Protein Interaction Networks and their use in Drug Discovery

Matteo Pellegrini Protein Pathways Inc.

Outline

Methods to infer protein couplings
Direct detection of protein-protein interactions
Analysis of co-evolution
Analysis of expression data

Properties of protein networks

Applications of protein networks
Identifying genes involved in osteoporosis

Cells Contain High Concentrations of Proteins that Participate in a Multitude of Interactions

Escherichia coli drawn to molecular scale by David Goodsell

Qualitative Protein Networks May be Reconstructed From Varied Data

Direct measurements of protein interactions

Analysis of co-evolving genes

Analysis of expression microarrays

Qualitative Protein Networks May be Reconstructed From Varied Data

Direct measurements of protein interactions

Experimental Methods for Detection of Protein-Protein Physical Interactions

Physical Interactions:

•Two hybrid

Co-purification

Protein Fragment Complementarity Assays

•Protein Chips

Database of Interacting Proteins (DIP)

Number of proteins	6963
Number of organisms	113
Number of interactions	18059
Number of unique experiments	21722
Number of articles	2110

Qualitative Protein Networks May be Reconstructed From Varied Data

Analysis of co-evolving genes

Co-Evolving Genes

Despite extensive genomic rearrangements that occur during evolution, certain pairs of genes are preserved

togethernearbyfused

in many genomes, and are thus considered to co-evolve

Example of Co-evolving Genes: Phylogenetic Profiles*

*Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO, Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. *Proc Natl Acad Sci U S A*. 96(8):4285-8, 1999

What is the Probability that two Genes Coevolve?

$$P(k \mid n, m, N) = \frac{\binom{n}{k}\binom{N-n}{m-k}}{\binom{N}{m}}$$

Co-evolving proteins are often found in the Same Functional Category

Information Storage and Processing

Translation, ribosomal structure and biogenesis Transcription DNA replication, recombination and repair

Cellular processes

Cell division and chromosome partitioning Posttranslational modification, protein turnover, chaperones Cell envelope biogenesis, outer membrane Cell motility and secretion Inorganic ion transport and metabolism Signal transduction mechanisms

Metabolism

Energy production and conversion Carbohydrate transport and metabolism Amino acid transport and metabolism Nucleotide transport and metabolism Coenzyme metabolism Lipid metabolism Secondary metabolites biosynthesis, transport and catabolism

Inferring Co-evolution Using Additional Methods

Method	Description
Gene fusion*	Pairs of genes that are fused in some organism
Gene Neighbor	Pairs of genes that are coded nearby in multiple organisms
Operon reconstruction	Reconstruction of bacterial operons based on intergenic spacing

*Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science, 285, 751-753.

Bacterial Co-evolution Network Using All Four Methods

Sources of Flagella Protein Interactions

Phylogenetic profile	29
Gene Neighbor	85
Rosetta Stone	1
From DIP	18
Multiple	34

Qualitative Protein Networks May be Reconstructed From Varied Data

Analysis of expression microarrays

Measuring Correlations in Expression Levels Reveals Co-transcribed Genes

Degree of Correlation

The degree of correlation between two genes is computed by the Pearson correlation coefficient:

$$C_{ij} = \frac{\sum_{n} (x_i^n - \overline{x}_i)(x_j^n - \overline{x}_j)}{\sqrt{\sum_{n} (x_i^n - \overline{x}_i)^2 \sum_{n} (x_j^n - \overline{x}_j)^2}}$$

Improving the Measurement of Expression Correlations

Correlated Experiments

Experiment 2

Uncorrelated Experiments

Experiment 1

Experiment 1'

Ergosterol Pathway Reconstruction is Enhanced by Decorrelating Expression Data

Correlated Experiments

Uncorrelated Experiments

Decorrelation Method Reveals Additional Pathway Relationships

Properties of Protein Networks

DIP Contains 11,000 Interactions Within 370 Networks

Number of proteins per network

Path Lengths of Linked Proteins

Path Length, L

Protein Networks Have High Local Connectivity

Low Connectivity

High Connectivity

Networks are Scale-Invariant

Network Hubs Tend to be Essential

Treating Osteoporosis by Discovering Genes Involved in Osteoclast Differentiation

Osteoporosis is a major public health threat for an estimated 44 million Americans

Osteoporosis Cell Based Assay

Can we identify other genes that control osteoclastogenesis and osteoclast activation?

Human Network

- Links are generated from the analysis of literature, co-evolution and co-expression
- 200,000 links between 20,000 human proteins
- Links are 70% accurate in recapitulating known pathway associations
- 30,000 links between 7000 proteins are supported by multiple methods

Experimental Validation of Computational Predictions

INR siRNA

Scrambled siRNA

Inhibition of Kinase X blocks osteoclast formation in RAW cells

TRAP assay/ oligofectamine transection/ 72 hr

Kinase X Properties

Narrow Tissue Distribution

Induced by RANK

Conclusions

•We have developed computational techniques for constructing networks of protein functional relationships

•These techniques search for pairs of proteins that are correlated across genomes, expression arrays or abstracts

•The networks may be used to assign genes to functional categories, predict essential genes and discover genes that regulate cellular differentiation

Acknowledgements

Protein Pathways

Christos Andronis Bill Boyle Peter Bowers Joseph Fierro Seenu Kothakota Kelly Oliner Darin Taverna Michael Thompson Steve Wickert UCLA David Eisenberg Todd Yeates Lukasz Salwinski Ioannis Xenarios

UT Austin Edward Marcotte