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We investigated the organization of interacting proteins and
protein complexes into networks of modules. A network-clustering
method was developed to identify modules. This method of
network-structure determination was validated by clustering
known signaling-protein modules and by identifying module ru-
diments in exclusively high-throughput protein-interaction data
with high error frequencies and low coverage. The signaling
network controlling the yeast developmental transition to a fila-
mentous form was clustered. Abstraction of a modular network-
structure model identified module-organizer proteins and module-
connector proteins. The functions of these proteins suggest
that they are important for module function and intermodule
communication.

Protein molecules bind to each other to form stable complexes
that often can be purified. At a higher level of structure,

proteins and protein complexes interact with preferred partners
weakly, transiently, or conditionally to form a biological module
serving a specific collective function (1). For example, a MAPK
(mitogen-activated protein kinase) cascade, together with its
scaffold proteins and various regulators and effectors, forms a
signal-amplification module. As another example, a spindle-pole
body is a consortium of protein complexes that form a hub for
the attachment and organization of microtubules. Driven by the
acquisition of whole-genome-scale data sets from complex bio-
logical systems, our conception of biomolecular organization is
evolving from metabolic and signaling pathways to networks of
evolutionarily conserved modules (2–4).

With the abundance of protein–protein interaction data pro-
duced by genome-scale efforts (5–9), it is possible to create a
global representation of the protein-interaction network of the
yeast cell (4–6). This network has been shown to have a
nonrandom power-law distribution of node connectivity (num-
ber of interactions of each protein) and a low frequency of direct
connections between high-connectivity nodes (10). These ob-
servations suggest modular organization consistent with the
insights of biologists (1). Various methods of network clustering
have been developed and applied to identify modules in various
biological systems, including a genomic cooccurrence network
(11), a food web (12), and the Escherichia coli metabolic network
(13). We developed and evaluated a network-clustering method
using the modular network of yeast signaling proteins. In addi-
tion, we identified modules in an interaction network consisting
of exclusively mass-produced data with very low coverage and
very high false-positive frequency. Moreover, we integrated
functional gene-identification data with protein–protein inter-
action data to provide a modular abstraction of the organization
of a complex network controlling a biological response.

Materials and Methods
Network Clustering. For each biological network investigated,
vertices (relevant proteins) and edges (protein–protein interac-
tions among them) were assembled as described in the text. Each
edge in the network was assigned a length of 1. An all-pairs-
shortest-path distance matrix was calculated by using standard
algorithms. The all-pairs-shortest-path matrix contains the
length of the shortest path (distance) between every pair of
vertices in the network. Each distance in the all-pairs-shortest-
path matrix was transformed into an ‘‘association,’’ defined as

1�d2, where d is the shortest-path distance. This transformation
emphasizes local associations (short paths) in the subsequent
clustering. The resulting associations range from 0 to 1. The
association of a vertex with itself was defined as 1. The associ-
ation of vertices that have no connecting path was defined as 0.
Hierarchical agglomerative average-linkage clustering with the
uncentered correlation coefficient as the distance metric (14)
was applied to the association matrix. The TREEVIEW program
(14) was used to view the results. For the clustering of the
signaling-protein network, the Munich Information Center for
Protein Sequences (MIPS) (15) database list of proteins of the
signaling category and its pathway subcategories was obtained in
August 2001.

Identification of Filamentation-Network Proteins. We searched the
Yeast Protein Database (16) for proteins with annotations
matching the search query (invasi* OR filament* OR pseudohy-
pha*). Hits were screened manually for relevance to filamenta-
tion, invasive growth, or pseudohyphal development. These were
supplemented with proteins implicated in reviews (17, 18).

Results
Network Clustering. We sought to compute the modular organi-
zation of cellular networks controlling specific biological re-
sponses. We represented yeast protein-interaction networks as
graphs of vertices and edges (nodes and links corresponding to
proteins and interactions), and developed a network-clustering
method based on the following ideas: (i) the shortest path
between any two vertices is likely to be the most relevant one for
functional associations and information transmission; (ii) each
vertex in a network has a unique profile of shortest-path
distances through the network to every other vertex; and (iii)
module comembers are likely to have similar (clustered) short-
est-path-distance profiles. The method is described in Materials
and Methods.

Modular Structure of the Yeast Signaling Network. The conception
of the structure of cellular systems as a network of modules (1)
comes from the intensive study of systems like the yeast signaling
network. Accordingly, we used this system, for which there are
many high-confidence individually validated interaction data, to
test our approach.

We assembled a set of interactions containing 4,079 proteins
and 6,761 protein–protein interactions from a global two-hybrid
screen (7) and a composite data set (4) that includes global
two-hybrid data and individually validated interaction data. The
MIPS-database signaling-protein category (15) includes 133
proteins. Of these, 64 had at least one interaction with another
signaling protein. A network consisting of these 64 proteins and
the interactions among them was extracted from the global set
of interactions. Network clustering was applied to this signaling
network.

The results are displayed as a grayscale representation of the
values in the clustered protein–protein pairwise association
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matrix; pairwise association is a simple function of shortest-path
distance (see Materials and Methods). Each row or column
represents a single protein. The matrix is symmetrical because it
was clustered identically in both dimensions. Direct interactions
are white. Indirect interactions of increasing distance (weaker
association) are progressively darker. All features on the diag-
onal (self associations) are white. Interactions between clusters,
both direct and indirect, are evident at the points off the diagonal
where their components intersect.

The protein clusters in the signaling network represent the
modules of signaling pathways (Fig. 1). For example, in Fig. 1,
Ras-pathway proteins form a single cluster. The organization of
a pathway into separate protein clusters reflects the existence of
more than one module within the pathway. Among the clusters
are three MAPK pathways, including the high-osmolarity glyc-
erol pathway (HOG), the PKC pathway, and the mfMAPK
pathway. The HOG and PKC pathways are each split into two
clusters (PKC includes an additional polarity-regulation cluster
in MIPS); one cluster comprises sensory complexes and signal
integrators, and the other comprises a MAPK cascade and
associated proteins (data not shown).

Because pathway proteins are expected to show some clus-
tering by random chance, the clustering of signaling proteins
based on biological data was compared with the clustering of 100
networks in which the signaling-network interactions were ran-
domly reassigned to signaling-protein pairs. The clustering of
pathway proteins in the biological network is significantly higher
than the clustering in randomized networks (Table 1).

Network Clustering of High-Throughput Data Sets. Network cluster-
ing can identify signaling modules in high-coverage, high-quality
interaction data. However, data from high-throughput interac-
tion screens have high false-positive error frequencies, �50%
(19). In addition, high-throughput coverage of the proteome

includes a minority of individually validated observations, and a
small fraction of estimates of the total number of interactions
(19). Also, many interactions may not occur within modules. For
example, protein transport through the nuclear pore involves
interactions between the pore proteins and many other proteins
that have no other functional or physical associations. We sought
to identify module rudiments in mass-produced data.

Because interacting proteins usually localize in the same
subcellular compartments (19), integration of interaction and
localization data can promote the identification of modules. We
collected data from high-throughput screens of protein–protein
interactions and protein localization in cellular compartments. A
protein-binding data set was assembled from two exclusively
high-throughput two-hybrid screens (7, 8). Protein localization
data for 1,407 proteins were assembled from two exclusively
high-throughput epitope-tagging data sets (20). A nuclear-
protein subset was assembled. A nuclear-protein interaction
network was extracted from the global high-throughput network
and clustered (Fig. 2A). Clusters were delimited manually by
using the cluster tree (not shown) as a guide.

The network-clustering method and modules, by their nature,
resist the effects of false-positive and false-negative data. Within
modules, proteins have direct interactions and multiple close
indirect interactions. Thus, modules are likely to resist cluster
disruption by false-negative data because of the likelihood of
alternative paths of short length. False-positive interactions,
because of their spurious nature, are likely to occur between
proteins in different modules. Consequently, false-positives are
likely to appear as connections between separate clusters. In
general, the similarity of shortest-path-distance profiles is a
robust property within groups of nodes with a high number of
internal connections and few external connections. This prop-
erty, and the focus of our method on it, allows module identi-
fication in a network with high error frequencies. Moreover,
false-positive interactions are likely to occur between proteins
that are not functionally associated. The clustering of networks
of interacting proteins sharing some other type of protein–
protein association (like colocalization in a cell compartment)
will exclude false-positive data.

Single proteins with many interactions (high-connectivity hub
proteins) in two-hybrid screens nucleate large clusters that are
not modules. All of the hub proteins indicated in Fig. 2A (arrows)
bind �90 proteins in the global two-hybrid network. The pro-
teins bound by these hubs are randomly distributed in cellular
compartments (data not shown). The nuclear-localized proteins
bound by these hubs (a minority of the global totals) form the
four largest clusters in Fig. 2 A. Proteins bound by high-
connectivity hubs will have few or no interactions among them-
selves if they are not functionally associated. The four largest

Fig. 1. Clustering of the yeast signaling-protein interaction network. A
symmetrical matrix of 64 proteins of the MIPS-database signaling category
was clustered identically in both dimensions. The cluster tree is not shown.
Each row or column represents a protein. Each feature is the intersection of
two proteins and is a grayscale representation of pairwise protein association
(see text). Columns to the right of the clustered network represent MIPS-
defined signaling pathways [P, polarity-PKC; R, Ras; H, HOG; M, mating�
filamentation MAPK (mfMAPK)]. White bars in the MIPS-pathway columns
indicate protein members of the pathway.

Table 1. Clustering scores for the signaling network and 100
randomized signaling networks

Pathway

Clustering score

Signaling network Randomized networks

HOG 0.73 0.21 � 0.11
mfMAPK 0.77 0.42 � 0.07
Polarity-PKC 0.72 0.30 � 0.08
Ras 0.46 0.20 � 0.10

The clustering score equals 1 � (number of gaps�maximum number of
gaps). A gap is the occurrence of one or more proteins between pathway
comembers in the clustered protein ordering (Fig. 1). The maximum number
of gaps equals the number of pathway proteins minus 1. Pathway members
were specified by the MIPS database (15). Clustering scores were calculated for
the clustered signaling network, and 100 randomized and clustered signaling
networks (mean � SD).
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clusters in Fig. 2 A have this ‘‘hub-and-spokes’’ structure. More-
over, the clusters formed by these high-connectivity hubs in the
global interaction network have hub-and-spokes structures as
well (data not shown). These observations suggest that the
proteins bound by each high-connectivity hub are not function-
ally associated with each other, and that their clusters do not
represent modules.

Because proteins that are functionally associated are likely to
interact, a quantitative indication of modularity is the connect-
edness among a group of proteins. In a global plot of node
connectivity versus neighborhood clustering (where the neigh-
borhood is the set of adjacent nodes, and clustering is a measure
of connectedness among a set of nodes), the four high-
connectivity hub proteins indicated in Fig. 3 are among 15
outliers. Although these 15 proteins have exceedingly high
connectivity, they almost completely lack neighborhood cluster-
ing (Fig. 3). These results suggest that quantitative properties can
be used to distinguish modules from nonmodules.

Many nuclear-protein clusters represent module rudiments.
Examples are indicated in Fig. 2 A and shown in Fig. 2B. Cluster
names are from a protein with the most interactions within the
cluster. Each cluster in Fig. 2B is enriched with proteins partic-

ipating in a common cellular structure or function. These are
snRNA-associated proteins (Lsm8 cluster), nuclear pore (Nup57
cluster), RNA polyadenylation (Nab2 cluster), chromatin re-
modeling (Rsc8 cluster), kinetochores (Bim1 cluster), DNA
repair (Rad6), and CCAAT-binding factor (Hap5 cluster).
These results, derived from sparse mass-produced data, lend
further support for the existence of modules and the ability of
our network-clustering method to identify them.

Application to Biological-Response Networks. We incorporated net-
work clustering into a three-step process to study complex
biomolecular systems. This process generates a modular
network-structure model showing major units of structure and
function and the connection of these units into a network
controlling a biological response. (i) Compile known and sus-
pected components (vertices) of the response network. The
identification of system components can be from any combina-
tion of methods, including database queries, expression profil-
ing, proteomics, genetic screens, metabolite profiles, etc. (ii)
Cluster the network based on interactions (edges) among the
vertices. Edges can represent any type of pairwise connections,
including protein–protein interactions, protein–DNA interac-
tions, genetic interactions, and metabolic reactions. (iii) Abstract
a modular network-structure model showing modules and their
connections forming the network. The clustering of vertices into
modules indicates concordance among disparate integrated data
types. The comembers of each module share both common
implication in a biological response and multiple interactions.

We generated a network-structure model of a complex system
controlling the yeast developmental transition from a cellular
yeast form into a filamentous invasive form. Under specific
environmental conditions (carbon limitation for haploids, nitro-
gen limitation for diploids), budding yeast form invasive fila-
ments. Filamentous-form cells grow in an altered cell cycle,
produce chains of elongated cells that bud distal to the site of
their birth, adhere to each other and solid substrates, and invade
agar (21–23). Major fungal pathogens of humans and plants
behave similarly in response to host tissues. Conserved signaling
pathways control this fungal dimorphism (17, 18).

Clustering of the Filamentation Network. A filamentation-network
protein set was derived from a search of the Yeast Protein
Database (16) and other published sources (17, 18) for proteins
with mutant phenotypes or expression patterns associated with

Fig. 2. Clustering of the yeast nuclear-protein network derived from high-
throughput interaction and localization data. (A) Examples of clusters repre-
senting module rudiments are labeled. The cluster tree is not shown. Arrows
indicate high-connectivity hub proteins. (B) Example clusters are shown in
detail. Cluster comembers participating in some common structure or function
(see text) have large bold labels.

Fig. 3. Global protein connectivity versus neighborhood clustering. Each
protein in the global protein network (high-throughput data plus validated
data) is plotted by its connectivity, k, and its neighborhood clustering, C, the
ratio of the number of connections among its k neighbors to the maximum
possible number, k(k � 1)�2. Arrows indicate high-connectivity proteins
shown in Fig. 2A.
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the filamentous form (see Materials and Methods). The resulting
list includes many proteins that were implicated only by expres-
sion-profiling experiments or large-scale mutant screens. The
database and literature searches garnered 229 proteins; current
models include roles for 20–30 proteins. Of the 229 filamenta-
tion proteins, 90 had at least one interaction with another
filamentation protein; these form a filamentation network. The
sources of interaction data included high-throughput two-hybrid
studies and individually validated observations (4, 7). These data
sets do not contain all known protein–protein interactions. Some
filamentation proteins, like Elm1, Tec1, and Flo11, are not
included because the data sets contain no interactions involving
them.

The filamentation-network proteins were clustered (Fig. 4).
Using the clustering tree as a guide, we delimited cluster
boundaries. A threshold tree depth was set. The threshold tree
depth is a single point at which the tree is cut to uniquely specify
all cluster boundaries. Raising the threshold results in cluster
fusion. A lower threshold splits clusters. The threshold was set at
a point low enough to split the two largest resulting clusters,
polarity and filamentation MAPK (fMAPK). All clusters of

three or more proteins below the tree threshold are indicated in
Fig. 4.

The composition of clusters in Fig. 4 reflects and extends
current filamentation models. Current models (17, 18) incorpo-
rate 20–30 fMAPK, polarity, and Ras�protein-kinase-A pathway
proteins. All of these pathways are represented by clusters with
markedly expanded membership (Fig. 4). This expansion impli-
cates multiple proteins whose role in filamentation is unknown
or unclear, for example, Yer124C of the fMAPK cluster and
Dia1 of the Rsp5 cluster. These observations suggest that
network clustering can be used to direct experimental research
by providing a functional context for uncharacterized compo-
nents of likely importance. In addition, Snf, Cdc28, and a1��2
clusters emerge. The Snf proteins control the carbon-source
dependence of filamentation (24). Cdc28-associated proteins are
involved in the altered cell-cycle progression of filamentous-
form cells (22, 25). The a1��2 cluster includes transcriptional
regulators of cell-type specific (haploid versus diploid) develop-
ment (21, 23). Additionally, the small Rsp5 cluster emerges as a
module candidate.

Within each cluster there are one or two proteins of highest

Fig. 4. Clustering of the yeast filamentation network. Proteins of the yeast filamentation network were clustered. A tree-depth threshold was set. Tree branches
with three or more leaves (clusters with three or more proteins) below the tree threshold are shown. Bullets and large bold labels indicate proteins of highest
intracluster connectivity.
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intracluster connectivity, i.e., the most interactions with other
members of the same cluster (bullets and bold labels in Fig. 4).
Essential proteins are overrepresented among those of high
global connectivity (26). This suggests that proteins of highest
intracluster connectivity are organizers and major functional
components of their respective modules. The identities of these
proteins in the filamentation-network clusters support this idea
(Fig. 4). For example, the Bcy1 protein is an inhibitor of all three
cyclic-AMP-dependent protein kinases of the protein kinase A
module. Inactivation of Bcy1 results in a general increase in
protein kinase A module activity (27). Other examples include
the Act1 monomer of the polarized actin cytoskeleton, and the
Cdc28 cyclin-dependent kinase, the central function of the
Cdc28 module.

Modular Network-Structure Model and Intermodule Communication.
We generated a model of the modular structure of the filamen-
tation network. Fig. 5 shows all of the clusters of Fig. 4 abstracted
as modules. All intermodule paths are shown. All of these
intermodule paths are direct connections, except one mediated
by the Akr1 protein. Akr1 did not fall in any of the clusters. The
modules are in a configuration that is consistent with current
models of the filamentation network (17, 18).

We examined the possibility that intermodule connections are
important for the functions that modules carry out in association
with each other. These relatively few interactions may be infor-
mation-flow constriction points required for communication

between major units of structure and function. Known roles of
intermodule connector proteins suggest that they are critical for
intermodule communication. Some proteins serve as connectors
between signaling pathways and function in both. For example,
Ste11 is a shared MAPK kinase kinase component (28) and a
point of crosstalk (29) between the fMAPK and HOG pathways.
In addition, Srv2 is known to link growth signals of the Ras
module to the cytoskeleton (30). The model reflects these, and
other examples. In addition, new possibilities are suggested. All
paths from members of the fMAPK signaling module to mem-
bers of the Cdc28 cell-cycle-control module travel through a
single interaction between the Mpt5 and Cdc28 proteins. Kron
et al. (22) showed an extended G2 cell-cycle phase associated
with cell elongation and filament formation. This delayed mitosis
involves the Cdc28 cyclin-dependent kinase (31) and the up-
stream fMAPK pathway (32). The connection between the
fMAPK pathway and Cdc28 is unknown. The model of Fig. 5
suggests that Mpt5 mediates that connection.

Discussion
Cellular networks function and are organized in a modular
fashion. We developed a method to compute the modular
structure of networks and applied it to protein-interaction
networks. The method was validated by using functionally en-
riched and high-throughput data sets. We applied the method to
yeast filamentation proteins and abstracted a modular network-
structure model of the system. The model reduces the complex-
ity of this network to a small number of connected units of
structure and function. This simplified representation facilitates
the exploration of biological system properties in terms of
molecules and interactions. The structural importance and
known functions of module-organizer proteins suggest that they
are major determinants of the functions of modules. Interactions
that link the modules are likely points of communication and
crosstalk. Identification and perturbation of modules, module
organizers, and intermodule connections could be especially
valuable in the study and redesign of biological systems.

The conserved components and common structural features
of modules like the MAPK cascades support the idea that they
are evolutionarily conserved. It has been suggested that the
mfMAPK pathway of yeast is particularly ancient (18). The large
size and complex structure of the mfMAPK module suggests
further that biological modules may evolve by the familiar
processes of duplication and divergence as well as processes of
accretion and reconnection. Phylogenetic module profiles, in-
cluding component conservation and conservation of interac-
tions, will provide important insights on module structure,
function, and origins. A library of conserved biological modules
may facilitate the redesign of complex systems in nature and the
laboratory.
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