many of the identified modules
contain coexpressed genes. For such modules we can frequently
observe one or few common regulating TFs. Indeed, processes
that are active during growth in standard conditions are well
supported by TF binding profiles (3) that were measured in
similar environment. Cell cycle modules, as previously observed
(3, 22), are associated with a combination of known TFs acting
in a cyclic fashion. Amino acid metabolism modules are associ-
ated with combinations of the master regulator Gcn4 and
module-specific regulators (Cbf1–Met-4–Met-31 for methionine
and sulfur, Arg-80 and Arg-81 for arginine). Respiration mod-
ules are regulated by Hap2-5, and protein biosynthesis genes are
associated with Rap1, Fhl1, and others. Systems that are acti-
vated during stress or developmental processes have weaker
support of binding profiles (3). For example, sporulation mod-
ules are associated with Sum1 but not with other important
meiotic regulators (Ndt80, Ume6) (25). Several modules are
strongly associated with protein biosynthesis, ribosomal proteins,
and RNA processing. Most of the properties defining these
modules reflect coordinated expression under stress conditions
[e.g., ESR response (26)]. Some of these modules are explained
by the binding of Rap1 and Fhl1 (that have similar TF binding
profiles) and contain a very high percentage (�90%) of known
protein biosynthesis genes. Other modules, enriched in RNA
processing, ribosome biogenesis, and stress genes, are not asso-
ciated with any of the available TF binding profiles. Although
these modules contain many Rap1 targets, they have lower
percentages of known genes. To analyze these modules in more
detail, we screened the promoters of each module’s gene set for
overrepresented DNA regulatory motifs (see Methods). Several
statistically significant motifs were detected. The known Rap1�
Fhl1 motif (ATCCGTACA) is dominant in the Rap1�Fhl1-
bound module, whereas other previously described stress motifs
(AAAATTTT, AGGGG, GCGATGAG) (26) are common in
modules that are were not associated with a TF based on the
binding assays. The transcriptional program inducing the above
modules is, thus, apparently based on a combination of TFs,
including Rap1, and others that presumably bind the detected
active sites. Our analysis indicates in this case the information
gaps between current expression and TF binding data.

Global Modular Organization in Yeast. We next turn to explore the
global organization of the yeast system as revealed by the associ-
ation of different modules into one functional network. To this end
we constructed and analyzed two graphs. The gene graph (data not
shown) contains as nodes all yeast genes, with an edge between two
genes whenever they are both contained in some module. The
module graph (Fig. 3) contains as nodes all of the modules, with an
edge between two modules whenever their gene set intersection is
sufficiently large (see Methods). Because the gene graph is induced
by gene modules (cliques in the graph), it is expected to have a
modular structure. The module graph, on the other hand, could not
be preassumed to exhibit modularity. To analyze the topology of the
two graphs, we computed their clustering coefficients (11). The
cluster coefficient of a node is the fraction of the pairs of its
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neighbors that have edges between them (11). High average clus-
tering coefficient is an indication of modularity. For example, a tree
graph has value zero, and a complete graph has value 1. As
expected, the average cluster coefficient of the gene graph is a high
0.473. Interestingly, the module graph also has a very high average
clustering coefficient of 0.49 (compared to mean coefficient 0.0398
and SD 0.008 on random graphs). Indeed, modules are themselves
organized into supermodules (Fig. 3). The overall organization is
thus hierarchical: Genes are grouped into modules that are clus-
tered into supermodules. Note that genes can participate in more
than one module, and modules can be part of more than one
supermodule. Given this architecture, it is important to characterize
the genes that connect different supermodules and tie together
different processes. To this end, we recalculated the average cluster
coefficient in the gene graph over sets of genes annotated with each
GO entry. A class with low average coefficient contains genes that
are more likely to bridge different supermodules. Indeed, the
classes with lowest coefficients are related to signaling (e.g., G
protein-coupled receptor with value 0.27 and mitogen-activated
protein kinase with 0.29) and transport (e.g., iron transporter with
value 0.21 and phospholipid transport with 0.25). Closer examina-
tion of genes with low cluster coefficient may help in identifying
genes that have multiple functions and improve our understanding
of the way in which different biological processes are organized
together.

Functional Annotation. We used SAMBA to derive functional an-
notation of uncharacterized yeast genes. Uncharacterized genes
in modules showing high enrichment (P � 0.01 and �40% of the
annotated genes) for one biological process are likely to partic-
ipate in the same process. We tested the specificity of this
approach by performing a five-way cross validation: we repeat-
edly applied SAMBA to data sets in which one-fifth of the known
gene annotations were hidden and tested the specificity of
predicting the function of these genes. Overall we obtained
40–100% specificity for a variety of classes including mating
(GO:0007322, 65%), amino acid metabolism (GO:0006520,
40%), sporulation (GO:0030435, 55%), glucose metabolism
(GO:0006006, 100%), lipid metabolism (GO:0006629, 92%),
and more (Fig. 9, which is published as supporting information
on the PNAS web site). Average specificity ranged between 58%
and 78%, depending on the strictness threshold used for anno-
tation (see Methods). In many cases, the classification errors
result from ambiguous annotation terms or too general catego-
ries and may represent missing information rather than misclas-
sification. For example, stress response and cell cycle are very
general categories that intersect many other processes. Stress-
annotated genes are often also related to carbohydrate metab-
olism and transport, so our classification for such genes may
reflect an additional function and not an error. In total, our
scheme generated putative functional annotations for 874

Fig. 2. Functional modules and their TFs in the yeast system. Modules with significant functional enrichment for a particular process (P � 0.01) are grouped
and plotted as an oval with the process name. TFs with binding profiles associated with any of these modules are marked as gray circles and connected to the
associated process. Modules may be enriched in more than one process and thus contribute to several regions in the map. The thickness of the connecting lines
is inversely proportional to the P value of the functional enrichment in the associated module. The map was automatically generated by SAMBA using no prior
biological knowledge. Met, metabolism; Tran, transport. An interactive version of this figure is available at www.cs.tau.ac.il�~rshamir�samba.
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uncharacterized yeast genes. The complete list is available at
www.cs.tau.ac.il�~rshamir�samba.

As an additional test of our annotation accuracy, we analyzed
in the laboratory five yeast strains deleted for ORFs predicted
by SAMBA to be involved in mating. Quantitative mating exper-
iments showed that four of the strains (YDR429c, YBR223c�
TDP1, YNL106c�INP52, and YOL106w) exhibited reduced mat-
ing ability, compared to the WT, confirming the involvement of
these genes in the mating process. A fifth ORF, YFL027c�GYP8,
exhibited mating ability indistinguishable from that of the WT
control.

Discussion
Our integrative analysis of diverse yeast genomewide data
provides a detailed view of both the global and local organization
of the yeast system. The organization of the molecular network

into functional modules is shown here to span many types of
regulation mechanisms and to follow organizing principles that
govern the nature of interactions among different modules. The
module graph we have analyzed is found to associate modules
into supermodules in a hierarchical fashion. A similar structure
was observed previously in metabolic and protein networks. The
topological properties of the molecular network can facilitate
better understanding of the way biological systems are organized
and can focus our interest on specific genes that are shown to
have a role in several regions of the network. By joining basic
modules into larger ones in a hierarchical way, we may vastly
reduce the complexity of molecular network reconstruction.
One of the current challenges of functional genomics is to enable
biologists using established assays, as well as those developing
novel experimental technologies, to analyze their new data, while
taking into consideration the large public sources of various

Fig. 3. Hierarchical organization of the yeast molecular network. The module graph was generated by connecting two modules (small ovals) if more than
one-third of the genes in one (the smaller) are present in the other. We used our module annotations to manually classify regions in the graph (shown as shaded
large ovals). The graph reflects a hierarchical organization that arranges modules in clusters. Some of the clusters (e.g., protein biosynthesis) are organized in
more than two hierarchical levels: large modules are composed of several smaller modules, giving a star-like topology.
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genomewide measurements. Here, we report on the develop-
ment and application of key computational steps toward the
fulfillment of this vision. The SAMBA platform and methodology
enable a unified, high-level representation of heterogeneous
biological information and provide a means for the analysis of
the biological system under study in light of very large functional
genomics databases. The framework provides the statistical
robustness and computational efficiency that is required for
large-scale studies and is readily extendable to future experi-
mental techniques. Our study of budding yeast data exemplifies
the power of integrative analysis and shows that the merger of
heterogeneous data has a synergistic effect. We derive global
views of the yeast transcriptional network and assign functions
to a large number of uncharacterized yeast genes. Integrating
more information into our framework is straightforward and can

be done by nonexperts. Thus, our methodology enables research-
ers to use as much of the existing public information as possible,
by adding new (possibly private) data to a vast database of
multisource information, and analyzing the new data in the
context of all available information. Using SAMBA, large repos-
itories of functional genomics data can be used with maximum
effect to enable the characterization of complex organisms and
heterogeneous biological processes.
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