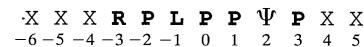


Phage display selection of ligand residues important for Src homology 3 domain binding specificity

RICHARD J. RICKLES*, MARTYN C. BOTFIELD, XIAO-MAI ZHOU, PAMELA A. HENRY, JOAN S. BRUGGE, AND MARK J. ZOLLER

ARIAD Pharmaceuticals, 26 Landsdowne Street, Cambridge, MA 02139

Communicated by Ed Harlow, Massachusetts General Hospital Cancer Center, Charlestown, MA, August 14, 1995


ABSTRACT The Src homology 3 (SH3) domain is a 50-aa modular unit present in many cellular proteins involved in intracellular signal transduction. It functions to direct protein–protein interactions through the recognition of proline-rich motifs on associated proteins. SH3 domains are important regulatory elements that have been demonstrated to specify distinct regulatory pathways important for cell growth, migration, differentiation, and responses to the external milieu. By the use of synthetic peptides, ligands have been shown to consist of a minimum core sequence and to bind to SH3 domains in one of two pseudosymmetrical orientations, class I and class II. The class I sites have the consensus sequence ZP(L/P)PPΨP whereas the class II consensus is PPΨPPZ (where Ψ is a hydrophobic residue and Z is a SH3 domain-specific residue). We previously showed by M13 phage display that the Src, Fyn, Lyn, and phosphatidylinositol 3-kinase (PI3K) SH3 domains preferred the same class I-type core binding sequence, RPLPPΨP. These results failed to explain the specificity for cellular proteins displayed by SH3 domains in cells. In the current study, class I and class II core ligand sequences were displayed on the surface of bacteriophage M13 with five random residues placed either N- or C-terminal of core ligand residues. These libraries were screened for binding to the Src, Fyn, Lyn, Yes, and PI3K SH3 domains. By this approach, additional ligand residue preferences were identified that can increase the affinity of SH3 peptide ligands at least 20-fold compared with core peptides. The amino acids selected in the flanking sequences were similar for Src, Fyn, and Yes SH3 domains; however, Lyn and PI3K SH3 domains showed distinct binding specificities. These results indicate that residues that flank the core binding sequences shared by many SH3 domains are important determinants of SH3 binding affinity and selectivity.

One feature common to many proteins involved in signal transduction is the capacity to associate specifically with other molecules, forming a complex that can alter cell activity. Such multiprotein associations are facilitated by domain(s) of conserved sequence which serve as noncatalytic modules that direct molecular interactions during signal transduction (1, 2). One such domain, termed the Src homology 2 (SH2) domain, binds to phosphotyrosine-containing proteins in a sequence-specific manner (3). Another module, termed the SH3 domain, has a preference for proline-rich binding sites (4–9). In a number of cell types, both SH2 and SH3 domains function to regulate cellular events such as protein localization, enzyme activity, and substrate recruitment (1, 2).

SH2 and SH3 domains help determine the routes of intracellular communication (1, 2). The sequences that these domains recognize are important determinants of specific signal transduction pathways. Targeting these modules with pharmaceutical agents that mimic binding sites may provide a

means to block specific events in the cell. To investigate SH3 binding specificity, SH3 domains have been used to screen cDNA libraries, phage display libraries, and biased peptide libraries (5–10). With these approaches, the minimal sequence requirement for SH3 domain recognition has been determined. SH3 binding sites contain a conserved Pro-Xaa-Xaa-Pro (PXXP) motif, and structural analysis indicates that the ligands adopt a left-handed polyproline type II helix conformation (5, 11).

To identify SH3 domain binding preferences, we previously screened bacteriophage that displayed the peptides XXXXX-XPPIP or RSLRPLXXXXXX (X, randomized residue) (6). These biased libraries were used to reveal SH3 domain binding preferences for a “window of recognition” that totaled 12 residues. The consensus binding sequence identified from the Src, Fyn, Lyn, and phosphatidylinositol 3-kinase (PI3K) SH3 domains is

[with numbering as described by Yu *et al.* (5); Ψ, hydrophobic residue].

The SH3 domains all showed a preference for the core sequence RPLPPΨP. In addition, preferences for certain residues flanking the core were observed. For example, both the Lyn and PI3K SH3 domain selected arginine at position -6, and the PI3K SH3 domain preferred prolines at positions 4 and 5. These preferences suggest that there may be additional binding determinants which have not been identified.

The Src SH3 domain has also been used to screen a biased peptide library, XXXPPXPXX (5). Two types of ligands have been identified and have been termed class I and class II ligands. The class I ligands are similar to those identified by phage display selection and have the consensus sequence RXLPLPLP. The class II ligands have the consensus sequence ΨPPLPXR. Since both types of ligands are proline-rich and contain a conserved arginine at the N or C terminus, Yu *et al.* (5) suggested that these two classes of peptides bind to the SH3 domain in reverse orientations. Structural analysis of SH3–ligand complexes has confirmed this hypothesis (12). SH3 ligands are pseudosymmetrical and can bind in two opposite orientations, termed class I ($\text{NH}_2 \rightarrow \text{COOH}$) or class II ($\text{COOH} \rightarrow \text{NH}_2$) binding sites, depending on the orientation in which they bind (5, 13).

To further explore the ligand residues important for specific SH3 domain recognition, we have prepared and screened new biased phage display libraries containing five random amino acid residues N- or C-terminal to a class I recognition sequence. In addition, we have made a library of bacteriophage which display five random amino acids C-terminal to a class II recognition sequence. We demonstrate that residues which flank the core SH3 binding sequences are important determinants of SH3 binding affinity and selectivity.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: SH3, Src homology 3; GST, glutathione S-transferase; PI3K, phosphatidylinositol 3-kinase.

*To whom reprint requests should be addressed.

MATERIALS AND METHODS

Reagents. HPLC-purified peptides were purchased from Quality Control Biochemicals (Hopkinton, MA). Oligonucleotides were synthesized with an Applied Biosystems DNA/RNA synthesizer. The Src, Fyn, and Lyn glutathione S-transferase (GST)-SH3 expression vectors have been described (6). PI3K SH3 domain coding sequences (aa 3–83; ref. 14) were amplified by PCR and cloned into *Bam*HI/*Eco*RI-digested pGEX-2TK (Pharmacia). The chicken Yes SH3 domain (aa 96–177; ref. 15) in pGEX-3X was kindly provided by Marius Sudol. Fusion proteins were produced and purified as described (6).

Construction of Phage Display Libraries. The synthesis and purification of phage display libraries were as described (6). Three libraries were prepared. Peptides were inserted into M13 gene III sequences to produce chimeric proteins of the following forms:

N+5 class I NH₂-AEXXXXXRPLPLPPPTVESCL

C+5 class I NH₂-AERSLRPLPLPXXXXXTVESCL

C+5 class II NH₂-AEGAAPPLPPRXXXXXTVESCL

Underlined amino acids represent native gene III residues and X represents the randomized residues. The number of recombinants in each unamplified library was 7.5×10^7 (N+5 class I), 5.4×10^7 (C+5 class I), and 2.2×10^7 (C+5 class II).

The oligonucleotides used for library constructions were 5'-GTTTGCTAAACAACTTCAACAGTGGG-GGTGGCAATGGTGGCAAGGGGCG(MNN)₅TTCAG-CGGAGTGAGAATAGAAAGG-3' (N+5 class I library), 5'-GTTTGCTAAACAACTTCAACAGT(MNN)₅-GGGCAATGGTGGCAAGGGGCGGAGTGAGCG-TTCAGCGGAGTGAGAATAGAAAGG-3' (C+5 class I library), and 5'-GTTTGCTAAACAACTTCAACAGT(MNN)₅GCGTGGTGGCAATGGTGGAGCTGCTCCTTC-AGCGGAGTGAGAATAGAAAGG-3' (C+5 class II library). Underlined nucleotides represent complementary M13 sequences; sequences inserted into gene III are not underlined. Nucleotides used to create random amino acid sequences are denoted N (A, G, C, T) and M (C, A). Phage enrichment was as described (6).

Binding Assays. BIACore binding assays using phage-displayed ligands and immobilized GST-SH3 domains were as described (6). Tryptophan fluorescence measurements were performed to determine the affinity of peptides for the Src, Fyn, Lyn, Yes, and PI3K SH3 domains. Measurements were made with a Perkin-Elmer LS50B luminescence spectrophotometer. The excitation wavelength was 280 nm (5-nm slit width) and the emission wavelength was 335 nm (5-nm slit width). Aliquots of peptide were added to 3 ml of 0.5 μ M GST-SH3 solution in phosphate-buffered saline (GIBCO) and the mixture was stirred in a cuvette for 5 min prior to analysis. Peptide was added to a final concentration of either 64 or 128 μ M. The equilibrium dissociation constant (K_d) was calculated as described (16). Four peptides were used for tryptophan fluorescence measurements: class I core (Ac-RPLPLPGK-NH₂), class I core plus Src-selected flanking sequences (Ac-VSLARRPLPLP~~G~~KK-NH₂), class II core (Ac-KGGGAAP-PLPPR-NH₂), and class II core plus Src-selected flanking sequence (Ac-KGGGAAPPLPPRNRPRL-NH₂). GGK (class I) or KGG (class II) was added to the end of the peptides to allow immobilization of peptides to solid phase for BIACore analysis or for biotinylation. The pair of glycines provides a spacer to minimize steric interference from a solid support. Similar K_d values were obtained when using GST-Src SH3 or free Src SH3 domain purified after cleaving the GST fusion protein with thrombin (data not shown).

RESULTS

Initially, two biased libraries were prepared to study additional SH3 binding preferences. Bacteriophage libraries were constructed that displayed a class I core and five adjacent N-terminal random residues (library N+5: XXXXXRPLPLPPPP; core residues are underlined or a class I core with five C-terminal random residues (library C+5: RSLRPLPPLPXXXXX). GST-SH3 fusion proteins were immobilized on polystyrene and binding selections were performed (6).

The N+5 library was screened with Src, Fyn, Lyn, Yes, and PI3K GST-SH3 fusion proteins. After four rounds of selection, bacteriophage isolates were sequenced. All five SH3 domains displayed preferences for specific residues amino terminal to the class I core (Fig. 1A). For example, the Src, Fyn, Lyn, and Yes SH3 domains selected a hydrophobic residue, most commonly leucine at the third position of the five positions randomized. There were also some preferences specific for particular SH3 domains. For example, the Src SH3 domain exhibited a preference for serine at the second position. In contrast, the PI3K SH3 domain selected a leucine or valine whereas the Lyn SH3 domain enriched for phage containing a tryptophan at the second position. These preferences were not observed when only three positions N-terminal to the core ligand sequence (RPLPLP) were randomized. We infer that inclusion of two additional randomized positions in our N+5 library permits identification of the observed preferences.

Src, Fyn, Lyn, and PI3K GST-SH3 fusion proteins were also used to screen the C+5 library, which consisted of phage displaying five random residues C-terminal to the class I core. Some of the SH3 domains preferred specific residues C-terminal to the class I core (Fig. 1B). For example, most of the phage selected by the Lyn SH3 domain contained the residues LPPRH C-terminal to the class I core. In contrast, the PI3K SH3 domain preferred phage containing the C-terminal residues PRPXX. The Fyn SH3 domain had a preference for a threonine or serine immediately downstream of the class I core. GST-Src SH3 mainly selected phage from the RSLR-PLPPLPXXXXX library that had nucleotide changes or deletions, resulting in mutations in the invariant portion (RSLRPLPLP) of the displayed peptide.

Using surface plasmon resonance binding assays, we previously showed that SH3 binding could be studied when the ligands are displayed on the surface of the bacteriophage (6). As a preliminary analysis to determine whether the preferred sequences flanking the class I core contribute to SH3 domain recognition, the relative binding affinity of some of the selected phage was determined with a BIACore biosensor (17). Src, Fyn, Lyn, or PI3K GST-SH3 fusion proteins were immobilized on a biosensor chip and the binding of homogeneous phage stocks displaying various SH3 ligands was assessed (Fig. 2). Initially, we analyzed phage previously isolated (6) which each display the class I core consensus sequence RPLPLP with three distinct N-terminal amino acids (samples 1–3). All three phage bound with similar affinity to the Src, Fyn, Lyn, and PI3K SH3 domains. In contrast, variants that did not have a perfect class I consensus sequence (sample 4, LILPPLP; sample 5, RPLPPP and sample 6, RPLPSLP, nonconsensus residues are underlined) bound with reduced or undetectable affinity. Bacteriophage containing SH3 domain-specific N-terminal residues adjacent to core ligand sequences bound selectively, with higher affinity for the SH3 domain that was used to select that particular sequence. For example, phage displaying the Src SH3-selected sequence **VPLARRPLP**PLPPP (sample 7, the N-terminal residues flanking the core are in boldface type) bound with highest affinity to the Src SH3 domain. Phage displaying the Lyn SH3-selected sequence **PWWLDRPLPPLPPP** (sample 8) bound with the highest affinity to the Lyn SH3 domain. The PI3K SH3-selected se-

A XXX XXX XXX XXX XXX **arg pro leu pro pro leu pro pro pro**

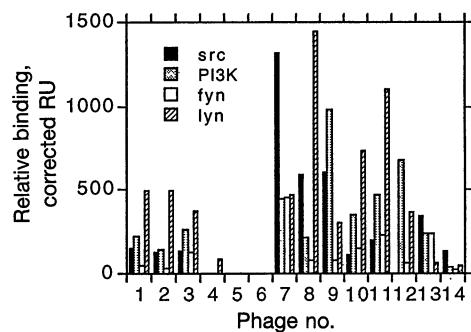
<u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u>	<u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u>	<u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u>	<u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u>	<u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u>
trp ser leu phe his ser trp leu ser arg(2x) cys leu leu cys ser ile his leu arg thr pro his pro ala arg val pro leu ala arg(2x) val ser leu ala gln ile ser leu ala arg ser trp leu ala asn leu ser leu gln met ser ser leu ser arg leu ser leu ala gln leu ser leu phe arg ser ser leu arg phe(2x) ser trp leu ser his ser ser leu cys gly	ser ala pro ser arg leu arg trp ser ala lys ala leu ala ser thr thr leu ser ala ser tyr leu ser arg leu ser pro met ser leu pro met ala arg ala ser phe ala ser val gly leu ser asn ile pro ile gly his ile ala leu ser thr phe phe leu ala ser leu asp arg ser arg arg trp ile thr ser gly leu gly ala arg asp asp leu ser gly asn pro leu leu arg	ser trp leu ile ala arg ala leu pro pro trp ser ile arg ser tyr pro phe his gly pro trp leu leu arg ser trp leu ser val ser trp leu gly ser pro trp trp leu asp leu thr met ala gly asp phe met ala ser asp trp tyr his ser leu ser phe ser asn met asp leu leu arg ala ala met val gly arg leu leu pro pro ser trp val ala cys pro trp pro val gly	pro asn leu arg thr leu pro leu ser arg ser trp trp ser arg thr phe leu phe arg thr his pro ala arg phe pro val ala gln pro ser pro arg ser arg ser leu ser met val leu leu ala leu ser val leu ala arg asn arg ala ala lys ser ala leu ala arg ser ser leu ala gln thr pro leu gly arg pro asn pro ser tyr ser ala ser ala arg ser trp met ala arg ser ala leu ala arg ser pro leu ala arg	xxx <u>xxx</u> <u>xxx</u> <u>xxx</u> <u>xxx</u> cys leu asn cys leu(4x) phe lys arg pro pro leu leu ser gly pro(3x) phe lys arg pro phe leu val leu pro arg phe his arg pro asn arg arg val pro pro trp ser arg thr lys arg val arg pro ser arg tyr leu pro trp cys cys leu thr thr arg pro phe pro arg arg val pro ile arg ala arg leu pro pro cys leu asn cys phe(6x) arg tyr leu ser trp cys leu asn cys ser cys leu leu thr thr(7x) cys leu asn cys ser(4x)

B **arg ser leu arg pro leu pro pro leu pro** **xxx** **xxx** **xxx** **xxx** **xxx**

GST-Src SH3	GST-Fyn SH3	GST-Lyn SH3	GST-Yes SH3	GST-PI3K SH3
LYN				
	leu pro pro arg leu leu pro pro arg thr leu pro pro arg his(9x) leu pro pro pro his			
		leu pro pro arg leu phe pro arg tyr leu pro ser ser ala pro pro arg ala pro phe pro arg pro pro phe ser arg pro gly pro pro arg pro ala tyr		
			leu pro pro leu thr ser ala pro arg val val leu ser glu pro thr ser thr gln pro his leu pro asp ser ser tyr thr ser his val ala thr his pro ser ser leu ser arg ala phe his ala arg	
PI3K				
FYN				
SRC	arg ser phe arg pro leu pro pro leu pro thr val ala ser pro			

FIG. 1. Amino acid sequences of peptide inserts selected from biased phage libraries by GST-SH3 fusion proteins. (A) Sequences selected from the N+5 class I library by GST-Src SH3, GST-Fyn SH3, GST-Yes SH3, GST-Lyn SH3, and GST-PI3K SH3. The amino acids that are underlined were inserted into gene III adjacent to the five random residues. Amino acid preferences (at least 50% of the isolates) are highlighted in boldface type. Numbers in parentheses denote isolates that have the same nucleotide sequence. (B) Isolates selected from the C+5 class I library by GST-Src SH3, GST-Fyn SH3, GST-Yes SH3, GST-Lyn SH3, and GST-PI3K SH3. Dashes denote a 3-nt (1-aa) deletion of invariant residues.

FIG. 1. Amino acid sequences of peptide inserts selected from biased phage libraries by GST-SH3 fusion proteins. (A) Sequences selected from the N+5 class I library by GST-Src SH3, GST-Fyn SH3, GST-Yes SH3, GST-Lyn SH3, and GST-PI3K SH3. The amino acids that are underlined were inserted into gene III adjacent to the five random residues. Amino acid preferences (at least 50% of the isolates) are highlighted in boldface type. Numbers in parentheses denote isolates that have the same nucleotide sequence. (B) Isolates selected from the C+5 class I library by GST-Src SH3, GST-Fyn SH3, GST-Yes SH3, GST-Lyn SH3, and GST-PI3K SH3. Dashes denote a 3-nt (1-aa) deletion of invariant residues.


quence **CLNCFRPLPLPPP** bound with the highest affinity to the PI3K SH3 domain (sample 9).

Enhanced binding was also observed with phage displaying the class I core sequence and selected downstream residues. For example, the Lyn SH3-selected phage displaying RSLR-PLPPLPLP^R (sample 10) and RSLRPLPPLPLP^{RH} (sample 11) bound selectively and with the highest affinity to Lyn SH3 domain. Phage displaying the PI3K SH3-selected sequence RSLRPLPPLP^RPF (sample 12) selectively bound to the PI3K SH3 domain. In contrast, two Src SH3-selected phage, both displaying peptides with deletions in the core consensus sequence, RSLRPLP⁽⁻⁾P^VV^SL (sample 13) and RSLRPLP⁽⁻⁾L^PV^VS^L (sample 14), did not bind much better to the Src SH3 domain than phage that displayed the class I core ligand sequence (samples 1-3).

Overall, the SH3 domain-specific phage that were selected from the N+5 class I library bound with higher affinity than SH3 domain-specific phage selected from the C+5 library. These results indicate that the sequences which flank the SH3 ligand core are important for binding and that the sequences adjacent to the class I core arginine residue may be the more

important determinants of high-affinity binding. To determine whether similar preferences would be observed when the peptide ligand was bound in the opposite orientation, we prepared a biased library where residues adjacent to the arginine of a class II core were randomized. This library, **GAAPPLPPRXXXXX**, was screened using Src, Fyn, Lyn, Yes, and PI3K GST-SH3 domain fusion proteins. Each SH3 domain had preferences for specific downstream residues (Fig. 3). The C-terminal consensus sequences derived from phage selected from the **GAAPPLPPRXXXXX** library were N(R/K)-XR(L/V) (Src), NPXR Ψ (Fyn), NPPR Ψ (Yes), PX(W/F)MX (Lyn), and PPRPX (PI3K).

Peptide ligands consisting of core sequences or core plus Src-selected flanking sequences were synthesized and analyzed to evaluate more quantitatively the effects of flanking sequences on SH3 binding affinity and specificity. Tryptophan fluorescence binding assays were performed with the Src, Fyn, Lyn, Yes, and PI3K SH3 domains and the peptide ligands. A peptide containing class I core residues and the Src SH3-selected flanking sequence (**VSLARRPPLPPPP**) bound at least 20-fold better to the Src and Fyn SH3 domain than did

- 1) TLGRPLPLPLP
- 2) SIARPLPLPLP
- 3) KSERPLPLPLP
- 4) RNFLLPLPTP
- 5) RSLRPLPPD
- 6) RSLRPLPSL
- 7) VPLARLPLPLPLPP
- 8) PWWLDRPLPPLPLPP
- 9) CLNCFRPLPLPLPP
- 10) RSLRPLPLPLPRT
- 11) RSLRPLPLPLPFRH
- 12) RSLRPLPLPLPPRPF
- 13) RSLRPLPP-LPPVPSL
- 14) RSLRPL-LPPVPSL

FIG. 2. Binding of phage-displayed peptides to Src, Fyn, Lyn, and PI3K GST-SH3 fusion proteins. Binding of phage-displayed peptides was measured by BIACore technology (6). The amount of phage binding to immobilized SH3 domain is given as arbitrary resonance units (RU) and has been corrected for bulk refractive-index contributions of the unbound phage. Phage-displayed sequences are shown. Core ligand sequences are underlined. Core ligand residues that do not match the RPLPP Ψ P consensus are not capitalizated. Selected flanking sequences are in boldface type.

a peptide containing just the core recognition sequence (Table 1). The flanking sequences had an even larger effect (\approx 75-fold increase) on Yes SH3 domain binding affinity. In contrast the Src SH3-selected flanking sequences only marginally affected (2- to 3-fold) the affinity of the interaction of the core ligand residues with the PI3K or the Lyn SH3 domain.

Results similar to those obtained with class I peptides were observed when a class II core peptide was compared with one that had the additional C-terminal residues (NRPRL) identified by using the Src SH3 domain (Table 1). A peptide consisting of class II core residues and the Src SH3-selected flanking sequences bound \approx 80-fold better to the Src SH3 domain than did a peptide containing just the class II core recognition sequence. The peptide containing the C-terminal

selected sequences also bound with much higher affinity to the Fyn and Yes SH3 domains. In contrast, binding to the Lyn SH3 domain was only marginally (≈ 3 -fold) increased.

DISCUSSION

Phage display libraries were previously utilized to define the minimal ligand recognition sequences of the Src, Fyn, Lyn, PI3K, and Abl SH3 domains (6). Src, Fyn, Lyn, and PI3K SH3 domains selectively enriched phage displaying the core sequence RPLPPP Ψ P. In contrast, the Abl SH3 domain preferred a distinct core motif, PPPYPPPPP Ψ P. Now, using biased phage display libraries to search for expanded motifs that improve both affinity and selectivity, we have shown that residues which flank the core recognition sequence are important binding determinants. These affinity/specificity determinants can be N- or C-terminal to a SH3 domain core recognition sequence and be SH3 domain-specific. Further, the flanking sequences may selectively affect SH3 binding.

In our studies, SH3 domains were not presented to ligands in an environment of their natural flanking sequences, but rather as GST fusion proteins. The observation that residues flanking class I or class II core sequences are important for SH3 domain recognition does not appear to be due to the creation of novel artificial binding surfaces by preparing SH3 domains as GST fusion proteins, since a protein consisting of the Lyn unique region-SH3-SH2 showed binding preferences similar to those observed for Lyn GST-SH3 (data not shown).

The selection of SH3 domain-specific sequences both N-terminal and C-terminal to a class I core ligand suggests that SH3 domains may have additional binding surfaces for ligand interaction. Alternatively, the SH3-selected flanking residues could be important for phage growth and/or core ligand presentation as displayed on the surface of the bacteriophage. By BIAcore binding analysis, we have shown that the flanking sequences affect SH3 binding, exerting their effect independent of phage growth. Furthermore, using peptides, we have demonstrated that residues N-terminal (class I) and C-terminal (class II) to core sequences are important for high-affinity interaction with SH3 domains, strongly suggesting a direct interaction. The significance of the residues selected C-terminal to class I cores is not known. These sequences may make contact with the SH3 domain or perhaps be important for ligand presentation. We also do not know why the Src and Yes SH3 domains selected phage displaying peptides with deletions in the core consensus sequence. However, we do note that the PI3K SH3 domain may have selected phage displaying

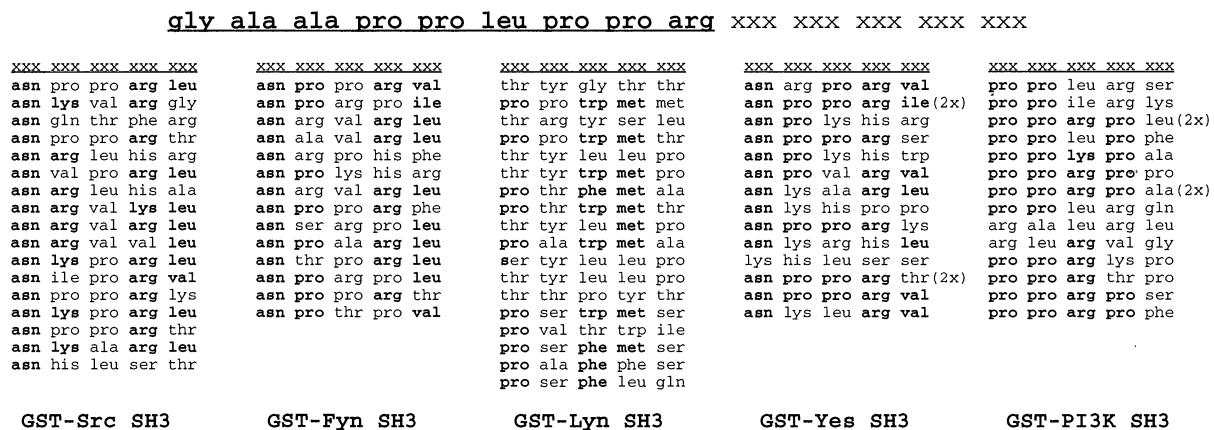


FIG. 3. Amino acid sequence of peptide inserts selected from the C+5 class II biased phage library by GST-SH3 fusion proteins. Phage selections used GST-Src SH3, GST-Fyn SH3, GST-Yes SH3, GST-Lyn SH3, and GST-PI3K SH3. Amino acids underlined were inserted into gene III adjacent to the five random residues. Amino acid preferences are in bold type. Numbers in parentheses denote isolates of the same nucleotide sequence.

Table 1. Binding of class I and class II peptides to Src, Fyn, Lyn, Yes, and PI3K GST-SH3 fusion proteins

SH3 domain	Dissociation constant (K_d), μM			
	Class I core (RPLPPLPggk)	Class I core + "Src flank" (VSLARRPLPPLPggk)	Class II core (kgggaaPPLPPR)	Class II core + "Src flank" (kgggaaPPLPPRNRPRL)
Src	17.7 \pm 3.3	0.86 \pm 0.04	20.3 \pm 0.8	0.24 \pm 0.04
Fyn	25.5 \pm 5.5	0.60 \pm 0.10	144.4 \pm 19.0	1.7 \pm 0.15
Lyn	6.2 \pm 0.5	2.8 \pm 0.66	26.5 \pm 3.3	8.1 \pm 1.50
Yes	52.3 \pm 10.1	0.67 \pm 0.03	NDB	3.8 \pm 0.03
PI3K	38.8 \pm 4.5	14.9 \pm 0.64	NDB	NDB

The affinity of each peptide for the SH3 domains was determined by tryptophan fluorescence. Shown are the mean \pm SEM for the class I binding assays (performed in triplicate) and the class II binding assays (performed in duplicate). Ligand binding measurements were performed with three (class I ligands) or two (class II ligands) different preparations of GST fusion protein. Core ligand sequences are in uppercase lightface type; those in boldface type are the "flanking sequences" selected by the Src SH3 domain. NDB, no detectable change in fluorescence at 128 μM peptide.

the sequence **RSLRPLPPLPPRPXX** because such ligands contain both class I (underlined) and class II (boldface type) consensus sequences and might potentially bind in either orientation. This feature may be important for their selection.

The solution structures of both class I and class II core recognition sequences complexed with the Src SH3 domain have been determined by NMR spectroscopy (5, 12). Core peptide residues fit into three binding pockets on the SH3 domain. The ligand arginine residue forms a salt bridge with residue D99 of Src SH3 (pocket 1) while the rest of the peptide contacts two hydrophobic binding pockets formed primarily by Src SH3 residues Y90, Y92, W118, Y131, P133, and Y136. These residues are conserved in the Fyn, Lyn, Yes, and PI3K SH3 domains and thus are not the source of the observed binding differences. Our data suggest that there is an additional contact site(s) for ligand binding. Given the preferred flanking sequences of the SH3 domains analyzed, we predict that the residues which constitute this new binding surface will be mostly conserved among the Src, Fyn, and Yes SH3 domains and divergent with the Lyn and PI3K SH3 domains.

The residues that influence SH3 core ligand binding are distinct and depend on the ligand binding orientation. For example, the Src SH3 domain selects the residues XSLXX N-terminal to class I core sequences (**XSLXXRPLPPLP**) and the residues N(R/K)XR(L/V) C-terminal to a class II core [**PPLPPRN(R/K)XR(L/V)**]. The same binding surface is reportedly utilized by the Src SH3 domain for both class I and class II core ligand residues (12). In each case, the arginine of the core ligand (underlined) forms a salt bridge with D99 of the Src SH3. Presumably, additional SH3 residues participate in ligand binding. The observation that the class I and class II flanking sequences are distinct suggests either the use of two different binding surfaces or an alternative mode of binding to the same surface. Mutational analysis of ligand flanking sequences coupled with the determination of extended class I and class II SH3 structures will resolve these issues. Preliminary NMR studies of the extended peptide ligands (class I and class II) bound to the Src SH3 domain identify specific contacts between the flanking sequences and the SH3 domain (S. Feng, R.J.R., and S. Schreiber, unpublished work).

SH3 domains have been used to affinity isolate SH3-binding proteins from cellular extracts. We previously observed that while the Src, Fyn, and Lyn SH3 domains recognized many of the same cellular proteins, numerous distinct binding preferences were observed (figure 2 of ref. 18). Our results implied that the Src, Fyn, and Lyn SH3 domains all recognize a common motif and, in addition, that there might be SH3 domain-specific binding sites. The results presented here give a molecular basis for the SH3 domain selectivity observed for these Src tyrosine kinase family members. A protein that contains a poor SH3 domain core consensus sequence would bind with low affinity to the class of SH3 domains which

recognize that particular core sequence. If SH3 domain-specific preferred residues flank a weak binding site, binding affinity would be selectively enhanced, depending on which residues flank the core binding site.

By using biased phage display libraries, we have identified SH3 domain ligand residues that are important for both SH3 domain binding affinity and selectivity. Some SH3 domains, such as the Src, Fyn, Lyn, Yes, and PI3K, have similar core binding motifs. The identification of ligand residues that are SH3 domain-specific provides valuable information for the molecular understanding of specificity, which can be used for the design of SH3 domain-specific inhibitory molecules. Such compounds may provide a means to modulate both physiologic and pathological processes.

We thank Stuart Schreiber, Sibo Feng, Tony Pawson, and our colleagues at ARIAD for helpful suggestions during the course of this work. This work was funded in part by Grant CA27951 from the National Cancer Institute (J.S.B.) and Small Business Innovation Research Grant 2 R44 AR42112-02 from the National Institutes of Health (M.J.Z.).

1. Cohen, G. B., Ren, R. & Baltimore, D. (1995) *Cell* **80**, 237–248.
2. Pawson, T. (1995) *Nature (London)* **373**, 573–580.
3. Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., Birge, R. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B. & Cantley, L. C. (1993) *Cell* **72**, 767–778.
4. Ren, R., Mayer, B. J., Cicchetti, P. & Baltimore, D. (1993) *Science* **259**, 1157–1161.
5. Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W. & Schreiber, S. L. (1994) *Cell* **76**, 933–945.
6. Rickles, R. J., Botfield, M. C., Weng, Z., Taylor, J. A., Green, O. M., Brugge, J. S. & Zoller, M. J. (1994) *EMBO J.* **13**, 5598–5604.
7. Sparks, A. B., Quilliam, L. A., Thorn, J. M., Der, C. J. & Kay, B. K. (1994) *J. Biol. Chem.* **269**, 23853–23856.
8. Cheadle, C., Iavashchenko, Y., South, V., Searfoss, G. H., French, S., Howk, R., Ricca, G. A. & Jaye, M. (1994) *J. Biol. Chem.* **269**, 24034–24039.
9. Alexandropoulos, K., Cheng, G. & Baltimore, D. (1995) *Proc. Natl. Acad. Sci.* **92**, 3110–3114.
10. Cicchetti, P., Mayer, B. J., Thiel, G. & Baltimore, D. (1992) *Science* **257**, 803–806.
11. Lim, W. A. & Richards, F. M. (1994) *Struct. Biol.* **1**, 221–225.
12. Feng, S., Chen, J. K., Yu, H., Simon, J. A. & Schreiber, S. L. (1994) *Science* **266**, 1241–1247.
13. Lim, W. A., Richards, F. M. & Fox, R. O. (1994) *Nature (London)* **372**, 375–379.
14. Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A. & Schlessinger, J. (1991) *Cell* **65**, 83–90.
15. Sudol, M., Kieswetter, C., Zhao, Y.-H., Dorai, T., Wang, L.-H. & Hanafusa, H. (1988) *Nucleic Acids Res.* **16**, 9876–9883.
16. Chen, J. K., Lane, W. S., Brauer, A., Tanaka, A. & Schreiber, S. L. (1993) *J. Am. Chem. Soc.* **115**, 12591–12592.
17. Malmqvist, M. (1993) *Nature (London)* **361**, 186–187.
18. Weng, Z., Thomas, S. M., Rickles, R. J., Taylor, J. A., Brauer, A. W., Seidel, D. C., Michael, W. M., Dreyfuss, G. & Brugge, J. S. (1994) *Mol. Cell. Biol.* **14**, 4509–4521.