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Abstract 

Background

Intracellular signal transduction is achieved by networks of proteins and small 
molecules that transmit information from the cell surface to the nucleus, where they 
ultimately effect transcriptional changes. Understanding the mechanisms cells use to 
accomplish this important process requires a detailed molecular description of the 
networks involved. 

Results

We have developed a computational approach for generating static models of 
signal transduction networks which utilizes protein-interaction maps generated from 
large-scale two-hybrid screens and expression profiles from DNA microarrays. 
Networks are determined entirely by integrating protein-protein interaction data with 
microarray expression data, without prior knowledge of any pathway intermediates. 
In effect, this is equivalent to extracting subnetworks of the protein interaction 
dataset whose members have the most correlated expression profiles. 

Conclusion

We show that our technique accurately reconstructs MAP Kinase signaling 
networks in Saccharomyces cerevisiae. This approach should enhance our ability to 
model signaling networks and to discover new components of known networks. More 
generally, it provides a method for synthesizing molecular data, either individual 
transcript abundance measurements or pairwise protein interactions, into higher 
level structures, such as pathways and networks. 
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Background 

Signal transduction is the primary means by which cells coordinate their 
metabolic, morphologic, and genetic responses to environmental cues such as 
growth factors, hormones, nutrients, osmolarity, and other chemical and tactile 
stimuli. Traditionally, the discovery of molecular components of signaling networks in 
yeast and mammals has relied upon the use of gene knockouts and epistasis 
analysis. Although these methods have been highly effective in generating detailed 
descriptions of specific linear signaling pathways, our knowledge of complex 
signaling networks and their interactions remains incomplete. New computational 
methods that capture molecular details from high-throughput genomic data in an 
automated fashion are desirable and can help direct the established techniques of 
molecular biology and genetics.  

DNA microarray technology has evolved to the point where one can 
simultaneously measure the transcript abundance of thousands of genes under 
hundreds of conditions, producing hundreds of thousands of individual data points. 
Similarly, high-throughput yeast two-hybrid experiments have identified thousands of 
pairwise protein-protein interactions. Once a core pathway is established, these data 
can readily be integrated into model refinements, as a recent study in systems 
biology elegantly demonstrates [1]. However, synthesizing these data de novo into 
models of pathways and networks remains a significant challenge.

How can one bridge the gap from transcript abundances and protein-protein 
interaction data to pathway models? Clustering expression data into groups of genes 
that share profiles is a proven method for grouping functionally related genes, but 
does not order pathway components according to physical or regulatory 
relationships. Here we present an automated approach for modelling signal 
transduction networks in S. cerevisiae by integrating protein-protein interaction [2-4] 
and gene expression data. Our program, NetSearch, draws all possible linear paths 
of a specified length through the interaction map starting at any membrane protein 
and ending on any DNA-binding protein. Microarray expression data [5-7] is then 
used to rank all paths according to the degree of similarity in the expression profiles 
of pathway members. Linear pathways that have common starting points and 
endpoints and the highest ranks are then combined into the final model of the 
branched networks.

Our approach is calibrated using the yeast MAPK (mitogen-activated protein 
kinases) pathways involved in pheromone response, filamentous growth, and 
maintenance of cell wall integrity (Fig.1). These pathways are activated by G 
protein-coupled receptors and characterized by a core cascade of MAP kinases that 
activate each other through sequential binding and phosphorylation reactions; they 
are among the most thoroughly studied networks in yeast and are therefore excellent 
benchmarks against which to test our approach. 
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Results 

Input data and parameters

Recent papers [2-4] have used the yeast-two-hybrid technique and literature 
surveys to identify and assemble over 7000 non-redundant protein-protein 
interactions among more than 4000 proteins. While two-hybrid screens efficiently 
identify fusion proteins that are able to interact, the biological significance of the 
interaction for native proteins acting in vivo generally requires verification, because 
the technique is susceptible to a high rate of false positives [8]. To assess the 
possible contribution of false-positive protein-protein interactions to the combined 
interaction dataset, we analyzed the connectivity of each protein and found that a 
small fraction of proteins had a very high number of interactions (highlighted in red, 
Fig. 2). With these highly connected proteins included in our data set, NetSearch 
generates 17 million candidate signaling pathways of length seven or less, 95% of 
which involve one of these twenty-two highly-connected proteins. We excluded the 
highly interacting proteins from the interaction dataset based on their nonspecific 
inclusion in the predicted pathways and evidence of their susceptibility to systematic 
error. This yielded an interaction map that contains 5560 interactions among 3725 
proteins, an average of three interactions per protein. 

Using the NetSearch algorithm, this protein interaction network was queried 
for paths up to length eight that begin at membrane proteins and end at transcription 
factors. The search generated approximately 4.4 million candidate pathways of 
length eight or less whose biological plausibility was assessed using gene 
expression data. 

To score the pathways, we first used a k-means algorithm to cluster all yeast 
genes into clusters based on their expression profiles. NetSearch then assigned 
each pathway a statistical score [10] according to the number of pathway members 
that clustered together. For example, a path with six members in one cluster would 
score higher than a path that only had five members in that cluster. Cluster size 
influenced path scoring such that a path that had three members from a cluster of 30 
elements would score higher than a path that had three members from a cluster of 
100 elements. Also, a path with four elements in one cluster and three elements in a 
second cluster would score higher than a path that had four elements in cluster one, 
but no more than two elements in cluster two.

Pathways were scored using NetSearch’s ‘sumprob’ scoring metric: Assuming 
N proteins total and a partitioning of proteins into k clusters C1, C2,…Ck, with N1, 

N2,…Nk members, respectively, and a pathway p of L proteins p1→p2→…→pL, 
where cp(i) = number of proteins in p in cluster Ci, the sumprob score is computed as 
follows: 
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probp(i) scores a pathway for a cluster Ci such that pathways which are more 
concentrated in Ci have higher scores. The summation in probp(i) computes the 
cumulative hypergeometric probability of pathway p containing cp(i) or more 
members of Ci. probp(i) assesses co-clustering of pathway members in the single 
cluster Ci. sumprob(p), the sum of probp(i) values over all clusters for which cp(i)>=2, 
is a simple measure of co-clustering across the entire collection of available clusters. 
The rationale for the restriction cp(i)>=2 is that without it a pathway could get a high 
score simply from having single members in one or more rare clusters, in which case 
the score would no longer reflect co-clustering.

The exact composition of paths discovered using NetSearch depend on the 
parameters used in path drawing and path scoring. To ensure that NetSearch 
reproducibly generates statistically significant, biologically plausible paths, we 
combinatorially varied every parameter value in the path-drawing and path-scoring 
algorithms, and selected parameter combinations that generate the most statistically 
significant pathways. Statistical significance was measured by drawing pathways 
from membrane proteins to DNA-binding proteins through the experimentally 
determined protein-interaction map (henceforth called "real pathways") and 
comparing these pathways with pathways drawn through control interaction maps 
that were created by randomizing all pairwise interactions in the original dataset. 
(The randomization procedure was performed three times and statistics were 
calculated on the average output of these runs. Paths produced using these 
interaction maps are henceforth referred to as "random pathways"). We ultimately 
chose parameters that maximized the number of high-scoring pathways produced 
with real interactions, while minimizing high-scoring pathways from the randomized 
interactions. 

The parameters we varied included the number of clusters into which the 
genes were grouped, the microarray expression datasets used in clustering, the 
maximum path length, and the scoring metric. Expression data were clustered into 
12, 25, 50, 100 and 250 clusters, and NetSearch best discriminated between real 
pathways and random pathways when genes were grouped into 25 clusters. Three 
S. cerevisiae expression datasets were examined individually, including the 
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“Compendium” set, composed of expression profiles in response to 300 diverse 
mutations and chemical treatments [5]; the “MAPK” set, composed of 56 conditions 
chosen to probe the behavior of MAPK signal transduction [6]; and the “Cell Cycle” 
set, composed of 77 conditions relevant to the cell cycle [7]. Combinations of these 
datasets were also examined, for a total of five different sets that allowed us to 
compare the utility of data that probes specific biological processes, such as MAPK 
signaling or the cell cycle, and that which probes the state of the cell more broadly, 
such as the Compendium set and the combined sets. The composite data set that 
combined all three individual sets (for a total of 433 conditions) provided the best 
discrimination between real pathways and random pathways, although the other sets 
performed comparably.

The final input parameter that required evaluation was the maximum path 
length allowable for NetSearch paths. While short path lengths risk omission of key 
path members, longer path lengths increase the likelihood of including false-positive 
interactions. As a first step towards determining the optimal maximum path length, 
we examined the path lengths connecting every possible pair of the 3725 proteins in 
the interaction dataset, regardless of subcellular localization. The minimal path 
length between any two proteins chosen at random contains on average 7.4 
members. Secondly, we examined the fraction of pathways with high coclustering 
ratios for various path lengths. Consistent with our finding that the average path 
length between any two proteins is 7.4, this fraction peaks at eight, which we set as 
our maximum, unless otherwise noted.

NetSearch output

Using a maximum path length of eight, and 25 gene clusters from 433 
conditions [5-7], NetSearch generated ~4.4 million pathways each for the real and 
randomized protein interaction datasets. From the experimental (“real”) data, 4059 

pathways had a coclustering score ≥ 16 (Fig. 3). At this cutoff, randomized 
interaction data produced on average only ~1% this number of pathways (32 
pathways, P = 7 x 10-6). However, we emphasize that NetSearch selects paths 
based on their rank relative to all paths between selected starting and endpoints. 
The absolute score depends on the particular expression data set used, and varies 
from network to network depending on the degree of coregulation in the cell under 
the conditions tested in the expression data.

The signaling network models generated by NetSearch for the pheromone 
response, cell wall integrity and filamentation pathways are depicted in Fig. 4. In 
each case, the starting protein (receptor, depicted in blue) and ending protein 
(transcription factor, depicted in red) were selected as inputs, and NetSearch draws 
all possible paths between these points. The size of each vertex is proportional to 
the sum of scores of the paths in which that protein is found, providing a useful visual 
clue to the potential importance of a protein in the given network. Comparison with 
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Fig.1 shows that NetSearch reproduced many of the essential elements of these 
MAPK pathways, while providing a detailed account of the experimentally 
determined interconnections among network elements. Of the three network models, 
the one generated for the pheromone response pathway originating at Ste3p (Fig. 
4A) exhibited the highest co-clustering scores. Every protein NetSearch included in 
this network model has a description in the Yeast Proteome Database (YPD) [9] 
consistent with a known or plausible role in mating. Of the nineteen proteins we have 
included in our depiction of the pheromone response network, eighteen are 
annotated as playing a role in the fungal cell differentiation by MIPS [10]. The 
probability that this selection would have occurred by chance was calculated with the 
hypergeometric distribution was found to be P = 5 x 10-24. Our model does differ in 
several respects from the canonical pheromone response pathway depicted in Fig 1. 
It includes more members of the heterotrimeric G protein complex, including the 
alpha, beta, and gamma subunits, the GDP-GTP exchange factor, and the GTPase-
activating protein (Gpa1p, Ste4p, Ste18p, Cdc24p, and Sst2p, respectively). It 
includes Far1p, a protein necessary for pheromone-induced cell cycle arrest in G1 
[11], Mpt5p, a protein necessary for recovery from cell cycle arrest [12], and Bem1p 
and Sph1, both of which are necessary for establishment of cell polarity during 
shmooing and budding [13,14]. In our protein-interaction map there is no direct 
interaction between a pheromone receptor (Ste2p or Ste3p) and any component of 
the heterotrimeric G protein complex (Ste4p/Ste18p/Gpa1p), so NetSearch drew 
indirect paths through Akr1p, a known inhibitor of signaling in the pheromone 
pathway [15]. The predicted network does not include the GTPase Cdc42p (paths 
were instead drawn preferentially through its cofactor Cdc24p, which physically 
interacts with Ste4p) or Ste20p, because of missing interactions in the protein-
interaction map.

Fig. 4B depicts the pheromone response network at several different score 
cutoffs, and demonstrates how higher co-clustering score cutoffs reduces the 
complexity of the protein-interaction map. NetSearch detects 354 paths of length 
eight from Ste3p to Ste12p, and incorporates 70 different proteins into those paths. 
The top graph in Fig. 4B shows the network constructed from all 354 paths (with 
each protein arranged on the perimeter of an ellipse for clarity). In the middle graph, 
all paths that scored below the median have been eliminated, leaving only 27 
proteins. On the bottom of Fig. 4B, only the highest scoring paths (those used to 
construct the network in Fig. 4A) with 19 proteins, are depicted. Comparison of these 
networks indicates that most proteins are eliminated by simply excluding the 
pathways that score in the bottom half; further modifications to the cutoff affect the 
results incrementally. In setting a precise cutoff for pathway inclusion in the final 
network models, one seeks to strike a balance between the inclusion of false-
positives and the omission of true-positives. We set the cutoff such that the top 
fifteen paths for each network were included.
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The network model generated for the cell wall integrity pathway is depicted in 
Fig. 4C. Membrane proteins in particular may fail to produce interactions when 
forced into the nucleus by the requirements of the standard two-hybrid technique. 
We observed this to be the case for the cell wall integrity pathway, as neither Wsc1p, 
Wsc2p, Wcs3p or Mid2p were observed to interact in any of the high-throughput 
screens. To reconstruct this network, we therefore started with the momomeric 
GTPase Rho1p, and restricted our search to a length of seven because of the 
omission of the initial signal sensor. Of the 18 proteins included in this network 
model, all but Smd3p have descriptions consistent with a role in cell wall 
maintenance. NetSearch included both GTPase constituents of this pathway, Rho1p 
and Cdc42p, as well as associated GAPs and other interactors, including Rdi1p, 

Rga1p, and Gic2p. Other included network elements are Fks1p, the 1,3-βglucan 
synthase of which Rho1p is a subunit [16], the actin protein Act1p, and the proteins 
Bni1p, Bud6p, and Sph1p, which are associated with Rho-mediated signal 
transduction, actin filament organization, cell polarity establishment, and bud growth. 
Smd3p forms a complex with the Sm core spliceosomal proteins [17], and we are not 
aware of any role it may play in maintaining cell wall integrity. Its inclusion is most 
likely a result of its expression correlation with BUD6 in one of the microarray 
datasets, but it seems unlikely that the observed interactions of Smd3p with Spa2p 
and Slt2p have biological significance. In the NetSearch-generated model, Bck1p is 
downstream of Mkk1p because, although it interacts with both Mkk1p and Mkk2p, it 
has been shown specifically not to interact with Pkc1p in two- hybrid assays [18].

The network model for filamentous growth (Fig. 4D) involves 21 proteins, 20 
of which are known to play a role in filamentous growth, or have functions consistent 
with that role, with the exception of Fus1p. As in the pheromone response and cell 
wall integrity network models, key components of the Ras GTPase are included, 
such as Cdc25p (the Ras guanine nucleotide exchange factor), Cyr1p (the Ras-
associated adenylate cyclase), and Srv2p, which enables the activation of adenylate 
cyclase by Ras2p. Several proteins with roles in actin filament organization, cell 
polarity establishment, bud growth, and GTPase-mediated signal transduction are 
shared with the cell wall integrity pathway, including Bni1p, Spa2p, Bud6p, and 
Act1p. NetSearch depicts interactions between Abp1p and both Srv2p and Act1p, 
consistent with the function of Abp1 in tethering Srv2p to the cytoskeleton. The 
adenylate cyclase and associated proteins mentioned above, along with Hsp82p and 
Hsc82p, activate the cAMP pathway [19], a pathway that  acts in parallel with the 
MAPK pathway to promote filamentation. Hsp82p is a chaperone protein known to 
interact with a number of signaling pathway components [20]. It is required for 
activation of the pheromone signaling pathway [21], and for the general response to 
amino acid starvation [22]. It may play a similar role in response to nitrogen 
(ammonia) starvation, a trigger for filamentation. Fus1p, included in our predicted 
network, does not have a documented role in filamentation; it is required for cell 
fusion during pheromone initiated mating. Its transcript levels are significantly 
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upregulated in response to pheromone, but are unchanged in tec1∆ strains [6]; that 

study notes, however, that in dig1∆dig2∆ cells, fus1 is constitutively activated, and 
both mating and invasive growth are observed. Tec1p, conspicuously absent in our 
model, has not been observed to interact with any proteins in high-throughput 
two-hybrid screens.

Discussion 

The utility of yeast protein-protein interaction maps for generating signaling 
network models has previously been suggested [23], and they have been used to 
predict metabolic pathways [24]. Expression data has been used to generate and 
refine models for genetic regulatory networks without the benefit of protein-protein 
interaction data [25]. In this study, we have used expression data to rank candidate 
pathways of interacting proteins. This approach has a strong biological and 
experimental rationale: proteins used in the same signaling network must exist 
simultaneously with its activation. The genes encoding these proteins must be 
transcribed at approximately the same time, and under the same environmental 
conditions in which the signaling network is required. Furthermore, experimental 
evidence suggests that when a signaling network is activated, positive feedback 
mechanisms upregulate the expression of genes that encode pathway proteins [26], 
implying that this rationale is also applicable to “surveillance” pathways, whose 
protein components may need to be constitutively present in small quantities, but 
whose concentration increases with activation. This biological rationale is borne out 
by evidence that interacting proteins have more highly correlated expression profiles 
than do non-interacting proteins [27]. However, if a single component of a signaling 
network is independently (and differentially) regulated, it would not necessarily be 
excluded using our approach, if for instance, it connected two halves of a pathway 
which had similar average expression profiles.

NetSearch can be used to predict new signaling pathways, identify previously 
unknown members of documented pathways, or identify smaller clusters of 
interacting proteins. Until we have a more complete protein-interaction set, a user 
who wishes to explore a particular pathway (http://arep.med.harvard.edu/NetSearch) 
needs to specify pathway starting points and ending points (such as membrane and 
DNA-binding proteins, respectively). This selection can be based on a known genetic 
interaction, a shared mutant phenotype, a shared functional classification, or 
signature expression profile. This is the approach we have followed in constructing 
the networks depicted in Fig. 4. Those networks are comprised of all highest ranking 
linear paths connecting the receptors and transcription factors for that pathway. 

The pheromone response pathway is commonly depicted as a simple, linear 
transmission of the mating signal from the membrane receptor, Ste2p (for alpha-
factor) or Ste3p (for a-factor), to the nuclear effectors, Ste12p and Mcm1p, via a 
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MAPK cascade. However, mating pheromone exposure also induces other cellular 
processes such as those required for polarized growth, cell cycle arrest, and 
recovery from cell cycle arrest. Furthermore, the topology of the protein interactions 
required for these processes is considerably more complicated than a series of 
pairwise interactions. In addition to accurately depicting the MAPK cascade, our 
predicted pheromone response network identifies many proteins necessary to 
execute the coordinated processes of growth polarization and cell cycle arrest, and 
reflects the complex topology of the interaction network.

The complexity of these interactions are observed in large, multifunctional 
complexes of possibly dynamic composition. For example, products of Ste18, Ste4, 
Cdc42, Cdc24, Far1, Bem1, Ste20, Ste5, and other proteins are thought to constitute 
a complex that has numerous interactions among components, and that mediates 
many different cellular processes [14,28]. The complex may coordinate mating 
pheromone detection with (1) cell cycle arrest via Far1p, (2) MAPK signal 
transduction via Ste5p and Ste20p, and (3) cell polarity via Bem1p and Far1p 
(among others) [29,30].

Given that several of these networks share components of the MAPK 
cascade, the mechanism by which input-output specificity is maintained remains one 
of the most important questions in the field of molecular signal transduction. One well 
accepted hypothesis is that scaffolding proteins such as Ste5p and Pbs2p tether the 
MAPK module to the appropriate input and output components [31]. The recent 
identification of numerous Ste5p analogs in yeast and mammals makes this 
hypothesis even more intriguing [26]. Beyond scaffolding proteins, higher-order 
protein complexes have been hypothesized to play a role in maintaining signal 
specificity [32]. Our computational results suggest that this may indeed be the case. 
When comparing the minimal pathways for pheromone response and filamentation 
as depicted in Fig. 1, it appears that maintaining signal specificity would be a 
considerable challenge. But when comparing the two network predictions depicted in 
Fig. 4, one notes many differences, all of which may help ensure specificity. The 
network perspective suggests not a single scaffolding protein, but many scaffolding 
proteins - in fact, a “scaffolding network.” The possibility exists that relatively 
nonspecific kinases function simply as “phosphorylation modules,” operating inside 
insulating networks that are the primary determinant of signaling specificity.

Because our protein-protein interaction data is only a small fraction of a truly 
complete interaction map, one finds portions of a network that cannot be connected 
using available protein-protein interaction data. This was the case in our attempts to 
model the HOG network. While NetSearch correctly identified the upstream elements 

of this pathway (Sln1p → Ypd1p → Ssk1p → Ssk22p), it was unable to form any 
connections to Pbs2p or Hog1p that ended in a transcription factor. In some cases, a 
missing interaction can be circumvented, however. In the model for the pheromone 
response network, NetSearch inserted Akr1p, a known inhibitor of the pheromone 
pathway [15], between Ste3p and the G protein complex (Ste4p/Ste18p/Gpa1p). 
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Although the protein-interaction dataset we used contained no direct interaction 
between Ste2p/Ste3p and Ste4p, Ste2p-Ste4p has been shown to interact in a 
targeted yeast two-hybrid study [33].

Our failure to model the HOG pathway underscores the fact that, for the 
purposes of this algorithm, missing interactions (false-negatives) are a more 
significant obstacle than are false-positive interactions. Missing interactions cannot 
be “created” by the algorithm, but false-positive interactions are de-emphasized as a 
result of the bias imposed by ranking paths according to the similarity of expression 
profiles. Bearing this out, of the fifty-eight proteins included in our networks, only 
Smd3p seems to be included as a result of false-positive interactions. (This is distinct 
from the case of Fus1p, which may be misplaced in the filamentation pathway, but 
whose interactions with Act1p and Ste7p are real.) This highlights a general 
observation on the integration of genomic technologies. Two-hybrid and microarray 
expression studies are both known to have a sizable fraction of systematic errors (for 
instance, self-activators in two-hybrid experiments, and cross-hybridization in 
microarrays), but when looking at the intersection of the two, the true signals tend to 
reinforce one another, whereas the systematic errors in the two tend to be different 
and are reduced further into the noise. These effects may help explain why we 
observe so few false-positive proteins inserted into our predicted networks.

In addition to using more complete interaction datasets, such as those found 
in Ho [35] and Gavin [36], one could improve this approach by integrating more types 
of data. Homology modelling could be used to differentially weight the inclusion of 
molecules likely to be involved in signal transduction (e.g. kinases), and genetic 
interactions could weight the inclusion of the two proteins in the same path. Signaling 
motif identification [36] and data from protein kinase chips [37] could also easily be 
incorporated into this framework. Based on the interaction data available, the 
networks depicted in Fig. 4 are static, with all interactions given equal weight, and 
without information on the direction of information transfer. In reality, signaling 
networks are dynamic and vectorial complexes, with interactions of varying strengths 
among component proteins [38]. The technology necessary to generate data which 
will allow modelling of these network properties are beginning to emerge. Kinase 
chips [37] will allow one to incorporate information about the direction of information 
flow. The strength of protein interactions (with DNA) has been measured on chips in 
a highly parallel manner [39] and the same could be done for protein-protein 
interactions [40]. Data on the spatial and temporal co-localization of signaling 
components is being generated by new imaging techniques [41], which will yield 
insight into the mechanism with which the cellular response to a signal is modulated 
by the intensity and the duration of the signal [42], and the interplay with parallel 
pathways. 

Conclusions 
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The approach we have presented allows one to query the intersection of two 
enormous sets of functional genomic-derived molecular data. One can, in effect, 
simultaneously browse protein-protein interaction and gene expression data. It 
allows one to extract a group of highly-connected, highly-correlated proteins from 
global data to isolate a sub-network of particular interest. Significantly, this approach 
does not require prior knowledge of pathway intermediates. The interaction data 
determines the pathways that are considered, and gene expression data is used to 
rank the pathways. Although we have focused on signaling pathways, this approach 
should be applicable to modelling the relationships among any group of interacting 
proteins that cooperate to perform a given function within a cell, and the web-version 
of the software allows for these queries. As many genomic techniques are 
generating increasingly large amounts of molecular data, new tools such as this will 
be required for the synthesis of "parts into pathways" in order that we may 
understand how cells regulate the many processes necessary for growth and 
development.
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Figures

Figure 1 - MAPK signal transduction pathways in yeast

Membrane proteins are depicted in blue, transcription factors in red, and 
intermediate proteins in green. Figure adapted from [6].
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Figure 2 - Histogram of the number of proteins with a given number of 
protein-protein interactions

Interaction data obtained by high-throughput two-hybrid assays [2-4]. The highly 
interacting proteins in red were removed from the interaction dataset (see text for 
details).

Figure 3 - Histogram of pathways with a given coclustering score for 
experimental and randomized protein-protein interactions

Histogram of the number of pathways with a given coclustering score for 
experimental and randomized protein-protein interactions. Shown here is the tail of 
the distribution with the highest coclustering scores. The paths were drawn with a 
depth-first search algorithm [43] from membrane to DNA-binding proteins. It is 
evident that at high coclustering scores, pathways from the experimentally observed 
interactions (blue) outnumber those generated from randomized interactions (red –
an average of three separate randomizations). The total number of paths for 
experimental and randomized interaction data (averaged) were within 5% of each 
other. 

Figure 4 - Network models produced by NetSearch

Pathways predicted by NetSearch for (A,B) pheromone response, (C) cell wall 
integrity, and (D) filamentation pathways, with the starting membrane protein for path 
drawing (blue), intermediate proteins (green) and transcription factor (red). In each 
case, the fifteen highest ranked paths between common endpoints were combined to 
form the signaling network. For the cell wall integrity pathway, the sensor proteins 
that initiate signal transduction Wsc/1/2/3p and Mid2p did not have any productive 
interactions. For this pathway, we began our searches at Rho1p and searched for a 
path length of seven. The size of each vertex is proportional to the sum of the scores 
of the paths in which it was included. Network graphs were produced with PAJEK 
graph drawing software [44, http://vlado.fmf.uni-lj.si/pub/networks/pajek]. 

Additional files

Supplementary website – http://arep.med.harvard.edu/NetSearch

Web interface for NetSearch: http://arep.med.harvard.edu/NetSearch/runprog.html 
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