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Interpreting data from large-scale protein interaction experiments
has been a challenging task because of the widespread presence of
random false positives. Here, we present a network-based statis-
tical algorithm that overcomes this difficulty and allows us to
derive functions of unannotated proteins from large-scale inter-
action data. Our algorithm uses the insight that if two proteins
share significantly larger number of common interaction partners
than random, they have close functional associations. Analysis of
publicly available data from Saccharomyces cerevisiae reveals
>2,800 reliable functional associations, 29% of which involve at
least one unannotated protein. By further analyzing these associ-
ations, we derive tentative functions for 81 unannotated proteins
with high certainty. Our method is not overly sensitive to the false
positives present in the data. Even after adding 50% randomly
generated interactions to the measured data set, we are able to
recover almost all (�89%) of the original associations.

A large number of genes discovered in sequencing projects
remain functionally unannotated, motivating significant

research in postgenomic biology. High-throughput experiments
such as genomewide monitoring of mRNA expressions and
protein–protein interaction networks are expected to be fertile
sources of information for deriving their functions (1–7). How-
ever, a high rate of false positives (8, 9) and the sheer volume of
the data are making reliable interpretation of these experiments
difficult.

In this work, we are able to overcome these difficulties by
using a network-based statistical method that forms reliable
functional associations between proteins. Our method ranks
the statistical significance of forming shared partnerships for
all protein pairs in the interaction network and shows that if
two proteins share significantly larger number of common
partners than random, they have close functional associations.
We derive �2,800 pairs of high-quality associations for Sac-
charomyces cerevisiae involving 852 proteins in the Supporting
Text, which is published as supporting information on the
PNAS web site, www.pnas.org. The method is not overly
sensitive to the false positives widely present in the two-hybrid
data. Even after adding 50% randomly generated interactions
to the measured data set, we are able to recover almost all
(�89%) of the original associations. Clustering of these asso-
ciations reveals the modular nature of the interaction network
(10). From the derived modules, we are able to predict
functions for 81 unannotated proteins with high certainty. It
has been an encouraging sign that the functions of some of
these proteins were recently annotated by the Saccharomyces
Genome Database (11) from other sources after the comple-
tion of our work, and all but one (22 of 23) of our predictions
proved to be correct.

Our strategy of assigning statistical significance is to compare
the measured protein interaction network with a random net-
work of the same size (12–14). The deviation of the measured
network from randomness is presumed to reflect its biological
significance. Nonrandom nature of the large-scale protein in-
teraction network has been discussed in earlier work (12, 14, 15).
In one example, it was observed that the connectivities of the

proteins in the measured interaction networks closely followed
a power-law distribution instead of the exponential distribution
expected from random networks (9, 12, 14, 15). Useful biological
prediction regarding the lethality of the null mutants lacking
those highly connected proteins could be made from such
nonrandom behavior (12).

Materials and Methods
We hypothesize that if two proteins have significantly larger
numbers of common interaction partners in the measured data
set than what is expected from a random network, it would
suggest close functional links between them. To validate this
hypothesis, we rank all possible protein pairs in the order of their
probabilities for having the experimentally measured number of
common interaction partners by using the probability expression
derived below. If the computed probability is extremely small, it
signifies that the chosen protein pair has an unusually large
number of common partners. Such pairs are considered for
further analysis, as we discuss.

Mathematical Expression for Probability. To compute the P value,
we count the number of distinct ways in which two proteins with
n1 and n2 interaction partners have m in common. We divide the
whole set of partners of the two proteins into three nonover-
lapping groups: (i) m common protein partners that interact with
both protein 1 and 2; (ii) n1 � m partners that interact only with
protein 1; and (iii) n2 � m partners that interact only with protein
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Fig. 1. In our clustering algorithm, we start with a matrix with P values for
all pairs. If the element (m, n) has the smallest P value, a cluster is formed with
proteins m and n. Therefore, rows�columns m and n are merged with new P
value of the merged row�column as geometric mean of the separate P values
of the corresponding elements.
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2. We count the total number of distinct ways of assigning these
three groups to N proteins. This is given by

�N
m� �N � m

n1 � m� �N � n1

n2 � m� . [1]

The first factor is the number of ways to choose the first group
from all N proteins. The second term counts the number of ways
of choosing the second group from the N � m proteins. Similarly,
the third term is for choosing the third group from the remaining
N � n1 proteins.

Therefore, the P value is

P�N, n1, n2, m�

�

�N
m� �N � m

n1 � m� �N � n1

n2 � m�
�N

n1
� �N

n2
�

�
�N � n1�!�N � n2�!n1!n2!

N!m!�n1 � m�!�n2 � m�!�N � n1 � n2 � m�!
, [2]

where �m
N� �

N!
m!�N � m�!

. The denominator is the total number

of ways for the two proteins to have n1 and n2 interaction partners
regardless of how many are in common. The above expression is
symmetric with respect to interchange of n1 and n2.

For the calculations in our article, the results remain approx-
imately the same, whether we compute the probabilities for pairs
with exactly m common partners or we compute for m or more

Fig. 2. Probabilities of associations for all possible protein pairs derived by
using our method. Solid black line: measured protein interaction network
(16); broken line, a random network of similar size constructed by connecting
randomly chosen nodes; dotted line, a random network constructed from the
measured network keeping its power-law connectivity property unchanged
(14). The probabilities of associations for the measured network are up to 40
orders of magnitude lower than the random networks.

Fig. 3. Functional modules obtained by clustering the low-probability asso-
ciations by using an algorithm described in our article. All proteins from each
of these derived modules belong to the same functional complexes. (a)
Polymerase II transcription mediator complex. (b) Chaperon ring complex. (c)
Nuclear pore complex. (d) Oligosaccharyl transferase complex. (e) Arp2�3
complex. ( f) ATP synthase complex. The complete list of modules is provided
in Table 5, which is published as supporting information on the PNAS web site
(see Supporting Text).

Table 1. The 10 protein pairs with the lowest probabilities based
on our method, along with their functions

Protein 1 Protein 2 Log(p) Function

MYO3 MYO5 �47.41 Class I myosins
ROX3 SRB6 �46.12 Mediator complex
KRR1 PWP2 �45.50 snoRNA complex
ROX3 MED2 �44.94 Mediator complex
MED2 SRB6 �42.19 Mediator complex
ATP1 ATP2 �42.17 ATP complex
KAP95 SRP1 �41.25 Protein import-export
PRE1 RPN10 �40.58 Spliceosome complex
YKR081C YNL110C �40.33 Both unannotated
RPT1 RPN6 �40.07 Spliceosome complex

We find both of the proteins in these pairs to belong to either the same
complexes or the same functional pathways. The complete list is provided in
Table 6, which is published as supporting information on the PNAS web site
and on our web site (www.nas.nasa.gov�bio).

Table 2. Top associations of unannotated protein YKL059C

Associations of YKL059C Log(p)

CFT2[T] �32.430607
CFT1[T] �30.151475
YSH1[T] �28.320081
PTA1[T] �27.843331
PAP1[T] �27.410048
REF2[T] �25.048611
PFS2[T] �24.638901
YTH1[T] �23.247919
FIP1[T] �21.609526
HCA4[T] �21.285573
YGR156W[U] �17.961537
RNA14[T] �17.732432
SWD2[U] �14.407007
GLC7[C] �13.284243
YOR179C[T] �12.636400
PCF11[T] �8.857110

Categories: T, transcription; U, unannotated protein; C, cellular fate�orga-
nization. Most of the associations of YKL059C are involved in transcription and
therefore it is expected to do the same. From its very low probabilities of
associating with CFT1 and CFT2, it is strongly suspected to be involved in
pre-mRNA 3� end processing. Our web site (www.nas.nasa.gov�bio) provides
an interactive tool to search for the associates of any protein.
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partners. It can be checked from the expression of probability in
Eq. 2 that probability terms for increasing m fall inversely with
N. Since N for our case is �5,000, the additional terms in the
probability expression are negligible.

Clustering Technique. Our clustering method is as follows. We
compute P values for all possible protein pairs and store them in
a matrix. Then we pick the protein pair with the smallest P value
and choose it as the first group in the cluster. The rows and
columns for these two proteins are merged into one row and one
column (Fig. 1). Probabilities for this new group are geometric
means of the individual probabilities [or arithmetic means of the

log(P) values]. The process is continued repeatedly, thus adding
more and more clusters or making the existing ones bigger, until
a chosen threshold is reached.

Results
The described method is applied on the available experimental
data from budding yeast (S. cerevisiae) collected in the DIP
(Database of Interacting Proteins) database from several
sources (16). The September 1, 2002, update of the DIP data set
containing 14,871 interactions for 4,692 proteins is used. In Fig.
2, we show a plot with probabilities for all protein pairs in the
network sorted in increasing order. For comparison, we also

Table 3. Predicted functions of previously unannotated proteins

Protein Predicted function

YFR024C-A (YSC85), YHR114W (BZZ1)*, YNL094W (APP1), YMR192W (APP2) Actin filament organization
YGR268C (HUA1), YOR284W (HUA2), YPR171W (BSP1) Actin patch assembly
YJR083C (ACF4) Actin cytoskeleton organization and biogenesis
YDR036C (EHD3) Protein biosynthesis in mitochondrial small ribosomal subunit
YKL214C (YRA2)* mRNA processing�RNA metabolism
YNL207W (RIO2) Nucleolar protein involved in 40S ribosomal biogenesis
YLR409C (UTP21), YKR060W (UTP30), YGR090W (UTP22), YER082C(UTP7)*,

YJL069C(UTP18)*, YBR247C (ENP1)
Associated with U3 snoRNA and 20S rRNA biosynthesis

YMR288W (HSH155)* snRNA binding involved in mRNA splicing
YHR197W (RIX1), YNL182C (IPI3), YLR106C (MDN1)* Ribosomal large subunit assembly and maintenance
YGR128C (UTP8)* Processing of 20S pre-rRNA
YGR215W (RSM27)*, YGL129C (RSM23)* Structural constituent of ribosome
YDL213C (NOP6) rRNA processing�transcription elongation
YNL306W (MRPS18)* Mitochondrial small ribosomal subunit
YPR144C (UTP19), YDL148C (NOP14)*, YLR186W (EMG1), YJL109C (UTP10)*,

YBL004W (UTP20)
snoRNA binding, 35S primary transcript processing

YGL099W (LSG1)*, YDR101C (ARX1) 27S pre-rRNA ribosomal subunit
YOL077C (BRX1), YOR206W (NOC2), YNL135C (FPR1) Biogenesis and transport of ribosome
YOR145C (DIM2) 35S Primary transcript processing and rRNA modification
YEL015W (DCP3) Deadenylation dependent decapping and mRNA catabolism
YDL002C (NHP10), YLR176C (RFX1)* Modification of chromatin architecture�transcription
YDR469W (SDC1)* Chromatin silencing and histone methylation
YPL070W (MUK1) Transcription factor (or its carrier)
YLR427W (MAG2) DNA N-glycosylase involved in DNA dealkylation
YDL076C (RXT3), YIL112W (HOS4) Histone deacetylase complex involved in chromatin silencing
YNL265C (IST1) Trancription initiation factor
YLR192C (HCR1)* Translation initiation as part of elF3 complex
YDL074C (BRE1) Chromosome condensation and segregation process
YGR156W (PTT1)*, YKL059C (MPE1)* mRNA cleavage and polyadenylation specificity factor
YGR089W (NNF2) Chromosome segregation (spindle pole) and mitosis
YGL161C(YIP5), YGL198W (YIP4) Vescicle mediated transport
YPL246C (RBD2), YJL151C (SNA3), YGL104C (VPS73) [20], YKR030W (MSG1) Cell wall synthesis�protein-vacuolar targeting
YBR098W (MMS4) Golgi to endosome transport and vescicle organization
YHR105W (YPT35) Golgi to vacuolar transport
YBL049W (MOH1), YCL039W (MOH2) Both same function. Possibly linked with vacuolar transport
YDL246C (SOR2) Possibly involved in fructose and mannose metabolism
YMR322C (SNO4) Pyridoxine metabolism
YDR430C (CYM1) Protein involved in pyurvate metabolism
YJL199C (MBB1), YPL004C (LSP1), YGR086C (PIL1) Metabolic protein
YLR097C (HRT3) Nuclear ubiquitine ligase
YKR046C (PET10) ATP�ADP exchange
YEL017W (GTT3) Protein linked with glutathione metabolism
YGL133W (ITC1) Chromatin remodeling
YGR161C (RTS3) Protein phosphatase 2A complex
YOR144C (EFD1) DNA replication and repair
YML117W (NAB6) Nuclear RNA binding
YLR432W (IMD3) RNA helicase involved in mRNA splicing
YKL095W (YJU2), YGR278W (CWC22), YDL209C (CWC2)* Spliceosome complex involved in mRNA splicing
YGR232W (NAS6)*, YGL004C (RPN14), YLR421C (RPN13)* Proteasome complex

*These proteins recently were annotated in the Saccharomyces Genome Database. Except for LSG1, all other predictions provided to be correct.
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show corresponding probabilities for a random network of
similar size and a randomized version of the measured network.
The random network has the same number of nodes and edges
as the measured network, but the connections are made from a
uniform distribution. The randomization of the experimental
network is done by using a method similar to ref. 14. The method
allows us to maintain the power-law nature of the network. As
we observe from the plot, the probabilities of some of the
associations in the measured network are up to 40 orders of
magnitude lower than both of the randomly constructed net-
works. Therefore, it is safe to conclude that those associations
are not artifacts caused by experimental noise, but contain
biologically meaningful information. It is also clear from the plot
that such low probability associations did not arise from the
scale-free nature of the network (12).

To understand what biological information is provided by such
low-probability pairs, we inspect all pairs with probabilities
below a cutoff value of 10�8.† The detailed list is provided on our
web site, www.nas.nasa.gov�bio. The group consists of 2,833
protein pairs involving 852 proteins. A strong functional link is
observed among proteins in these pairs, thus validating our
hypothesis. This is illustrated in Table 1, where we present the
10 pairs with the lowest probabilities. As we can see from Table
1, both proteins usually either belong to the same complex or are

parts of the same functional pathway. The same trend is generally
true for the larger data set presented in Table 6. By manually
inspecting the top 100 pairs, we found that in �95% of them both
proteins have similar function.

We can take advantage of the above observation to predict the
functions of the unannotated proteins. About 29% of the 2,833

†Since the data set contains N � 4,692 proteins, 1�N2 � 10�8 is a reasonable cutoff. The
number is validated by more rigorous comparison with the random network shown in Fig.
2. However, this is not a sharp threshold as we discuss in more detail. Therefore, we present
pairs up to 2 �10�4 on our web site at www.nas.nasa.gov�bio.

Fig. 4. A module identified by our method consisting of proteins presumably
involved in assembly and maintenance of small nucleolar ribosomal complex.

Fig. 5. A module identified by our method consisting of proteins presumably
involved in actin cytoskeleton organization and protein vacuolar transport.

Table 4. Associations derived by us that were also ancient
paralogs according to ref. 19

Protein 1 Protein 2 Ranking

MYO3 MYO5 1
GIC1 GIC2 72
TIF4632 TIF4631 145
NUP100 NUP116 476
HSC82 HSP82 485
ZDS1 ZDS2 564
PPH21 PPH22 579
KCC4 GIN4 606
RFC3 RFC4 634
CLN1 CLN2 918
GSP2 GSP1 1,288
YPT32 YPT31 1,550
BOI1 BOI2 1,640
SEC4 YPT7 1,785
YPT53 VPS21 1,888
BMH1 BMH2 1,920
PCL7 PCL6 1,926
YGR010W YLR328W 2,162
MYO4 MYO2 2,474
SAP190 SAP185 2,721
MKK1 MKK2 2,725
IMD4 YLR432W 2,746

The third column represents the ranking for the pairs in the list of associ-
ations sorted according to increasing probabilities. The list is also available in
Table 6 (see Supporting Text).
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chosen pairs contain at least one unannotated protein.‡ To assign
a function to any one of them, we determine the other proteins
with which it forms associations. As an example, in Table 2 we
show that the unannotated protein YKL059C shares partners
with many proteins involved in transcription. Therefore, it is
most likely also involved in transcription. Moreover, from the
low probabilities of associations with CFT2 and CFT1, we
strongly suspect that that YKL059C is involved in pre-mRNA 3�
end processing. This notion is further confirmed by the clustering
method that we present below. Our web site (www.nas.nasa.gov�
bio) provides an interactive tool for users to search for the close
associates of any query protein and thus derive its putative
function.

Since functionally related proteins form strong associations
with each other, this can be used as the basis for an algorithm to
cluster them into functional modules. We derive 202 modules
(Table 5 and Supporting Text) from the associations and then
compare the annotations of constituent proteins. A total of 163
of the derived modules have all proteins annotated in the
Saccharomyces Genome Database (11), and we find 149 of them
(�92%) to have all members of the module from the same
functional complex or pathway. Therefore, if an unannotated
protein belongs to the same module with other proteins of
known functions, we can predict its function to be the same as
the other ones with high confidence. By analyzing the derived
modules, we predict functions for 81 unannotated proteins and
present them in Table 3.

Discussion
We note that the chosen cut-off value (10�8) is not a sharp
threshold. As the number is increased, the amount of biologically
meaningful information degrades gradually. In the case of the
modules, their numbers and sizes increase with increasing cut-
off. As an example, for the well-studied mediator complex shown
in Fig. 3a, as we increase the cut-off value, more proteins known
to be part of the complex come together. We find that even with
a cut-off as high as 2 � 10�4, the proteins included in the
mediator module are genuinely related to the complex (see
Supporting Text and Fig. 6, which is published as supporting
information on the PNAS web site). In our web site (www.nas.
nasa.gov�bio) we present an interactive program that allows
users to choose different cut-off values and obtain the corre-
sponding modules. Among the additional modules derived with
higher threshold, we find two that contain mostly unannotated
proteins and therefore are possibly large complexes not yet well

studied by experimentalists. One of them is suspected to be
involved in actin cytoskeleton organization and protein vacuolar
targeting and the other one in splicing, rRNA processing, and
small nucleolar RNA processing. We present them in Figs. 4 and
5, expecting their identification to spur additional interest among
yeast biologists.

The method presented here has several advantages. First, it is
not sensitive to random false positives. To verify, we added
connections randomly without changing the power-law nature of
the network (14). Even after increasing the average number of
interactions by 50%, we were able to recover 89% of the top
2,833 associations. The probability values for the associations
went down in the noisy network, but their relative order did not
change significantly. Second, the method is not biased by the
number of partners a protein has. As an example, JSN1, a nuclear
pore protein, has the largest number of interactions in the
measured data set, but none of the 2,833 associations derived by
our method contains JSN1 (see Supporting Text and Fig. 7, which
is published as supporting information on the PNAS web site).
Among the drawbacks, our method may not uncover all of the
functions for the proteins, including some multidomain proteins
conducting many different functions in the cell (17). However,
for the large group of still unannotated proteins, our predictions
can be a good starting point to motivate further experiments.

Wolfe and Shields (19) proposed the possibility of duplication
of the entire yeast genome in some distant past and presented a
list of genes that were identical or matched closely because of this
event. We checked how many of the associations derived by us
are also such ancient paralogs and present them in Table 4. We
find 22 such ancient paralogs among the list of top 2,833 pairs
(0.7%). Therefore, these are the ancient paralogs that main-
tained their functions over time.

In conclusion, we derived functional modules and reliably
predicted functions of unannotated proteins from the existence
of abnormally large number of shared interaction partners in the
protein–protein interaction network. We believe the real power
of the method will be in studying the higher eukaryotes, where
the higher fraction of genes has unknown functions. Moreover,
the method is applicable to other forms of networks, such as the
internet, metabolic networks, social networks, and predator-prey
networks.
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