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By combining the pairwise interactions between proteins, as pre-
dicted by the conserved co-occurrence of their genes in operons,
we obtain protein interaction networks. Here we study the prop-
erties of such networks to identify functional modules: sets of
proteins that together are involved in a biological process. The
complete network contains 3,033 orthologous groups of proteins
in 38 genomes. It consists of one giant component, containing
1,611 orthologous groups, and of 516 small disjointed clusters that,
on average, contain only 2.7 orthologous groups. These small
clusters have a homogeneous functional composition and thus
represent functional modules in themselves. Analysis of the giant
component reveals that it is a scale-free, small-world network with
a high degree of local clustering (C � 0.6). It consists of locally
highly connected subclusters that are connected to each other by
linker proteins. The linker proteins tend to have multiple functions,
or are involved in multiple processes and have an above average
probability of being essential. By splitting up the giant component
at these linker proteins, we identify 265 subclusters that tend to
have a homogeneous functional composition. The rare functional
inhomogeneities in our subclusters reflect the mixing of different
types of (molecular) functions in a single cellular process, exem-
plified by subclusters containing both metabolic enzymes as well
as the transcription factors that regulate them. Comparative ge-
nome analysis, thus, allows identification of a level of functional
interaction between that of pairwise interactions, and of the
complete genome.

Genomic associations between genes reflect functional asso-
ciations between their proteins (1–8). Furthermore, the

strength of the genomic associations correlates with the strength
of the functional associations: genes that frequently co-occur in
the same operon in a diverse set of species are more likely to
physically interact than genes that occur together in an operon
in only two species (7), and proteins linked by gene fusion or
conservation of gene order are more likely to be subunits of a
complex than are proteins that are merely encoded in the same
genomes (3, 7). Other types of associations have been used for
network studies, but these focus on certain specific types of
functional interactions, like subsequent enzymatic steps in met-
abolic pathways (9), or physical interactions (10–13). In contrast,
genomic associations cover a relatively wide range of functional
associations between proteins (3, 7). They reflect what selection
regards as functionally interacting proteins, and can therefore be
regarded as an alternative measure of functional interaction.
Different types of genomic association have been introduced:
gene fusion (3, 4), conservation of gene order (2, 6, 14, 15), in
silico recognition of shared regulatory elements (16, 17), and
co-occurrence of genes (phylogenetic profiles) (5, 18, 19). Of
these, we focus here on conserved gene order, which currently
in prokaryotes is the most powerful type, having both a large
coverage and a high selectivity (7, 14, 16). When we iteratively
connect genes by this type of genomic association (14), a network
of associations appears (Fig. 1). In this network the nodes are
orthologous groups of genes, and the edges are the genomic
associations between these groups. It has been suggested before,
that by such iterative approaches, one would be able to obtain all

of the proteins involved in a biological process (6, 14, 20). All of
the proteins from a pathway such as the purine biosynthesis
could thus be extracted with only one potential ‘‘false positive,’’
a hypothetical protein (6). However, with more and more
genomes becoming available, such iterative linking tends to
connect nearly all proteins either directly or indirectly to each
other, and indeed, in our analysis the orthologous groups
involved in purine biosynthesis become part of a ‘‘giant compo-
nent’’ containing 1,611 orthologous groups. As manual expert
curation to separate clusters from each other (6) may not be
feasible in the long run, we seek here an automatic procedure to
separate the giant component into subnetworks that would
correspond to functional modules. Our analysis of the global and
local properties of the giant component reveals that it consists of
locally highly connected subnetworks that are connected to each
other with linkers. By splitting up the network at these linkers,
we identify a level of organization of proteins that lies between
pairwise interactions and the complete network, and that can be
regarded as a functional module: a set of proteins involved in the
same biological process.

Methods
Orthologous Groups. To define conserved gene order through
comparative genomics, we must determine the equivalent genes
across genomes (18): i.e., which genes are orthologous to each
other (21). For 38 genomes (for which species, see Fig. 6, which
is published as supporting information on the PNAS web site,
www.pnas.org) we constructed orthologous groups by iterative
clustering of genes that (i) are significant (Smith–Waterman,
E � 0.01) homologs (ii), are best bidirectional hits, and (iii) have
conserved gene order (14). When genes in an orthologous group
contain nonoverlapping hits to other genes in that group, the
group is split in two to reflect the domain nature of its compo-
sition. Subsequently, any two orthologous groups A and B are
merged into one group A-B if at least two independent best
bidirectional hits exist between genes from group A and group
B. Finally, genes that do not belong to any group are added to
a group if, and only if, a strong triangular pairwise-orthology
relation exists between the gene and the genes from that group.
Due to the combined requirement of best bidirectional hits and
conservation of gene order, the iterative usage of the pairwise-
orthology relations is expected to give reliable results (14).
Although we use the clusters of orthologous groups (COG)
functional categories (see below), we did not use the COG
orthologous groups themselves, allowing us to (i) use conserved
neighborhood as an additional criterion for orthology prediction,
and (ii) include orthologous groups that occur only in two
species. As a result of this approach, the average size of our
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orthologous groups is smaller and hence probably functionally
more uniform than that of the COGs.

Note that orthology is evolutionarily defined, meaning that
one orthologous group can (and often does) contain different
functions. The conflict of function versus orthology is one of the
reasons that the network arises in the first place. We therefore
try to tackle this conflict using linkers (see below). Other
approaches explicitly try to assemble genes with one function
into one group like the ‘‘role groups’’ as introduced by Overbeek
et al. (6).

Quantifying the Functional Homogeneity of (Sub)clusters. To asses
whether our (sub)clusters have functional and predictive rele-
vance, we examined their functional composition. Functional
categories for our orthologous groups were obtained by com-
paring them to the COG database (19). When members of a
group were annotated in a COG of a certain functional category,
this category was assigned to our orthologous groups. Subse-
quently, we quantified the functional homogeneity of a (sub)
cluster by the entropy of its frequency distribution of functional
categories: the sum of the frequencies of the functional catego-
ries within a cluster times the logarithms of those frequencies.
The stronger a cluster is dominated by a single or by a few
functional categories, the lower the entropy, which becomes zero
when a cluster contains only a single functional category. En-
tropy is dependent on the number of elements in a group—e.g.,
10 orthologous groups that all fall in different functional cate-
gories will have a lower entropy than a set of 20 orthologous
groups, and would thus be considered more homogeneous. To
assess the statistical significance of the (sub)cluster functional
homogeneities, we therefore created randomly drawn samples of
all observed cluster and subcluster sizes, and computed their
entropy to compare them with the observed entropies in the
(sub)clusters.

Measuring the Local Connectivity, C, and Average Path Length, L. To
assess whether it is at all feasible to separate our network,
consisting of orthologous groups (the nodes) and genomic
associations (the edges), into subclusters, we examined two
important parameters that describe its topology: C and L. C is
the local connectivity, or degree of local clusteredness; it is
computed by first counting all pairs of associations (cases where
orthologous group A is linked to group B and to group C),
subsequently counting how often these pairs are closed (B is
linked to C), then, dividing the second count by the first count
(22). L is the average shortest path length between orthologous
groups. To obtain L we compute the shortest path between all
pairs of orthologous groups, and subsequently compute the
average (22).

Defining Linkers and Delineating Subclusters by Using Linkers. To
split our giant component into subclusters, we exploit the
existence of linkers. Linkers are here defined as orthologous
groups with mutually exclusive associations. First, we mark them
by clustering for each orthologous group (A) all of the ortholo-
gous groups (N) it is connected to the group by the conservation
of gene order. If, in the absence of A, these orthologous groups,
N, fall into two or more subsets, then A is considered a linker.
Subsequently, we perform single linkage for all of the ortholo-
gous groups, except that now the orthologous groups marked as
linkers are not allowed to bring in new members: the single-
linkage clustering is not allowed to run through linkers. As a final
step, we connect orthologous groups that are not allocated into
a group to all of the subclusters they hit, but without subse-
quently linking those subclusters to each other. By this procedure
most linkers end up in multiple clusters. The exceptions arise
when (i) linkers link to other linkers, in which case the clusters
are split between the linkers instead of ‘‘at the linkers,’’ and (ii)
two sets of orthologous groups can locally be linked only by the
linker, but at a larger distance (via a detour) can also be linked
in a dense grid by other orthologous group. In the latter case the
cluster would not be split up and the linker would be member of
only one cluster.

Signifiance of the Overrepresentation of Multiple Enzyme Commission
(EC) Numbers in Linkers by Using a Binned �2 Test. Genes are
assigned EC numbers based on their annotation in the SWISS-
PROT proteomes (23). To estimate the significance of the fact
that orthologous groups classified as linkers contain more genes
but also contain more EC numbers we perform a binned �2 test
(24) instead of a normal �2 test. This means that instead of testing
the significance of the overrepresentation of multiple EC num-
bers for the total data set, we perform it for bins containing
restricted sets of orthologous groups with a similar number of
members. The summed �2 test value is then compared to the
expected value with a number of degrees of freedom (v) equal
to the number of bins.

Results
Global Properties. The primary object of our study, the nodes in
our network, is orthologous groups of genes, which are strin-
gently defined by using both relative levels of sequence similarity
as well as conservation of genomic context (see Methods). When
defining as a significant link (edge) between two orthologous
groups that they co-occur with each other in the same potential
operon (run, see Fig. 1) in two or more species that are not
closely related (6, 14, 15), we find 3,033 orthologous groups with
8,178 pairwise significant associations in 38 species. These 3,033
orthologous groups of genes contain 29,211 genes of the 53,926
genes that have orthologs in at least two genera and of a total of
82,360 genes in these 38 species. The functional composition of
the genes for which we find genomic associations appears to be
unbiased relative to the complete set of genes. In terms of

Fig. 1. Going from conserved gene order to networks of genomic associa-
tion. (A) The conserved gene order of six orthologous groups in six species.
Genes with same color and name belong to the same orthologous group. The
small empty triangles denote genes that do not have conserved gene order.
The correspondence of the full species names to the ones used in the figure is
as follows: H. pylori, Helicobacter pylori 2669; C. jejuni, Campylobacter jejuni
NCTC11168; R. pro., Rickettsia prowazekii; M. tub., Mycobacterium tubercu-
losis Rv; A. fulgidus, Archaeoglobus fulgidus; M. thermoauto., Methanobac-
terium thermoautotrophicum. (B) The corresponding network. We consider
two orthologous groups to have a connection if they co-occur in the same
potential operon two or more times.
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functional categories it is the same as the complete COG
database (19)—e.g., 10.6% of the COGs and 10.3% of our
orthologous groups with significant associations belong to the
‘‘energy production and conversion’’ category. When we itera-
tively connect all orthologous groups to each other by means of
their genomic associations, we find one large cluster consisting
of 1,611 orthologous groups (Fig. 6). All of the other clusters are
much smaller: the second largest consists of 32 orthologous
groups, followed by 34 clusters of sizes 6–15, and 481 clusters of
5 or less (see www.bork.embl-heidelberg.de�Docu�Modules�
smalldisjoint.html for these clusters). The large cluster contains
23,430 genes, implying that 80% of the genes that have significant
links belong to the large network. This cluster is a so-called
‘‘giant component’’ as is often observed in random networks
(12). The graph layout suggests that more abundant proteins
predominantly occur in the center of this large cluster (Fig. 6).
The giant component contains many different orthologous
groups and thus, unsurprisingly, also a mix of functions. The
smaller disjoint clusters, on the other hand, seem to be func-
tionally meaningful: 88% of the disjoint smaller clusters have a
more homogeneous functional composition in terms of COG
functional category (19) than that of a random cluster of the
same size (P �� 0.001, sign test, see Methods). Thus, the small
clusters reflect functional clusters, and we consider them to be
functional modules.

With more genomes becoming available, we expect that
smaller clusters will merge with each other, and with the giant
component. Thus, there is an ever-increasing need to identify
subclusters within the giant component. A first step is to probe
the idea of whether the giant component contains a substructure.
We do this by measuring the standard connectivity parameter C
(22), which is the observed fraction of cases where, if node (i.e.,
orthologous group) a is connected to node b as well as node c,
then, nodes b and c are also connected to each other. We find
its C to be 0.60. This finding suggests that the large disjoint set
is locally highly clustered, as a simulated, random network with
the same number of nodes and the same number of connections
has a C of only 0.005 (see Methods). Moreover, this C suggests
that there are (sub)modules in the large cluster, which might be
retrievable (see below).

The local connectivity (C) is actually close to that of a regular
network —for example, a regular ring lattice— which is 0.75 (22).
However, unlike in such a regular network, we here find that L,
the shortest path in terms of the number of links between all
pairs of two orthologous groups, is 5.15: by following on average
5.15 genomic associations, one can move from an orthologous
group to any other. This is just slightly higher than the 3.75 steps
that we, on average, find in randomly created networks with the
same number of nodes and the same number of connections.
This combination of L being somewhat higher than Lrandom, and
C �� Crandom, indicates that our network of genomic associations
is a ‘‘small-world network’’ (22). This type of network is char-
acterized as between random and completely regular, as it
contains properties of both: it is random to the extent that the
L is low, while at the same time it is regular because of a relatively
high C.

The distribution of the number associations of each ortholo-
gous group follows a power law: many orthologous groups have
only one or two connections, and only a very few have many
connections (Fig. 2). Aside from being a small-world network,
this is therefore also a scale-free network, there is no charac-
teristic number of connections per node (25).

Linkers. The high local connectivity parameter C indicates that
there, potentially, are subclusters in the network. To separate
these subclusters from each other, we identified orthologous
groups with a specific type of local network topology: linkers. A
linker is an orthologous groups with local mutually exclusive

associations (see Methods). In other words, a linker connects two
(or more) sets of orthologous groups that, at least locally in the
network around the linker, are connected only that linker (Fig.
3A). All told (i.e., in the large cluster and the disjoint clusters),
we found 425 linkers that locally connect at least two different
sets. Linkers are expected to have multiple functions and�or to
play a role in different processes. To test if they indeed have
multiple functions, we determined which orthologous groups
were annotated in the SWISS-PROT proteomes (23) as having
multiple EC numbers. This analysis revealed that linkers con-
tained a significant overrepresentation of orthologous groups
with multiple EC numbers, even when correcting for greater
average size of the groups (2.3 times as many, P � 0.05, see
Methods). Thus, the local network topology of linkers also indeed
reflects their (multi)functionality. It should be noted that a
linker does represent a group of orthologous proteins. The
multifunctionality of a linker does, therefore, not necessarily
reside in the individual members of the group. The concept of
orthology and its operational implementations have relevance to
the evolutionary history of a group of genes, and do not
necessarily imply that the proteins within an orthologous group
have identical functions. The different functions in a linker can,
therefore, also be distributed over the different members. With-
out huge experimental efforts it is impossible to derive the
precise molecular function of every protein, and therefore, to
answer the question as to what extent the individual proteins in
a linker node are all multifunctional. We have therefore devel-
oped an operational approach that overcomes the complications
that could arise from the multifunctionality of orthologous
groups in predicting functional modules from genome data. The
proteins in linkers can be shown to be more essential than those
in nonlinkers in an individual organism: Mutations in Saccha-
romyces cerevisiae genes that reside in linkers have a significantly
higher potential to be lethal (P � 0.05; ref. 26) than mutations
in genes that do not reside in linkers.

Delineating Functional Modules by Using Linkers. The presence of
substructure suggests it should be possible to delineate subclus-
ters in the large cluster. Because linkers reflect their affiliation
to multiple processes in their local network topology, they
provide a straightforward way to split this giant component. We
thus split the large cluster by performing single linkage for all
orthologous groups, except that linkers are not allowed to bring
in new members (see Methods). With this approach the large
cluster is split into 265 smaller subclusters (see www.bork.embl-
heidelberg.de�Docu�Modules�subclus.html for a listing of these
subclusters). The size distribution of the clusters (Fig. 4) reveals
that the sizes are distributed better, albeit the two largest
subclusters of size 146 and 189 seem to be outliers. These might

Fig. 2. Distribution of the number of associations per orthologous group.
The drawn line is a power law fit to the data.
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reflect imperfect delineation. Still, 27.4% and 18.3% of the 189
orthologous groups belong, respectively, to the ‘‘cell motility and
secretion’’ and ‘‘cell envelope biogenesis, outer membrane’’
category, indicating some recurring theme in this largest sub-
cluster. In general, of the derived subclusters, 70% have a more
homogeneous functional composition in terms of COG func-
tional category than that of a random cluster of the same size (P
�� 0.001, sign test). Moreover, nearly all are more homogeneous
than the large cluster from which they stem. Because 271
orthologous groups in the giant component have an EC number,
we explicitly looked at another measure of cellular process:
metabolic pathway. Checking how often pairs of enzymes in the
same subcluster are also in the same pathway as defined by the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (27), as
compared with pairs of enzymes that are in different subclusters,
we found 50% of the within-subcluster enzyme pairs to be in the
same pathway versus 9% of the between-subclusters pairs.
Among the subclusters are well known cases such as the tryp-
tophan biosynthesis genes. Our approach successfully delineated
this subcluster despite multiple tryptophan biosynthesis genes
being linked to other genes and thereby to the large cluster
(Fig. 3B).

Not only can we retrieve known pathways and processes such
as tryptophan biosynthesis, but we can also use the subclusters
for function prediction. For example, one orthologous group of
unknown function and a group for which only its general
molecular function is known, SAM-dependent methyltrans-
ferase, falls into a subcluster exclusively consisting of archaeal
f lagellum (28) genes (Fig. 3C). These two orthologous groups
and the archaeal genes with which they cluster, occur only in
archaea. They can thus be predicted to have a role in the
assembly, regulation, or motility of the archaeal f lagellum. In
general, moving from a gene-based to a comprehensive view of
genomic associations, by delineating subclusters, allows us to
make better predictions for the process to which a gene belongs.
This is because, by introducing a cut-off in the list of genes
indirectly associated to a gene, we define a set of genes from
which we can take the common functional denominator.

In contrast to conventional hierarchical clustering, in our ap-
proach orthologous groups (the linkers) can belong to multiple
subclusters. Due to associations beyond their immediate local
topology, not all linkers are necessarily assigned to different sub-
clusters (see Methods). We find that 210 linkers of the set of 425 are
part of multiple subclusters. As mentioned above, the expected
underlying cellular reason for linkers to be in multiple subclusters
is multifunctionality on a molecular or a cellular process level. For
example, in the maturation of the nickel-containing enzymes urease
and hydrogenase, one orthologous group performs two related, but

Fig. 3. Parts of the network. Each filled circle is an orthologous group of
genes, each thick line is a significant association. The dotted line is used to
connect a circle to its gene name. The arrows in A mean that these
orthologous groups have connections outside the focus of the panel, while
the arrows in B and C denote that an orthologous group has an association
to another orthologous group that is not part of the subcluster as delin-
eated by our method. (A) Schematic example of the local network topology
around a linker. The orthologous group with the ‘‘?’’ is the linker. The three
other sets of circles of the same color are the mutually exclusive associated
sets of orthologous groups. (B) The tryptophan subcluster as retrieved by
our approach. The node labeled ‘‘2c-rr’’ is a predicted two-component
response regulator. (C) Archaeal flagellum subcluster. We predict the two
orthologous groups without clear predicted function to also have a role in
the archaeal flagellum. The genes in the hypothetical orthologous group
are: PF�353433, PAB1376, PH0544, and MJ0905. The genes in the S-
adenosylmethionine (SAM)-dependent methyltransferase orthologous
group are PF�352470, PAB1377, PH0545, and MJ0906.

Fig. 4. Occurrence distribution of the number of subcluster sizes derived
from the giant component. Most subclusters are of size 3. The biggest sub-
clusters seem to be outliers and, thus, might indicate a failure of our method
to correctly split them.
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different molecular functions (29). It turns out that this group
achieves this specialization by duplication, leading to different
functional associations and assignment to two different subclusters
(Fig. 5A). Even when the molecular function among the proteins in
one orthologous group is the same, it can perform this function
within multiple cellular processes, like the integral membrane
protein transport orthologous group involved in type II protein
excretion pathway, as well as the archaeal flagellum (Fig. 5B). This
constellation reflects our expectations for linkers in general; not
only do they prevent the random linkage of two subclusters, they
provide a handle for dissecting the complex functional and evolu-
tionary relations between cellular processes.

Just as gene function prediction by genomic context methods
is complementary to that by homology determination (6), a
functional classification based on genomic context is comple-
mentary to one that is based on molecular function. Hence come
differences that we observe between classification systems that
are (largely) based on homology relations [e.g., domain data-
bases such as a simple modular architecture research tool
(SMART) (30), or an orthology�domain database such as COGs
(19)], and a system that is based on genomic context. Such
conflicting classifications should be interpreted not as errors in
either one of the systems, but rather in terms of the difference
in conceptual approach. For example, we find one subcluster that
contains three enzymes from amino sugar metabolism catalyzing
sequential steps, together with a transcriptional regulator of
hitherto unknown specificity. Based on this finding, we expect
this regulatory orthologous group (consisting of PA3757, yvoA,
XF1461, and DRA0211), to regulate the enzymes. In the COG
category scheme this is an inhomogeneity, as the regulator
belongs to the ‘‘transcription’’ category, whereas the enzymes are
‘‘carbohydrate transport and metabolism.’’ More generally we
see that, whereas in the COG classification scheme, transcription
falls into one functional class, in our classification it is spread out
over 78 subclusters. In only 4 (1.6%) of the subclusters are
transcription genes the largest group within that cluster. This
observation illustrates the complementarity of a genomic con-
text based classification scheme as well as the potential of this

approach to assign proteins to cellular processes for which the
molecular functions are known.

Discussion
General Network Properties. The network of pairwise genomic
associations derived from conserved gene order exhibits interesting
network features that can be interpreted in terms of the functional
relations between the genes. There is a large dominant cluster that
spans most of the genes. The values of C and L in the network have
important implications respectively for the identification of func-
tional modules and for the connectedness of the processes in a cell.
Although the low L, i.e., the low number of associations to get from
one orthologous group to any other group, suggests that the
functions of all proteins are intimately connected, the high local
connectivity, C, indicates that one can still identify functional
modules, and thus draw boundaries between the various processes.
The power law in the number of connections indicates that it is also
a scale-free network (25). Such a network is thought to emerge
when a network has grown by preferentially attaching new genes�
nodes to already existing highly connected, genes�nodes (25). This
evolutionary scenario is also supported by the predominance of
widespread, and thus presumably older, orthologous groups in the
‘‘center’’ of the large cluster (see Fig. 6). The global network
properties that we find have recently also been described for other
complex large-scale biological interaction networks (9–13), and
protein domain evolutionary networks (31). We thus conclude that
the small-world and scale-free properties are general for biological
networks.

Local Network. We analyze orthologous groups in terms of the
specific network topology that surrounds them. Orthologous
groups with locally mutually exclusive network associations,
so-called linkers, reflect their different genomic associations by
having significant overrepresentation of genes with multiple EC
numbers. In addition they contain more lethal mutations, prob-
ably because they link various processes and�or have roles in
multiple processes. They are crucial points both in the functional
as well as the genomic association network, making them
promising targets for antimicrobial drugs. In general, the local
association network around orthologous groups reflects their
functional embedding. It should be noted that our linkers are not
comparable to the ‘‘hubs’’ introduced in ref. 9. The discrepancy
lies not only in the fact that hubs are substrates (including ATP,
NAD, H2O, etc.) as opposed to our linkers, which are ortholo-
gous groups of genes, but also, more importantly, in that linkers
link different processes (i.e., different sets of orthologous
groups), whereas hubs merely link a large number of entities.

Subclusters and Functional Classification. That one could obtain all
of the proteins involved in a biological process by an iterative search
for conserved gene order has been suggested before (6, 14, 20).
Actually, it is not so straightforward, as such an iterative search
tends to connect ‘‘everything with everything.’’ This trend is likely
to only get worse with more genomes becoming available. However,
the topology of these genomic association networks suggests a
natural way of splitting genes into meaningful subclusters, in a
manner that also allows certain genes to belong to different
modules. The thereby retrieved subclusters reflect known pro-
cesses. More importantly, these subclusters improve function pre-
dictions for hypothetical genes and assign genes with a known
molecular function to a biological process. The clusters and sub-
clusters can serve as the basis for a new concept for functional
classification that is defined by comparative genome analysis and
that is complementary to one that is based on molecular function.
Ultimately, this work should contribute to an integration of the
different levels of functional description (32), with the aim of
obtaining a natural classification scheme for proteins and cellular
processes (33).

Fig. 5. Venn diagrams of linkers in multiple subclusters. Each small ellipse is
an orthologous group. The big ellipses circumscribe the subclusters as our
approach delineates them. Orthologous groups are named by a gene name of
a prominent member. A shows the two subclusters of which the hypF�ureG
orthologous group is a member. This orthologous group is named uGhB in this
figure. B shows the two subclusters, of which the integral membrane protein
transport orthologous group (hofB) is a member. Note that one of the two
subclusters is the archaeal flagellum subcluster from Fig. 3C.
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