
This Provisional PDF corresponds to the article as it appeared upon acceptance. The
fully-formatted PDF version will become available shortly after the date of publication, from the

URL listed below.

Gaggle: An open-source software system for integrating bioinformatics software
and data sources

BMC Bioinformatics 2006, 7:176 doi:10.1186/1471-2105-7-176

Paul T Shannon (pshannon@systemsbiology.org)
David J Reiss (dreiss@systemsbiology.org)

Richard Bonneau (rbonneau@systemsbiology.org)
Nitin S Baliga (nbaliga@systemsbiology.org)

ISSN 1471-2105

Article type Software

Submission date 27 October 2005

Acceptance date 28 March 2006

Publication date 28 March 2006

Article URL http://www.biomedcentral.com/1471-2105/7/176

Like all articles in BMC journals, this peer-reviewed article was published immediately upon
acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright

notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

BMC Bioinformatics

© 2006 Shannon et al., licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:pshannon@systemsbiology.org
mailto:dreiss@systemsbiology.org
mailto:rbonneau@systemsbiology.org
mailto:nbaliga@systemsbiology.org
http://www.biomedcentral.com/1471-2105/7/176
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0


1 

The Gaggle:  An open-source software system for integrating bioinformatics software and data 

sources 

Paul T. Shannon
1
, David J. Reiss

1
, Richard Bonneau

1,2
 and Nitin S. Baliga

1
* 

 

1
Institute for Systems Biology, 1441 N 34

th
 Street, Seattle, WA 98103, USA 

 

2
 Current Address: Department of Biology, New York University, 100 Washington Square E, 

New York, NY 10003, USA 

 

*corresponding author 

 

Abstract 
 

Background.  Systems biologists work with many kinds of data, from many different sources, 

using a variety of software tools.  Each of these tools typically excels at one type of analysis, 

such as of microarrays, of metabolic networks and of predicted protein structure.  A crucial 

challenge is to combine the capabilities of these (and other forthcoming) data resources and tools 

to create a data exploration and analysis environment that does justice to the variety and 

complexity of systems biology data sets.  A solution to this problem should recognize that data 

types, formats and software in this high throughput age of biology are constantly changing. 

 

Results.  In this paper we describe the Gaggle –a simple, open-source Java software environment 

that helps to solve the problem of software and database integration.  Guided by the classic 

software engineering strategy of separation of concerns and a policy of semantic flexibility, it 

integrates existing popular programs and web resources into a user-friendly, easily-extended 

environment.   

We demonstrate that four simple data types (names, matrices, networks, and associative 

arrays) are sufficient to bring together diverse databases and software.  We highlight some 

capabilities of the Gaggle with an exploration of Helicobacter pylori pathogenesis genes, in 

which we identify a putative ricin-like protein –a discovery made possible by simultaneous data 

exploration using a wide range of publicly available data and a variety of popular bioinformatics 

software tools. 

 

Conclusion.  We have integrated diverse databases (for example, KEGG, BioCyc, String) and 

software (Cytoscape, DataMatrixViewer, R statistical environment, and TIGR Microarray 

Expression Viewer).  Through this loose coupling of diverse software and databases the Gaggle 

enables simultaneous exploration of experimental data (mRNA and protein abundance, protein-

protein and protein-DNA interactions), functional associations (operon, chromosomal proximity, 

phylogenetic pattern), metabolic pathways (KEGG) and Pubmed abstracts (STRING web 

resource), creating an exploratory environment useful to ‘web browser and spreadsheet 

biologists’, to statistically savvy computational biologists, and those in between. The Gaggle 

uses Java RMI technology and Java Web Start technologies and can be found at 

http://gaggle.systemsbiology.net. 

 

Background  
 



2 

The practice of systems biology seeks to comprehend the complexity of organisms, or their 

subsystems, by combining many different kinds of data (mRNA and protein levels, protein-

protein and protein-DNA interactions, protein modifications, biochemistry, etc.)  to create 

predictive models [1].  In current practice, as biologists explore their data, they typically create 

manual, ad hoc connections among software tools and databases, cutting and pasting queries, 

creating temporary files, running web searches, and taking notes.  This strategy does not scale 

well, and so, in response, several software projects have arisen to offer computer-assisted data 

and software integration.  Notable among these are ToolBus [2], Taverna [3], caCore [4],  each 

of which uses semantic mapping to ensure that entities in one environment are appropriately 

related to entities in another.  While it is appealing in the abstract, this approach can be quite 

costly, which may explain why, despite many person-years of engineering effort, these projects 

have not yet been widely adopted in the biological community. 

 

Implementation   

 

The Gaggle: an overview 
The Gaggle [5] uses a minimalist approach to integrate data and software.  It is written in Java 

and uses standard Java libraries.  It is simple to install, and easy to update; new data sources and 

software tools can be added with minimal implementation costs. A small server program (the 

‘Gaggle Boss’) provides communication among analysis and display programs (the ‘geese’) 

which are modest adaptations of existing (or novel) bioinformatics and computational biology 

programs and web resources.  The Boss and the geese all run as separate programs on the user’s 

desktop computer, communicating with each other, at the user’s behest, by passing simple 

messages.  

In the Gaggle, semantic flexibility [6] -- the notion that “word meanings are not … fixed 

and unchanging, but tend to vary according to the context of their use” -- is seen as a solution to 

the complications of data integration, rather than as a problem that must be solved before 

integration can begin. Four data types (names, matrices, networks, and associative arrays), 

distilled into a semantically simple form, are passed between the geese, whereupon they take on 

richer meaning in the context of each goose.   For example, the gene name “HP0352”  identifies 

(1) a  flagellar motor switch protein in three KEGG [7] pathway maps, (2) a node in a Cytoscape 

[8] association network, (3) a row in a matrix to a microarray data viewer, and (4) a set of 

PubMed abstracts to a literature search tool. The biological semantics attached to the gene name 

in each of these environments are rich, significant, and though overlapping, somewhat different.  

But in the Gaggle’s approach to software and data integration, no formal mapping and no explicit 

integration are needed.  It suffices to simply pass the gene name (accompanied by the organism 

name, which is required by some geese) to each environment, where in each case a different web 

of meanings is invoked. 

The Gaggle does not, however, preclude the use of applications and data repositories 

which are built upon, and offer the benefits of, careful semantic mapping.  This is demonstrated 

by the KEGG goose, which submits queries to and retrieves results from KEGG.  All carefully 

curated semantic mappings of gene name to metabolic pathways, biochemical reactions, cellular 

structures, DNA sequences, protein functions, and orthology groups in KEGG are obtained by 

merely passing gene names to this goose.  As systems biology matures, we predict that many 

more such semantically rigorous resources will become available, and that they too will be easy 

to add to the Gaggle using this same approach.  Similarly, large scale efforts such as SBML 



3 

(Systems Biology Markup Language, [9], BioMoby [10] and BioPAX (a collaborative effort to 

create a data exchange format for biological pathway data) [11] will continue to be 

complementary to the Gaggle.  However, we are also confident that, given the heterogeneity of 

systems biology data, it is unlikely that a single unifying language or unifying scheme will 

emerge.  Valuable work will continue to be done in more or less restricted domains and semantic 

flexibility will always be required to integrate them. 

 

The Gaggle in Action:  A simple introductory example 

In a simple, prototypical use of the Gaggle, genes of interest are first selected in some program – 

perhaps nodes in a Cytoscape network. Next, by pressing the “Broadcast” button, the selected 

gene names are sent to other geese: the KEGG goose and a microarray data viewer goose. The 

KEGG goose will respond by displaying a list of pathways and structures in which those genes 

are implicated, and the microarray data viewer will plot the experimental data for those genes 

(Fig 1). 

Thus, a single mouse click performs all operations which would otherwise require:  (1) 

writing down, copying or exporting the names of the selected Cytoscape nodes to a file; (2) 

browsing to the ‘Search Objects in KEGG Pathways’ web page, and typing in, pasting, or 

otherwise loading the gene names from the file, making sure to prefix each name with the 

appropriate organism code; and finally (3) plotting  the microarray data, again requiring the list 

of gene names to be typed, loaded, or pasted into the microarray data viewing program’s ‘select’ 

function. In our experience, in absence of the Gaggle, such data exploration involving more than 

a few genes can be tedious and error-prone. With the Gaggle, even with a large number of genes, 

such exploration can be fast and dependable and can easily include a wide range of tools and 

data sources, all of which respond to a single mouse-click.   

 

Gaggle Data Types 
There are four data types used in the Gaggle, and broadcast at the user’s request from program to 

program.   They are all implemented as Java classes, and they are all free of explicit biological 

semantics.  They are:  a list of names, a matrix, a network, and an associative array (a collection 

of name/value pairs).  These four are sufficient to capture all the kinds of data used in systems 

biology.  Instances of these data types are transmitted in serialized form using Java RMI within 

the Gaggle.  Name lists and associative arrays are standard Java classes; Network and 

DataMatrix are Gaggle-specific, and are documented at the Gaggle website. Some 

straightforward translation of these types into ‘native’ types is usually required when adapting a 

new program to the Gaggle. 

 

The Gaggle Boss 
The Gaggle always has a Boss.  This is a standalone Java program (usually, but see Section 4 

below for an alternate approach) that relays messages between the programs in the Gaggle. The 

Boss’s graphical user interface (GUI) displays the names of the currently registered programs, 

and provides the user with some basic controls:  to hide or reveal particular programs, and to 

specify whether they are to accept or ignore messages. The Boss can, in addition, be given extra 

capabilities, which are added via a plugin mechanism.  In the example below (see Section 3), we 

use a species-specific annotation search capability which appears as a tab in the Boss’s GUI.   

 



4 

Current Geese 
When any Java program has been adapted to run in the Gaggle, we call it a ‘goose’, and we say 

that it has been ‘gaggled’.  This is a relatively simple operation:  to gaggle a program requires 

only that it implement a dozen or so new programming calls (see software design and 

engineering below).  Current geese in the Gaggle include: 

 

1. DMV:  the DataMatrixViewer, for navigating and selecting from experiments 

(microarray, ChIP-chip, proteomics), and for displaying and plotting their numerical data 

(Johnson et al, in preparation). 

2. Cytoscape, with assorted plugins,  for viewing protein-protein interactions, protein-

DNA interactions, association networks, biclusters discovered by the cMonkey algorithm 

(see below; Reiss et al., submitted) [8]. 

3. TIGR’s microarray expression viewer (TMev):  a popular tool for microarray analysis 

[12]. 

4. The R Goose: using Java-to-R  translation classes provided by RoSuDa the R Goose 

provides full access to the R statistical programming language and its many packages, 

including BioConductor [13]. 

5. Simple Bioinformatics Web Browser:  which provides easy access to web-based 

bioinformatics resources, e.g., KEGG, EMBL’s STRING, BioCyc [8, 14, 15]. 

 

Starting the Gaggle 

The Gaggle is often launched using Java Web Start [16] – a standard Java technology for 

launching programs from a single click in a web browser.  The Gaggle Boss and any number of 

geese may be set up, for example, as links on a laboratory’s web page, perhaps including shared 

laboratory data; any scientist can then launch the programs with a few mouse clicks.  With Java 

Web Start, each goose is downloaded from the web server the first time it is run; it then runs 

locally on one’s desktop computer like a standard installed program.  On every subsequent 

launch of the program, a fresh version is downloaded only if the program has been updated on 

the web server.  Web Start therefore simplifies distribution and maintenance of the Gaggle, and 

of shared data.  Java Web Start, however, is not with a requirement of the Gaggle; traditional 

installation and update procedures work fine as well. 

 

Supporting Other Programming Languages in the Gaggle 
Though Java is an excellent general purpose language, it is not the right tool for every job and 

many bioinformatics tools are written in other languages.  R [17, 18], for example, is the 

language of choice for statistics, C++ is preferred for applications in which speed is essential, 

and Python and Perl are scripting languages popular in the bioinformatics community.    Three 

strategies are available for accommodating these and other languages:  cross-language 

interoperability (using the Java Native Interface, JNI [19]), JVM-rehosting (i.e., Jython as a 

rehosted Python [20]), and web services (in which Simple Object Access Protocol [SOAP] [21] 

provides remote, language-neutral access to programs written in other languages). 

    We employ the first strategy (JNI) in the R goose.  The second strategy, JVM-rehosting, 

allows Python programs to join the Gaggle; we use the resulting Jython geese for prototyping 

and debugging.  Jython geese and the R goose are excellent tools for exploratory data analyses 

that require scripting. 



5 

Perl and C++ are not yet available directly within the Gaggle.  In order to use code 

written in these languages, a few possibilities exist:  either JNI ‘glue’ code must be written; the 

code must be made available as through SOAP as a web service; or the code must appear on the 

web behind a CGI interface. 

 

Software Design and Engineering 
The Gaggle’s design is based upon the classic software engineering strategies of separation of 

concerns [22], and parsimony, from which  we derived these specific prescriptions:  (1) use the 

fewest possible software elements, (2) keep each maximally ignorant of all others, (3) avoid 

biological semantics, (4) use mainstream programming languages, and only one such language if 

possible,  (5) avoid operating systems dependencies, (6) make sure that existing popular software 

and data formats are supported,  (7) place a priority on ease of installation and update.  These 

principles led us to choose the general purpose programming language Java, which has 

additional noteworthy features, including portability across operating systems, a  simple and 

robust inter-process communication (RMI, remote method invocation), and the means (JNI) to  

call programs written in other languages.  

Every program which runs in the Gaggle is a separate, stand-alone program.  A Gaggle 

Boss (also typically, but not necessarily, a stand-alone program) is always started first.  It 

provides a graphical interface to monitor and control the geese, and using RMI, the 

communications infrastructure.  Every goose, at startup, registers itself with the current boss.  

We use the traditional Java interface mechanism to specify both the extent to which each 

goose is aware of the boss and also the capabilities necessary for a program to become a full 

member of the goose.  A Java interface defines a type, without specifying how that type is 

implemented.  This common programming strategy allows for the separation of what an object 

must do, from how it does it.  In the Gaggle, for example, every gaggled program must provide a 

handleNameList method (which is called when a bunch of gene names are broadcast to it), but  

the actual implementation of this method will differ with every Goose. These are presented 

below, followed by detailed explanations of some typical implementations of key methods in 

these interfaces.  A full, compilable, and annotated listing of a minimal, functioning Goose will 

be found in the supplement. 

Java RMI is the linchpin of the Gaggle.  This standard Java component is a very 

sophisticated and robust technology for inter-process communication; fortunately, it is also very 

simple to use.  It works like this: after an initial lookup to obtain a reference to the remote object 

(a remote program) one program can subsequently call methods on that remote program just as if 

it were a local object.  In the Gaggle, we use RMI to broadcast data, and for housekeeping chores 

(i.e., to hide, show, or terminate specific geese, to get and set their names).  The four Gaggle data 

types (see above) are all serializable, which means that Java RMI can send ‘across the wire’ to 

the remote program, marshalling and demarshalling the data at each end.  The four data types are 

defined as Java classes, but all of them may be written to and read from disk in various formats, 

of which plain text and xml currently dominate.  Within a running gaggle, however, all of the 

data exists strictly as Java objects. 

The Gaggle defines two simple class interfaces (Boss and Goose), as well as  the four 

data types.  A Goose is an existing Java program adapted to run in the Gaggle; the adapation 

may be a plugin, a derived class, or an object added to the existing Java program. Only the  

methods listed below need to be implemented by every goose.  Since these methods – especially 



6 

in the prototyping stage – can be stubs (empty functions), the simplest adaptation of a program to 

the Gaggle can be very simple indeed, as illustrated below: 

 

Goose.java 

 
public interface Goose extends Remote   

  void connectToGaggle (); 

  void handleNameList (String species, String [] names); 

  void handleMatrix (DataMatrix matrix) throws RemoteException; 

  void handleMap (String species, String dataTitle, HashMap hashMap); 

  void handleCluster (String species, String clusterName, String [] rowNames, 

                      String [] columnNames); 

  void handleNetwork (String species, Network network); 

  String getName (); 

  void setName (String newName); 

  void doHide (); 

  void doShow (); 

  void doExit (); 

  … 

  } 

 

Let’s examine three representative Goose methods (again, see the supplement for a fully 

documented simple goose). 

 

connectToGaggle. This method looks up the address of the boss, registers itself with the boss, 

and receives a unique name in response.  (The goose has a preferred name, but if that name is 

already in use, the boss will make sure the returned name is unique.)   Henceforth the goose 

and the boss each have a reference to each other, and can communicate any of the messages 

specified in the other’s interface.  The crucial lines of code in this method are  

 
  boss = (Boss) Naming.lookup (“rmi://localhost/gaggle”); 
  myGaggleName = boss.register ((Goose) this); 

 

handleNameList.  Perhaps the most used Goose method.  When one goose broadcasts a list of 

names to another, this is the method which executes in the receiving goose. The full signature 

of the method is  

 
  handleNameList (String species, String [] names) 

 

where the ‘names’ denote entities (often genes) in the organism named in the ‘species’ 

variable.  In a typical implementation, i.e., in a network viewing program, this method would 

highlight all of the nodes whose names appear in the variable names. 

 

doHide:  This is an example of a Gaggle housekeeping method.  The boss calls this method on 

the goose, without additional arguments.  The goose that receives the message typically 

responds by calling mainframe.setVisible (false) on its outermost JFrame. 

 

Boss.java 
 

public interface Boss extends Remote { 



7 

  void String register (Goose goose); 

  void broadcast (String sourceGoose, String species, String [] names); 

  void broadcast (String sourceGoose, DataMatrix matrix); 

  void broadcast (String sourceGoose, String species, HashMap hashMap); 

  void broadcast (String sourceGoose, String species, String clusterName, 

                  String [] rowNames, String [] columnNames; 

  void broadcast (String sourceGoose, String species, Network network)  

  … 

  }   

 

In addition to the “boss.register” call shown above, a goose will make calls to one or more of the 

Boss broadcast methods.  The prototypical example here is that broadcast method which is 

overloaded for sending a list of names.   The full signature is 

 

 broadcast (String sourceGooseName, String species, String [] names); 

 

Here, sourceGooseName identifies the goose which initiated the broadcast, names are typically 

of genes or proteins of interest, and species identifies the organism from which the gene or 

protein names come.  One benefit for requiring the name of the goose initiating the broadcast 

(sourceGooseName) is that this allows the boss to avoid broadcasting back to the goose from 

which the broadcast originated. 

When the boss receives this message, the boss will rebroadcast the message to the other 

geese in the gaggle, calling handleNameList (species, names) on all listening geese (see 

Goose.java, above).  And thus we come full circle, broadcasting a list of names from the source 

goose, to the boss, and then to one or more destination geese.  This sequence of events, of 

course, is usually initiated by the biologist clicking a ‘broadcast’ button in a gaggled 

bioinformatics program in which some number of genes or proteins have been selected. 

Please not that, in the current implementation, the Boss is a standalone program, but it 

could easily be re-implemented as a part of some other program.  This might be attractive to a 

biologist with a favorite bioinformatics program to which they wish to add Gaggle capabilities. 

(A Cytoscape plugin, for example, could implement the Boss interface, and recreate the Boss 

user interface as a dedicated Cytoscape panel, thereby creating a Cytoscape-centric Gaggle.) 

  

Scalability of the Gaggle. 

(i) Adding new programs and web resources 

Many programs and web sites can be added to the Gaggle quite easily.  In every case, the ratio of 

software development time to bioinformatics benefit must be assessed; the benefits will often be 

worth the effort. Furthermore, although gaggling a program usually (not always) requires access 

to the source code, a lot of molecular biology software is open source, and a lot of it is written in 

Java.  The R Goose and TIGR MeV are prime examples:  these are popular and powerful 

software packages developed entirely independent of the Gaggle; each required only about a 

week of programmer time to adapt to the Gaggle.  

 

Specifically, adding a Java program to the Gaggle is straightforward: 

a. If the source code is available 

b. If the data structures to be broadcast or received in the prospective goose are roughly 

compatible with the four data types used in the Gaggle (name lists, networks, matrices, 

associative arrays). 



8 

 

As for any program, adding a website to the gaggle also runs the gamut, from easy to 

complicated to onerous.  The difficulty goes up when Javascript is used, if logins are required, if 

results are available only after substantial delay, and (especially) if the website undergoes 

frequent revision. 

 

A third kind of prospective goose is a non-Java program.  This will  

a. require an experienced Java programmer familiar with Java JNI, and 

b. separate development and compilation on each target operating system. 

Please note, however, that it is not unusual to find a Java JNI bridge already created for other 

programming languages and environments:  R, Python, Prolog, and Matlab, to mention a few. 

 

(ii) Performance 

With regard to run-time scalability:  since the Gaggle's purpose is first and foremost to facilitate 

interactive exploration of multiple data types, and since human-computer interaction with 

desktop software is not computationally intensive, even inexpensive computers can easily keep 

up with the typing and mouse operations of any user, and with the performance requirements of 

most individual software programs.  In typical use, the Gaggle user moves at a pace measured in 

seconds between the various gaggled programs, with only one program in the foreground at a 

time; all other gaggled programs are relatively inactive in the background, perhaps even swapped 

out into virtual memory.  Thus, the normal use of the Gaggle scales very nicely:  there is no 

practical limit to the number of relatively inactive programs which can reside in the background. 

In the worst case scenario, if a sophisticated Gaggle user should broadcast large matrices 

or networks to several different analytical programs at once, and if all of these are running on the 

desktop computer, a scaling problem might result.  But please note that this is not a problem with 

the Gaggle: this is the familiar problem of running too many simultaneous, computationally 

intensive tasks on a small computer.  This could be considered a limitation of the Gaggle only if 

it promotes a style of work that might lead the biologist to attempt these multiple tasks at once 

when they otherwise would not have done so.  If such situations were to arise and 

computationally intensive tasks start to swamp the desktop computer these tasks could be 

reconfigured to run on a server.  In the Gaggle's case, this familiar solution can be implemented 

easily through a lightweight goose, from which the biologist can monitor and control the remote 

computationally-intensive task. 
 

 

Results and Discussion 
 

Using the Gaggle we have integrated diverse databases (for example, KEGG, BioCyc, String) 

and software (for example, Cytoscape, DataMatrixViewer, R statistical environment, and TIGR 

Microarray Expression Viewer).  This loose coupling of diverse software and databases enables 

simultaneous exploration of experimental data (mRNA and protein abundance, protein-protein 

and protein-DNA interactions), functional associations (operon, chromosomal proximity, 

phylogenetic pattern), metabolic pathways (KEGG) and Pubmed abstracts (STRING web 

resource).  More importantly, the researcher can craft queries to explore these rich resources 

without any software constraints.  This is best demonstrated through the case study provided 

below. 



9 

 

A Case Study:  Exploring Pathogenesis in Helicobacter pylori 
We turn now to a demonstration of the Gaggle, where we explore diverse sets of publicly 

available data for Helicobacter pylori using a variety of bioinformatics software tools. The 

choice of an organism outside of our general expertise (which is the systems biology of archaeal 

organisms) is intentional; it demonstrates how data integration via software interoperability in 

the Gaggle can reveal, even to the relatively inexpert researcher, insights previously hidden from 

view.  We conclude the example by making several discoveries including identification of a 

protein functionally associated with flagellar biosynthesis proteins with a predicted three-

dimensional structure match to ebulin, a ricin-like toxin. 

The steps listed below reflect a possible thought process of a biologist and indicate logic 

behind his/her actions.  Moreover, this exercise exemplifies typical systems biology data 

exploration and analysis in the Gaggle.  Specifically, as in any real-world systems biology data 

exploration, this workflow contains frequent dead ends, reiteration of the same or similar 

analyses with different parameters, and exploration of additional data to support new findings. 

The H. pylori demo is available on the Gaggle website.   

In this example we make use of diverse types of data archived in different locations 

around the world:  Chromosome maps at BioCyc [15]; a local copy of publicly available mRNA 

data from Stanford microarray database [23]; functional associations from Prolinks [24]; protein-

protein interactions [25];  a local copy of a gene/protein annotation file from TIGR; metabolic 

pathways at KEGG [7] in Japan; and all Pubmed abstracts, and protein and DNA sequences 

through STRING [14] in Germany. The example also demonstrates the power of the Gaggle 

platform in enabling software interoperability, by including the DataMatrix Viewer (DMV) for 

exploring microarray data; JGR goose for statistical analysis using the ‘R’ package; and TMeV 

for clustering analysis of microarray data.  More importantly, it showcases how broadcasting no 

more than 4 messages types through the Gaggle boss can catalyze seamless integration of all of 

these data and software (screenshots shown in Fig 2).  

 

Step-by-step demonstration of Gaggle exploration of H. pylori systems biology data (see 

accompanying Fig 2 for details). 

The goal of this analysis was to identify genes functionally associated with cytotoxin-

associated genes of H. pylori. 
Step 1.   We searched for the term “cag” (short for ‘cytotoxin-associated gene’) in the 

“Annotation Search” tab of the Gaggle Boss, identifying 26 genes encoded in the H. 

pylori genome (The annotations were obtained from the Comprehensive Microbial 

Resource at TIGR (http://cmr.tigr.org). 

Step 2.   All records (Total 26 genes) retrieved in Step 1 were selected within the annotation tab. 

Step 3. The selected genes were broadcast to BioCyc [26], DMV (Johnson et al, submitted) and 

BiclusterView (see below, Reiss et al, submitted) (by selecting appropriate check boxes 

in the Gaggle Boss main panel).  Taking Route A, records matching the 26 genes were 

retrieved through a web query against the BioCyc database for Helicobacter pylori.  

Upon following links for individual records we learned more about genome 

organization of these genes (for example cag19 seems to be in an operon along with 

cag21, cag20 and cag18) and that all cag genes are encoded contiguously within an 

approximately 40Kbp pathogenicity island. 



10 

Step 4. After reviewing basic information for genomic organization of cag genes we took 

Route B to investigate relationships among them by exploring expression profiles in 

microarray data downloaded from the Stanford Microarray Database [27].  Route B 

begins with analysis of mRNA profiles for the 26 cag genes in the DMV; these genes 

were selected through a broadcast described in Step 3.  By clicking the “Plot Profiles” 

button we visualized the expression profiles for all cag genes within the DMV.  This 

indicated that the relationship among their expression profiles is complex and requires 

clustering analysis for proper evaluation. 

Step 5. Using the “Create New Matrix” feature of DMV a sub-matrix of the 26 cag genes were 

created within the DMV. 

Step 6. Subsequently all genes within this new sub-matrix were selected using the “Select All” 

feature. 

Step 7. To ensure uniformity in the expression data across conditions we decided to normalize 

the data (variance=1 and mean=0).  The selected sub-matrix was broadcast to JGR. 

This matrix was received as R-object m1 in JGR.  The data were then normalized to 

matrix nm using an R function (normalize). 

Step 8.   The normalized sub-matrix (nm) was broadcast (using command “broadcast (nm)” 

within JGR) to TMeV [12] for further analysis.  

Step 9. Expression profiles were clustered using the k-means algorithm (k=5, Euclidean 

correlation metric) within TMeV.  Upon viewing the 5 k-means clusters it was evident 

that whereas some cag genes, such as cag1, cag20, cag21 and cag26, had correlated 

profiles over almost all conditions, others (for example, cag2, cag11, cag12, cag15, 

cag24 and cag25) were correlated only under a subset of conditions.  This elevated the 

importance of using a more sophisticated clustering procedure such as cMonkey (Reiss 

et al, submitted), which identifies putative groups of genes co-regulated over a subset of 

conditions (biclusters) by simultaneously analyzing expression data, functional and/or 

physical associations, and de novo detected cis-regulatory motifs (Reiss et al, 

submitted).  We have developed a simple Cytoscape plug-in goose for filtering and 

exploring these biclusters (called BiclusterView), along with a PDF file viewer goose 

(called ClusterInfo) for viewing specific cluster information such as detected cis-

regulatory motifs. 

Step 10. Taking Route C, 19 biclusters containing pathogenicity genes (selected within the 

BiclusterView through a broadcast action described in Step 3) were sent to a new 

BiclusterView window (Ctrl + N).  12 of these biclusters shared metabolic processes 

and/or contained genes encoding physically interacting proteins, suggesting that these 

biclusters are functionally related.  Properties of all biclusters (expression correlation, 

conserved motifs etc.) were further explored by broadcasting them using the “broadcast 

node names” feature to the ClusterInfo application.  All biclusters were found to be of 

high quality and some contained a motif implicated in pH regulation (Reiss etal, 

submitted). 

Step 11. To further explore functional associations among the pathogenicity genes, all genes 

contained within the 19 biclusters were broadcast to the Cytoscape view of the H. 

pylori Prolinks [24] Network using the “Broadcast genes and conditions” feature within 

the BiclusterView Control panel. All selected nodes (263 genes) within the selected 

Prolinks subnetwork were sent to a new window (Ctrl + N) along with associated 

edges.  Altogether 203 genes within this network were interconnected through the 



11 

following relationships: 85 gene cluster edges, 13 gene fusion edges, 99 gene neighbor 

edges, 83 phylogenetic profile edges and 53 protein-protein interaction edges [24, 28].  

Viewing functions for these 263 genes in the GB annotation tab revealed that many 

complex functions are associated with the cag gene blicusters (Additional file 1) 

elevating the need for further analysis with KEGG and STRING (below). 

Step 12.  Finally, we broadcast all genes in the Prolinks sub-network to KEGG [7] and STRING 

[14] to explore metabolic pathways represented in these biclusters as well as literature 

containing co-occurrence of two or more genes in these 19 biclusters.  Altogether ~25 

pathways with three or more enzyme matches were retrieved from KEGG (Additional 

file 2) and ~927 publications were retrieved through STRING.  Within the abstract of 

these publications were co-occurrences of two or more genes from the 19 biclusters (or 

their orthologs in other organisms).  Given the large number of papers that were 

retrieved, we subsequently conducted repeated searches in STRING by broadcasting 

fewer numbers of genes at a time. In the section below we provide a synthesis of our 

findings. 

 

Summary of findings (Fig 3).  Using the Gaggle we were able to tease out from a complicated 

landscape of 6399 putative associations and physical interactions among 1539 genes, 57 

microarray conditions, 246 gene biclusters, and nearly 79 KEGG pathways a far more easily 

comprehensible picture from which to gain biological insight.  Specifically, in 12 steps we 

identified several previously known and also unknown relationships that could serve as tangible 

leads for future experimental investigation of H. pylori pathogenesis. 

Among the pathways containing the filtered set of 263 genes (Additional file 1) was an 

over-representation of major processes that have been previously implicated in aspects of 

pathogenesis such as peptidoglycan biosynthesis [29], lipopolysaccharide biosynthesis [30], 

flagellar biosynthesis [31], Type IV secretion [32] (Additional file 2, Fig 3).  Also present was an 

overrepresentation of enzymes for aa-tRNA synthesis, reductive carboxylate cycle, pyruvate 

metabolism, lysine biosynthesis, oxidative phosphoorylation and glycolysis/gluconeogenesis.  

Categorizing the 263 genes into these various pathways helped explore putative roles for proteins 

of unknown function (Additional file 1). 

Altogether 71 proteins associated with the cag gene biclusters were of unknown function.  

Among these unknown function proteins are four conserved secreted proteins including one 

protein (HP0028) linked through protein-protein interactions to Cag26 (CagA) – a key 

pathogenesis protein [33].  Another set of interesting unknown function proteins were HP1028 

and HP1029 connected via gene cluster (operon) edges to FliY and FliM – key flagellar switch 

proteins. Also present in this operon is an alternate sigma factor (σ
28

)
 
gene fliA which has been 

implicated in mediating transcription of FlaA (also present in the flagellar gene association 

network (Fig 3)), the major flagellar subunit required for both motility [34] as well as gastric 

colonization [35].  Note that co-expression analysis alone was not sufficient to find these 

relationships. Moreover, both functional associations and protein-protein interactions are 

notoriously noisy; however, our use of a combined analysis of all of these orthogonal data 

sources increases the likelihood that these relationships are real. 

To further explore putative functions of these key genes of unknown function, we 

retrieved their protein sequences (by broadcasting the genes to the STRING goose).  The protein 

sequences were manually submitted to Robetta, a structure prediction server [36]. Among the 

various proteins analyzed the most striking was the match of predicted three dimensional 



12 

structure of HP1028 to B-chain of ebulin (PDB: 1hwm), a ricin-like toxin.  Proteins with the 

conserved ricin domain are ribosome inactivating proteins widely distributed in plants, fungi, 

algae and bacteria.  This putative function for HP1028, coupled to its putative functional 

association with flagellar proteins, implicates it in a likely role in H. pylori pathogenesis.  In a 

similar manner, future functional exploration of additional unknown function genes in our 

candidate set (Additional file 1) will provide basis for discovery of potentially new candidate 

genes involved in pathogenesis of H. pylori. 

This case study illustrates the exploration of one set of heterogeneous data, using one 

particular combination of web resources and gaggled programs.  The flexibility of the Gaggle 

enables any other kinds of exploration, combining other kinds of data, employing other 

analytical programs and web resources, and using different analytical styles (emphasizing 

genomics, or statistics, or simulation).  In other words, a user can choose her/his style of data 

analysis through extensive trial and error operations using the Gaggle to layout a landscape of 

complex diverse data from which to tease out biological insights. 

 

Targeted users of the Gaggle.  Through the example above we illustrate how the Gaggle is 

designed to serve biologists at all points along the spectrum, from biologists who conduct most 

of their analyses using spreadsheets and web browsers to statistically savvy computational 

biologists who can write their own R code.  However, note that, with the exception of the R 

goose, all current programs in the Gaggle are point-and-click applications, and fully useful to the 

non-programming biologist.  Among these point-and click applications, are applications such as 

TIGR MeV [12], which provide the biologist quick access to a suite of statistical analysis tools.  

More importantly, although TIGR MeV development will continue independent of the Gaggle, 

users of the Gaggle will benefit from advances in this third party tool.  This exemplifies the 

benefit of coupling existing popular open source software.  As and when more popular software 

are developed we will make them part of the Gaggle. 

With the addition of the R goose, a new class of biological work is supported, through 

which even the most proficient R programmer may benefit from a collection of point-and-click 

geese, for instance, for the visual display of STRING associations, KEGG pathways, and 

Cytoscape networks, all with just a few mouse clicks. 

In our experience, there is yet a third class of biologists, who have no prior experience 

with R; but who use the Gaggle to explore their data with the point-and-click geese; and are also 

not opposed to using a few simple one-line R commands as long as they have a cribsheet to work 

from.  We provide this cribsheet on the Gaggle website and intend to populate it with useful 

commands that are clearly described from a biologist’s standpoint. Some of the commands in the 

cribsheet tell the user how to filter their data, normalize it, and find intersection and/or union 

between two matrices or gene lists.  

Thus, the Gaggle provides a setting in which point-and-click exploration may be gently 

expanded to include the sort of statistical data exploration, which is becoming indispensable in 

analyzing complex systems biology data.  In other words the Gaggle can be (and is currently) 

used both by novices to computational biology and also by high end statisticians familiar with R.  

thereby improving communication among collaborators of diverse expertise. 

 

Future Work 
In addition to the straightforward task of adding new geese to the Gaggle (for example, a goose 

for Gene Ontology annotation and for Robetta structure prediction), we also wish to add new 



13 

capabilities to existing geese.  For example, we plan to add simple scripting capabilities to the 

Boss, probably using Jython,  to support ‘goose pipelines’, in which the result from one goose 

may be automatically sent to another. Another ambitious goal currently planned is to add a 

unified ‘save state’ capability to the Gaggle, requiring (primarily) some extensions to each 

participating goose.  

 

Conclusion 
 

The Gaggle is a minimal, effective and open-ended system for integrating software and data 

sources used in systems biology analyses.  The Gaggle’s effectiveness comes from the 

recognition that four simple data messages each free of biological semantics, and a judicious use 

of the Java programming language, are all that is needed to integrate diverse types of data and 

software.   More importantly, the Gaggle is easily extensible and new software and databases can 

be easily converted into geese of the Gaggle with little effort.  This has advantage over other 

approaches which require tight coupling of software and databases and therefore extensive effort 

to integrate new resources into the framework.  This we emphasize is an important consideration 

because many valuable databases and software already exist and new resources are constantly 

emerging –if we are to take full advantage of all these existing and forthcoming resources 

without reformatting data or extensively reconfiguring those resources, we predict that a strategy 

such as the Gaggle will prove to be invaluable. 

 

Source Code and Gaggle Availability 
All of the Gaggle source code, and all of the geese mentioned in this manuscript, are available, 

with full documentation along with a growing number of ready-to-use “Gaggles” of model 

organisms on the Gaggle website.  

 

Authors’ Contributions 
 

PS  Conceived and initiated the project. Developed and implemented the method and the 

resultant computer program.  Wrote the manuscript. 

 

DJR Obtained and parsed out the relevant biological conditions in the H. pylori microarray data.  

Allowed access to pre-publication results of the cMonkey algorithm. 

 

RB  Obtained and parsed out the relevant biological conditions in the H. pylori microarray data.  

Allowed access to pre-publication results of the cMonkey algorithm. 

 

NSB Conceived and initiated the project. Provided direction, feedback on the quality of results, 

software design and crafted the case study.  Wrote the manuscript. 

 

 

Acknowledgements 
 

We thank Nat Goodman and Burak Kutlu for critical reading of the manuscript and helpful 

suggestions.  The work was funded through grants from NSF (EF-0313754) and DoE (DAAD13-

03-O-0057) to NSB. 



14 

 

1. Facciotti MT, Bonneau R, Hood L, Baliga NS: Systems Biology Experimental Design - 

Considerations for Building Predictive Gene Regulatory Network Models for 

Prokaryotic Systems. Current Genomics 2004, 5(7):527-544. 

2. Eckart JD, Sobral BW: A life scientist's gateway to distributed data management and 

computing: the PathPort/ToolBus framework. Omics 2003, 7(1):79-88. 

3. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T, Glover K, 

Pocock MR, Wipat A et al: Taverna: a tool for the composition and enactment of 

bioinformatics workflows. Bioinformatics 2004, 20(17):3045-3054. 

4. Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H, Gustafson S, 

Buetow KH: caCORE: a common infrastructure for cancer informatics. 

Bioinformatics 2003, 19(18):2404-2412. 

5. Gaggle: [http://gaggle.systemsbiology.org/]. 

6. Taylor JR: Cognitive Grammar. Oxford: Oxford University Press; 2002. 

7. Kanehisa M: The KEGG database. Novartis Found Symp 2002, 247:91-101; discussion 

101-103, 119-128, 244-152. 

8. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski 

B, Ideker T: Cytoscape: a software environment for integrated models of 

biomolecular interaction networks. Genome Res 2003, 13(11):2498-2504. 

9. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, 

Bray D, Cornish-Bowden A et al: The systems biology markup language (SBML): a 

medium for representation and exchange of biochemical network models. 

Bioinformatics 2003, 19(4):524-531. 

10. Wilkinson MD, Links M: BioMOBY: an open source biological web services 

proposal. Brief Bioinform 2002, 3(4):331-341. 

11. BioPAX: [http://www.biopax.org]. 

12. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier 

T, Thiagarajan M et al: TM4: a free, open-source system for microarray data 

management and analysis. Biotechniques 2003, 34(2):374-378. 

13. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier 

L, Ge Y, Gentry J et al: Bioconductor: open software development for computational 

biology and bioinformatics. Genome Biol 2004, 5(10):R80. 

14. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen 

MA, Bork P: STRING: known and predicted protein-protein associations, integrated 

and transferred across organisms. Nucleic Acids Res 2005, 33(Database issue):D433-

437. 

15. Krummenacker M, Paley S, Mueller L, Yan T, Karp PD: Querying and computing with 

BioCyc databases. Bioinformatics 2005, 21(16):3454-3455. 

16. JavaWebstart: [http://java.sun.com/products/javawebstart/]. 

17. R_Statistical_package: [http://www.r-project.org]. 

18. RoSuDA: [http://www.rosuda.org/JGR]. 

19. JNI: [http://java.sun.com/j2se/1.5.0/docs/guide/jni/]. 

20. Jython: [http://www.jython.org/]. 

21. SOAP: [http://www.w3.org/TR/soap/]. 

22. Parnas DL: On the Criteria To Be Used in Decomposing Systems into Modules. 

Communications of the ACM 1972, 15(12):1053-1058. 



15 

23. Stanford_microarray_database: [http://genome-www5.stanford.edu/]. 

24. Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D: Prolinks: a 

database of protein functional linkages derived from coevolution. Genome Biol 2004, 

5(5):R35. 

25. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, 

Wojcik J, Schachter V et al: The protein-protein interaction map of Helicobacter 

pylori. Nature 2001, 409(6817):211-215. 

26. Karp PD, Paley S: Integrated access to metabolic and genomic data. J Comput Biol 

1996, 3(1):191-212. 

27. Ball CA, Awad IA, Demeter J, Gollub J, Hebert JM, Hernandez-Boussard T, Jin H, 

Matese JC, Nitzberg M, Wymore F et al: The Stanford Microarray Database 

accommodates additional microarray platforms and data formats. Nucleic Acids Res 

2005, 33(Database issue):D580-582. 

28. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, 

Wojcik J, Schachter V et al: The protein-protein interaction map of Helicobacter 

pylori. Nature 2001, 409(6817):211-215. 

29. Costa K, Bacher G, Allmaier G, Dominguez-Bello MG, Engstrand L, Falk P, de Pedro 

MA, Garcia-del Portillo F: The Morphological Transition of Helicobacter pylori Cells 

from Spiral to Coccoid Is Preceded by a Substantial Modification of the Cell Wall. J 

Bacteriol 1999, 181(12):3710-3715. 

30. Moran AP: The role of lipopolysaccharide in Helicobacter pylori pathogenesis. 

Aliment Pharmacol Ther 1996, 10 Suppl 1:39-50. 

31. Kostrzynska M, Betts JD, Austin JW, Trust TJ: Identification, characterization, and 

spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacteriol 

1991, 173(3):937-946. 

32. Suerbaum S, Michetti P: Helicobacter pylori infection. N Engl J Med 2002, 

347(15):1175-1186. 

33. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS: Altered states: involvement of 

phosphorylated CagA in the induction of host cellular growth changes by 

Helicobacter pylori. Proc Natl Acad Sci U S A 1999, 96(25):14559-14564. 

34. Josenhans C, Labigne A, Suerbaum S: Comparative ultrastructural and functional 

studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both 

flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter 

species. J Bacteriol 1995, 177(11):3010-3020. 

35. Eaton KA, Suerbaum S, Josenhans C, Krakowka S: Colonization of gnotobiotic piglets 

by Helicobacter pylori deficient in two flagellin genes. Infect Immun 1996, 64(7):2445-

2448. 

36. Chivian D, Kim DE, Malmstrom L, Bradley P, Robertson T, Murphy P, Strauss CE, 

Bonneau R, Rohl CA, Baker D: Automated prediction of CASP-5 structures using the 

Robetta server. Proteins 2003, 53 Suppl 6:524-533. 

 

 



16 

FIGURE LEGENDS 
 

Figure 1.  A simple introductory example for use of Gaggle.  A set of genes (circular nodes 

with edges represents associations/interactions) selected in Cytoscape (A) are broadcasted to the 

Gaggle Boss (B).  The Gaggle Boss re-routes the broadcast to a Java web browser connected to 

KEGG (C), further exploration wherein localizes H. pylori proteins to relevant subunits in the 

flagellar apparatus map.  A second goose that receives the broadcast is the DMV (D).  A plot 

function therein provides mRNA levels of the 15 H. pylori genes in 57 experimental conditions. 

 

Figure 2.  Workflow used in Gaggle for exploration of H. pylori pathogenesis (see text for 

details).  The exploration begins with the Gaggle Boss (GB).  All steps (mouse clicks) are 

indicated by arrows alongside numbers (both in black and red font) that correspond to sequence 

of actions.  Black numbers indicate actions within a goose; red arrows and numbers (enclosed in 

red circles) indicate “Broadcast” actions with corresponding red numbers (not enclosed in 

circles) indicating transmission of data from one goose to another (implicitly through the GB).  

The three watermark arrows in (A) green, (B) red and (C) grey provide sequence and paths of 

exploratory routes. 

 

Figure 3.  Annotated prolinks network view of 263 genes identified to be putatively 

functionally associated with one or more of the 26 cytotoxin-associated cag genes in H. 
pylori. This filtered network was obtained through selection of genes in biclusters of putatively 

co-regulated containing one or more cag gene(s).  The cag genes are indicated with pink node 

borders.  See inset keys for description of node and edge coloring. 

 

 

 

 



A.  Cytoscape (Associations/interactions)

B.  Gaggle Boss

C.  KEGG (Pathways)

D. DMV (Data matrices)

Figure 1





hydc

HP0506

HP0656

chea

hype

lig

sms

hyda

rpl17

rfae

HP0861

lgt

dxs

HP0272

hemc

pbp2

invA

czca

HP0553
copa

HP1054

lepa

HP0248

cag9

ylxh

metl

virB11

acca

HP1459

murc

ymxg

cag12

HP1430

gatb

cag5

hypb
ftsh

flaA

trmd

HP1230

tyra

flhf

dead

tsf

HP0659

HP1043

HP1029

HP0258

HP1450

pura

HP0650

cag26

HP0956

biob

omp30

HP0249

HP0944

HP1122

ftsk

aspb

dapd

msra

pfr

HP0655

cag8

HP0860

HP0654

nccb

HP0920

cag7

dnae

gata

HP0933

lyss

holb

HP0554

glmu

hydb

prfa

HP0739

rps2

atpg

sodb

tage

tage

HP0734

mure

tena

ispa

gcpe

HP0334

HP0591

yaee

kpsf

HP0715

secy

mreb

rpoa

HP0971

cyss

HP1028

tdhf

HP1056HP0552

rlpa

HP0271

omp29

cag23

dpra

folc

map

flia

icd

HP0660

pros

fliy

HP0028

flha

pssa

omp5

rps1

HP1350

HP0707

ccda

HP1044

uvrc

aroc

lon

murg

HP1055

ribe

folp

HP1546

clpb

abc

omp9

flim

murf

thrs

lysc

omp2

dnaa

dada

pbp-1a

accd

HP0374 muty HP1443

mod

HP1184

napa

HP0964

HP0938

HP0267
HP0268

dnak

HP1588

atpf

atpf'

HP0518

HP0274

HP0487 HP1486 wbpb HP1143

exbb

exbd

pgm

HP1345

HP0983

HP1033

HP1513

HP0840

ompp1

cag16

prma

aroq

HP0150

HP1037

hypa

pgi

HP0105

metb

HP1490

nth

HP0586

HP0419

args

HP0508

glcd

algc

ibpb

rfac

nqo13

nqo14

xsea mod HP1553 HP0369

bacterioferriti

HP1100

ilvc

eda

HP0668 lexa htpg HP0492 HP1288 cag25

HP1455

lpp20

HP0466

HP0759

HP0757

HP0758

pepa fic HP0469 acoe HP1392

llm

fla

fixo HP0310

HP1462

cag21 rbfa HP1109 HP0112 HP1049 kefb cad HP0568 HP0863 HP0746 HP1111 HP1165 tils fumc HP1568 HP0190 HP0322 prtc dhs1 HP1322 HP0114 ribdtsaa

Flagella/chemotaxis

Outer membrane proteins

hydrogenase (and related functions)

superoxide
dismutase

Invasion protein

collagenase

Predicted Ricin-like
protein

FlgM

FliA

Key regulators
of flagellar 
biogenesis

uracil-DNA 
glycosylase

Gene Cluster

Gene Neighbor

Gene Fusion

Phylogenetic Profile

Protein-protein Interactions

Peptidoglycan biosynthesis

Folate biosynthesis

LPS biosynthesis

Lysine biosynthesis

Oxidative phosphorylation

Ion efflux/Metal and drug resistance

DNA replication and repair/protease

Aminoacyl tRNA synthase

Type IV secretion

Figure 3



 
 
Additional files provided with this submission: 

Additional file 3 : Supplementary_Text_programming_examples.pdf : 112Kb 
http://www.biomedcentral.com/imedia/4820689799378855/sup3.PDF 

Additional file 2 : Supplementary _Table_ST2.pdf : 115Kb 
http://www.biomedcentral.com/imedia/2252516379378841/sup2.PDF 

Additional file 1 : Supplementary _Table_ST1.pdf : 39Kb 
http://www.biomedcentral.com/imedia/1884377247937873/sup1.PDF 


