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Abstract
Background: Protein-protein interaction data used in the creation or prediction of molecular
networks is usually obtained from large scale or high-throughput experiments. This experimental
data is liable to contain a large number of spurious interactions. Hence, there is a need to validate
the interactions and filter out the incorrect data before using them in prediction studies.

Results: In this study, we use a combination of 3 genomic features – structurally known interacting
Pfam domains, Gene Ontology annotations and sequence homology – as a means to assign
reliability to the protein-protein interactions in Saccharomyces cerevisiae determined by high-
throughput experiments. Using Bayesian network approaches, we show that protein-protein
interactions from high-throughput data supported by one or more genomic features have a higher
likelihood ratio and hence are more likely to be real interactions. Our method has a high sensitivity
(90%) and good specificity (63%). We show that 56% of the interactions from high-throughput
experiments in Saccharomyces cerevisiae have high reliability. We use the method to estimate the
number of true interactions in the high-throughput protein-protein interaction data sets in
Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens to be 27%, 18% and 68%
respectively. Our results are available for searching and downloading at http://helix.protein.osaka-
u.ac.jp/htp/.

Conclusion: A combination of genomic features that include sequence, structure and annotation
information is a good predictor of true interactions in large and noisy high-throughput data sets.
The method has a very high sensitivity and good specificity and can be used to assign a likelihood
ratio, corresponding to the reliability, to each interaction.

Background
Protein-protein interactions in various organisms are
increasingly becoming the focus of study in the identifica-
tion of cellular functions of proteins. Though small scale
experiments have contributed significantly to our knowl-
edge of protein-protein interactions, the bulk of the data
is available from high-throughput methods like yeast two

hybrid (Y2H) and mass spectrometry of coimmunopre-
cipitated complexes (Co-IP) [1]. Such data is currently
available for H. pylori [2], S. cerevisiae (baker's yeast) [3-6],
C. elegans [7], D. melanogaster [8] and H. sapiens [9]. How-
ever, protein-protein interaction data obtained from high-
throughput experiments is thought to have a large
number of false positives i.e. interactions that are spurious
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or biologically irrelevant, and do not occur in the cell [10].
This fraction is estimated to be as high as 50% in yeast
[1,11]. Since the false positives are unknown, there is no
consensus on which interactions from these data sets
should be used in prediction studies. Studies that use all
the interactions run the risk of predicting spurious ones
[12], while those that completely ignore the high-
throughput data are limited by the amount of data from
small scale experiments[13]. For some high-throughput
studies, the authors specify the reliable interactions as
'high confidence' or 'core' interactions [4,7,8] which have
fewer false positives but which do not take into account
those low confidence interactions which are known to be
true. Hence it is important to quantify the reliability of
these interactions and identify the true positives i.e. inter-
actions that actually occur in the cell.

Several methods have been previously used to identify
true interactions from high-throughput experimental data
in yeast. Sequence homology was used by Deane et al. [14]
in the form of a paralogous verification method (PVM)
whereby an interaction in yeast is judged to be true if the
concerned proteins have paralogs that interact as well. But
these results are limited by the number of proteins that
have known paralogs. They also used similarity in gene
expression profiles to identify true positives [14]. Structur-
ally known interactions were used by Edwards et al., who
compared experimental interactions found in RNA
polymerase II, Arp2/3 complex and the proteasome with
those observed in the 3D structures [15]. Though this
method has a high reliability, it is limited by the number
of structures available in Protein Data Bank (PDB) [16].
von Mering et al. found the interactions in yeast that are
observed in more than one high-throughput experiment
to estimate the fraction of true positives [1]. The results
obtained were surprisingly small in this case due to inher-
ent biases in different experimental methods. Database
annotations have been used by Sprinzak et al. in the form
of co-localization data of the interacting proteins and
their cellular role to estimate the number of true positive
interactions in yeast [11]. However, not all model organ-
isms have well annotated genomes. Interaction network
topology is another means of identifying true interactions.
Saito et al. used an interaction generality measure (IG2),
based on the topological properties of the interaction net-
work, to assess the reliability of an interaction [17]. Bader
et al. used screening statistics and network topology to
quantify the confidence of each interaction [18]. Though
these methods have a high specificity (low false positive
rate), they have low sensitivity (low true positive rate),
since the number of proteins with more than one interac-
tion partners is relatively few.

Since none of the methods give a good performance (high
sensitivity and specificity) by themselves, it follows that a

combination of methods would perform better. Jansen et
al. have shown that a combination of genomic features
results in a more accurate prediction of the yeast protein
interaction network [19]. In this study, we use a similar
approach of combining various genomic features using
naïve Bayesian networks to predict the true interactions in
high-throughput data sets.

In selecting the genomic features to be used in our model,
we decided to combine sequence, structure and database
annotation information about the interaction. Sequence
information was incorporated through homologous
interactions. We used our Homologous Interactions
(HINT) database [20] to obtain homologs for all high-
throughput interactions [21]. Structure information was
incorporated in the form of interacting Pfam domains
[22] found in the PDB. We used the 3did database to
obtain a list of such Pfam domains [23]. Database anno-
tation information was used in the form of Gene Ontol-
ogy (GO) terms used to describe the interacting proteins
[24].

We computed the reliability of each feature using likeli-
hood ratios and combined their evidence using naïve
Bayesian networks in order to predict the true interactions
from high-throughput data sets. Bayes' rule provides a
good method to estimate posterior odds of an event in the
presence of prior evidence [25]. Bayesian approaches have
also been used frequently in the past to calculate the reli-
ability or to assign probabilities to protein-protein inter-
actions [15,19,26].

In this study, we show that an interaction can be judged to
be true if either or all of the following are true:

1. the interacting proteins have homologs that interact,

2. the interacting proteins each have a Pfam domain
found to interact with the other in PDB and,

3. the interacting proteins have at least one identical GO
annotation.

We used protein-protein interaction data from the Data-
base of Interacting Proteins (DIP) [27] (July 2004 release)
and IntAct [28] (September 2004 release). We prove our
hypothesis first in yeast by estimating likelihood ratios for
high-throughput interactions based on the number of
known true positives and false positives using Bayesian
network approaches. Based on these results, we estimate
the number of true positives in the high-throughput data
sets of S. cerevisiae, C. elegans, D. melanogaster and H. sapi-
ens. The results can be searched at and downloaded from
our website [29].
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Results
Calculating the reliability of each genomic feature
We used protein-protein interactions from high-through-
put data sets for yeast as our test set to calculate the relia-
bility of each genomic feature (see Methods). Of these
12,674 interactions, we chose a set of 3464 interactions as
our gold standard – 1479 as the positive gold standard
and 1985 interactions as the negative gold standard (see
Methods). Our goal was to maximize the interactions
identified in the gold positive set (high sensitivity) and at
the same time minimize the number of interactions iden-
tified in the gold negative set (high specificity).

In these interactions, we identified all those that had
homologous interactions. The true positives (TP) were
those interactions with homologs that were in the gold
positive set, and the false positives (FP) were those that
were in the gold negative set. Using these values, we calcu-
lated the likelihood ratio (L) for the genomic feature of
'homologous interactions' (see Methods). Similarly, we
calculated the likelihood ratios for the other two genomic

features – interacting proteins with at least one identical
GO annotation and interacting proteins having one of 2
Pfam domains known to interact in PDB. We also calcu-
lated the likelihood ratio for the absence of genomic
features.

Figure 1 shows the likelihood ratios calculated. Likeli-
hood ratio (L) expresses the reliability of each genomic
feature. An L > 1 indicates the ability of the genomic fea-
ture to identify more true positives than false positives. As
seen in Figure 1, all the genomic features have L values
greater than 1. The absence of any genomic feature to sup-
port the interaction results in L < 1. This indicates that in
the absence of any support from the selected genomic fea-
tures, the interaction is more likely to be a false one. Inter-
acting Pfam domains in the interacting proteins gives the
highest L showing that interactions with evidence from
structural data have the highest reliability. This is followed
by the L values of similar GO annotations for interacting
proteins and the presence of homologous interactions
respectively.

Likelihood ratios for genomic featuresFigure 1
Likelihood ratios for genomic features.
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Table 1: Yeast high-throughput data sets

Data set Interactions Type

Uetz et al. [3] 1438 Y2H
Ito et al. [4] 4449 Y2H
Gavin et al. [5] 3757 Co-IP (spoke model)
Ho et al. [6] 3618 Co-IP (spoke model)
Total unique interactions 12674 Binary

Y2H: Yeast two-hybrid; Co-IP: Mass Spectrometry of coimmunoprecipitated complexes, converted to binary interactions using the spoke model.

Table 2: Sources of Gold Standard Positive yeast protein interaction data

Data set Interactions Type

MIPS interactions 574 Y2H
MIPS complexes 490 Co-IP (matrix model)
Small scale interactions from DIP and IntAct 110 Y2H
More than one high-throughput data sets 305 Y2H ([3, 4]) Co-IP (spoke model) [5, 6]
Total 1479 Binary

Y2H: Yeast two-hybrid; Co-IP: Mass Spectrometry of coimmunoprecipitated complexes, expanded by spoke or matrix model as indicated.

Table 3: Correlation coefficients of the genomic features for 100 random interactions

Genomic Features r t(98) p-value

Homologous Interactions – Similar GO annotations -0.12605 -1.2579 0.2401
Homologous Interactions – Interacting Pfam Domains 0.022501 0.222802 0.8826
Similar GO annotations – Interacting Pfam Domains -0.01817 -0.17988 0.2868

r: Pearson's correlation coefficient; t(98): t-test with 98 degrees of freedom; p-value: probability. Since the p-value for all t-tests is greater than the 
significance level of 0.05, the null hypothesis, that the genomic features are not correlated, is accepted.

Table 4: Likelihood ratio, sensitivity and specificity for the combination of different genomic features

Genomic Feature(s) Likelihood ratio (L) Sensitivity (%) Specificity (%)

d + g + h 170.052 12.3 99.4
d + g 66.031 14.5 99.3
d + h 50.463 14.7 99.2
d 19.595 14.8 99.2
g + h 8.678 44.1 94.0
g 3.370 86.7 74.3
h 2.575 89.7 62.9
none 0.163 100 0

d: interacting Pfam domains; g: similar GO annotations; h: homologous interactions. More than one genomic features are indicated by listing the 
features separated by a '+' sign.
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Using naïve Bayesian Networks to combine the evidence of 
genomic features
We used naïve Bayesian networks to combine the evi-
dence of each genomic feature for a particular interaction.
Since naïve Bayesian networks require that the genomic
features be conditionally independent of each other, we
calculated the Pearson's correlation coefficient for a pair
of genomic features to ascertain their independence (see
Methods). We then combined the evidence of each inter-
action by simply multiplying the L values of each genomic
feature found for the interaction. Thus, to each interaction
in the gold set of 3464 interactions, we assigned an L value
based on the genomic features it had. An L value greater
than 1 represents higher posterior odds of an interaction
being true than prior odds (see Methods). Hence all inter-
actions with an L value greater than 1 were predicted as
true. Table 4 shows the L values obtained for each possible
combination of genomic features supporting an
interaction. For instance, an interaction that is supported
by the presence of all 3 genomic features has the highest L
value, thus having the highest probability of being true.

Assessing the accuracy of the predictions in yeast
To assess the accuracy of our method, we identified the
number of predicted true interactions in the gold positive
set and those in the gold negative set respectively. We con-
ducted 10-fold cross-validation on the limited set of yeast
high-throughput interactions to calculate the sensitivity
and specificity of the method. Figure 2 shows the receiver
operating characteristic (ROC) curve for our method.
Each point on the ROC curve denotes the sensitivity and
specificity obtained on the inclusion of interactions with
a lower L value. A particular L value is associated with a
specific combination of the 3 genomic features (Table 4).
Thus, including the interactions supported by the pres-
ence of all 3 genomic features (d+g+h) in the results gives
a sensitivity of 12.3% and a specificity of 99.4%. On fur-
ther including interactions supported by interacting Pfam
domains and similar GO annotations (d+g), the sensitiv-
ity rises to 14.5% and the specificity marginally decreases
to 99.3%. As interactions supported by each individual
feature or other combinations of features that have an L >
1, are included in the results, the sensitivity increases at
the cost of specificity. Thus our method predicts
interactions, which are supported by at least one of the 3
genomic features, to be true with a sensitivity of 89.7%
and a specificity of 62.8%.

Predicting true interactions in all high-throughput data 
sets
We used our method to assign L values to all interactions
in three other high-throughput data sets for C. elegans, D.
melanogaster and H. sapiens [7-9]. We also assigned L val-
ues to the interactions in yeast high-throughput data sets
[3-6] that were not part of the gold standard. We predicted

all interactions with L > 1 as true interactions. Table 5
shows the distribution of the predicted true interactions
across different L values for each species. Figure 3 shows
the percentage of interactions predicted as true in the
high-throughput data sets of each species.

Authors of the high-throughput data sets usually assign a
confidence level to interactions. Those interactions that
are either reconfirmed experimentally or have a high
probability of being true based on some statistical method
are deemed as high confidence with the rest being low
confidence interactions. We tested the overlap between
our predicted true interactions and the high and low con-
fidence data sets given by the authors. As seen in Figure 4,
more high-confidence interactions are predicted as true in
all data sets, except in H. sapiens [9]. For instance, 52.8%
of the high confidence interactions in yeast are predicted
to be true by our method, as opposed to 27.9% of the low
confidence interactions.

Some validated predictions
Figure 5 shows two instances where our method predicts
low confidence interactions to be true. Figure 5A gives the
interactions between the proteins ps, mub, bl and aret.
These proteins have all been recently shown to co-regulate
the alternative splicing of Dscam exon 4 in D. melanogaster
[30]. Figure 5B shows the interactions between the Lsm
proteins in the mRNA degradation process in yeast that
were predicted to be true by our method. These interac-
tions were later confirmed by similar ones in the human
mRNA degradation process [31].

Discussion
We present here a method to identify the true interactions
in high-throughput protein-protein interaction data sets
using a combination of three genomic features. We used
the likelihood ratio (L) to evaluate the accuracy and relia-
bility of each genomic feature. We combined the evidence
from each genomic feature using naïve Bayesian net-
works. Our method gives a sensitivity of 89.7% which is
higher than any of the other methods used so far. Our
method also has a good specificity at 62.9%. We chose the
three genomic features to maximize the inclusion of all
aspects of information about the interactions.

Structure information was incorporated through Pfam
domains found to interact in PDB structures in the 3did
database. As would be expected, this feature has the
highest accuracy and reliability as shown by its high L
value (Figure 1). As seen in the ROC curve (Figure 2), this
genomic feature gives the lowest number of false positives
(high specificity). However, the number of true positives
(sensitivity) is limited by the small number of complex
structures in PDB that can be used to identify interacting
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ROC curve for the combination of genomic features using 10-fold cross validationsFigure 2
ROC curve for the combination of genomic features using 10-fold cross validations. The dotted line shows the 
empirical ROC curve, while the solid line shows the fitted ROC curve (obtained using JROCFIT). Each point on the ROC curve 
corresponds to sensitivity and specificity for one or a combination of more than one genomic features. d: interacting Pfam 
domains; g: similar GO annotations; h: homologous interactions; none: no genomic features. More than one genomic features 
are indicated by listing the features separated by a '+' sign.

Table 5: Number of interactions in different ranges of likelihood ratios for high-throughput data sets of various species

Likelihood ratio (L) H. sapiens D. melanogaster C. elegans S. cerevisiae

0 – 1 541 16655 2925 5534
1 – 10 733 3119 852 5810
10 – 100 362 367 139 824
100 – 1000 50 260 99 506
Total 1686 20401 4015 12674

All interactions with a Likelihood ratio > 1 are predicted as true.
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Pfam domains. The sensitivity will significantly improve
as the number of structures in PDB increases.

Database annotations were included through the use of
GO annotations of the interacting proteins. This feature
shows the second highest reliability (Figure 1). It is also
able to identify the maximum number of true positives.
Indeed, Lin et al. have recently shown that GO annota-
tions are the dominant contributors in predicting protein-
protein interactions [32]. As the number of annotated
proteins increases, this method promises to be useful in
filtering interaction data.

Sequence information was included in the form of
homologous interactions found using the HINT database.
Homologous interactions do not give the reliability
expected (Figure 1), perhaps because they are not limited
to orthologous or paralogous interactions. However, it is

the only feature that does not require any protein
annotations and is useful in identifying true interactions
of un-annotated or hypothetical proteins. Methods based
on network topology [17,18] are also independent of pro-
tein annotations and would be a useful addition to the
genomic features. However, we have not considered it in
the current study.

Though evidence from each feature can independently
predict an interaction to be true, a combination of 2 or
more features performs better (Table 4). For instance, the
combination of interacting Pfam domains and similar GO
annotations (d+g) or interacting Pfam domains and
homologous interactions (d+h), has a higher L value than
either of the features independently. Both combinations
increase the sensitivity without much compromise in the
specificity. Similarly, a combination of similar GO anno-
tations and homologous interactions (g+h), predicts an

Percentage of interactions predicted true across different high-throughput data setsFigure 3
Percentage of interactions predicted true across different high-throughput data sets.
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interaction to be true with a higher probability than each
feature independently. This combination too adds to the
sensitivity with only a slight decrease in the specificity.
Surprisingly, evidence from interacting Pfam domains (d)
performs better than that of the combination of the other
two features (g+h), highlighting the importance of the
incorporation of structural evidence.

Due to the absence of information about non-interacting
proteins, we prepared our gold negative set from proteins
that have different subcellular localizations. However,
some interactions are transient with interacting proteins
residing in the same sub-cellular compartment for only a
small fraction of their life time. As a result, some of the
interactions in the gold negative set are actually true. Thus,
the specificity of our method is probably higher than
62.9%.

Using the evidence of the three genomic features, we pre-
dicted the number of true interactions in various high-

throughput data sets. Our prediction of 56.3% true inter-
actions in yeast high-throughput data sets is in conform-
ance with the previous estimates of the number of false
positives in these data sets [1,11]. However, yeast Y2H
[3,4] and Co-IP data sets [5,6] show very different num-
bers of true positives independently – 37% and 73%
respectively (data not shown). The D. melanogaster data set
[8] shows a very low rate of true positives. One reason
could be that this experiment was performed using most
of the predicted transcripts in the D. melanogaster genome,
including biologically irrelevant ones. The C. elegans data
set [7] includes a higher percentage of true positives than
D. melanogaster, perhaps because the experiment was per-
formed only on a restricted set of predicted proteins
related to multi-cellular functions. The H. sapiens data set
[9] shows the highest number of true positives at 67.9%.
This data set was obtained from a study that focused on
the identification of putative protein complexes in the
TNF-α/NF-κB signal transduction pathway using Co-IP
[9]. There are two possible reasons for the high number of

Percentage of interactions predicted true in high and low confidence interactions across different high-throughput data setsFigure 4
Percentage of interactions predicted true in high and low confidence interactions across different high-throughput data sets.
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true positives. Firstly, the choice of proteins from a spe-
cific signal transduction pathway precludes many random
interactions between proteins of unrelated functionality.
Secondly, the Co-IP approach to the identification of pro-
tein complexes, and thus interactions, is known to have a
low false positive rate of around 20% [1,9], in comparison
to Y2H approaches. This is also reflected in the prediction
of a larger number (73%) of true positive interactions in
the Co-IP data sets of yeast[5,6] by our method.

We also studied the overlap of the predicted true interac-
tions with the high-confidence and low-confidence
interactions as given by the respective authors. Though the
number of interactions predicted in high-confidence data
sets is higher, 17–28% of the interactions in low-confi-
dence data sets are also predicted to be true, except in the
H. sapiens data set. This shows that some low-confidence
interactions can be biologically relevant. When compared
to other data sets, the predicted true interactions in H.
sapiens data set show a much higher overlap (68.7%) with
the low confidence interactions. This is because the high
confidence data set given by Bouwmeester et al. primarily
focuses on interactions, novel or otherwise, that are most
likely to be a part of the signalling cascade triggered by
TNF-α [9]. Hence, interactions of proteins that are also

part of other systems, like the cell cycle, are not included
in this high confidence data set. These include interac-
tions of nucleasome assembly proteins and MCM
proteins, among others. Other interactions which have
been filtered out include those of frequently copurified
proteins like the Heat Shock Proteins. In order to limit
their interaction map to the TNF-α/NF-κB signal transduc-
tion pathway, the authors have chosen a very stringent sta-
tistical criterion to identify the interactions of proteins
that are expressed well above their normal levels on being
triggered by TNF-α [9]. As a result, the high confidence
data set as given by Bouwmeester et al. forms only 10% of
the total interactions identified in their study, while our
method predicts a large number of low confidence inter-
actions to be true.

We were also able to confirm several of the low confi-
dence interactions, that were predicted as true, in litera-
ture using iHOP [33]. In fact, most of the interactions of
the Lsm proteins, shown in Figure 5B, are found in iHOP.
Several interactions from the human dataset are also
found in iHOP and the Human Protein Reference Data-
base [34]. Among others, these include the low confi-
dence interactions of the C-Rel proto-oncogene with
itself, NK-κB p105 subunit, NF-κB p100/p49 subunits,

Some low confidence interactions predicted to be true by our method and confirmed by other publicationsFigure 5
Some low confidence interactions predicted to be true by our method and confirmed by other publications. 
The Likelihood ratio for each interaction is indicated. Interactions with a Likelihood ratio greater than 100 are shown with a 
solid line, while those with a Likelihood ratio less than 10 are shown with a dashed line. (A) Interactions between proteins co-
regulating the alternative splicing of Dscam exon 4 in D. menalogaster. (B) Interactions between proteins in the Lsm1-7 complex 
in S. cerevisiae confirmed by similar interactions found in H. sapiens.
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Heat shock cognate 71 kDa protein and NF-κB beta inhib-
itor. This further reiterates the biological relevance of a
large number of low confidence interactions.

Conclusion
In this study, we show that a combination of genomic fea-
tures that includes sequence, structure and annotation
information, can be used to identify true interactions
from high-throughput protein-protein interaction data
sets. We use likelihood ratios to assess the reliability of
each genomic feature and combine their evidence using
naïve Bayesian networks. We provide a likelihood ratio
for each predicted true interaction based on the evidence
that supports it. Our method has a high sensitivity and a
good specificity. The results of our study are available on
our website [29]for search and download.

Methods
Yeast high-throughput data sets
Table 1 shows the number and type of interactions from
the 4 yeast high-throughput data sets used. Data inferred
from mass spectrometry of coimmunoprecipitated com-
plexes (Co-IP) is converted to binary interactions using
the spoke model (the spoke model has been previously
shown to be more reliable than the matrix model
[18,35]).

Gold standard data sets
The gold standard positive data set consisted of:

1. all physical interactions from MIPS [36] yeast two-
hybrid data (excluding interactions from Uetz et al. [3]
and Ito et al.[4]),

2. MIPS complexes data (excluding complexes from Gavin
et al. [5] and Ho et al.[6]),

3. small-scale yeast-two hybrid experimental data from
DIP and IntAct and,

4. interactions found in more than one high-throughput
data sets.

Table 2 shows the number and type of interactions from
each data set. For this study, the gold standard positives
are limited to those found in the yeast high-throughput
data sets i.e. 1479 interactions, instead of all possible gold
standard positives. This is because the aim is to identify
the true protein-protein interactions in high-throughput
data setsin yeast, as opposed to predicting all true protein-
protein interactions in yeast.

The gold standard negative data set is derived from pro-
tein localization data in yeast cells [37]. Proteins that do
not exist in the same sub-cellular compartment are

assumed to be non-interacting since the majority of the
interactions occur between proteins in the same sub-cellu-
lar compartment [19,38,39]. As with the gold standard
positive, the gold standard negative data set is also limited
to those interactions found in the yeast high-throughput
data sets i.e. 1985.

Genomic features
In order to predict true interactions, we identified those
that have at least one of the following genomic features
based on:

1. Homologous interactions – Using our HINT database
[21], we identified all interactions from high-throughput
data sets that had homologous interactions, including
orthologous or paralogous interactions. An interaction is
deemed as homologous to a given interaction when each
of its interacting proteins has homologs that are found to
interact in DIP or IntAct. Homologs of interacting pro-
teins are identified by HINT using PSIBlast with 5 itera-
tions and an E-value cut-off of 10-8.

2. GO annotations – Using data from the GO database
[24], we identified all interactions from high-throughput
data sets where the interacting proteins shared at least one
GO term, since interacting proteins generally share a com-
mon function [39].

3. Interacting Pfam domains – We identified interactions
in high-throughput data sets, where each of the interact-
ing proteins had one of the two Pfam domains that were
found to interact in PDB structures by the 3did database
[23].

Correlation between genomic features
The correlation between each genomic feature was calcu-
lated using Pearson's correlation coefficient for 100 ran-
dom interactions from the high-throughput data sets. The
significance of each correlation coefficient was tested
using a t-test with 98 degrees of freedom. Table 3 shows
the correlation coefficients, t values and the probability.
All the genomic features were found to be independent of
each other.

Bayesian networks
Bayesian networks can be used to combine evidence from
different sources and calculate the posterior odds of an
event based on prior evidence [25]. The relation between
the posterior odds and prior odds of finding a true inter-
action is given by Bayes' rule as follows:

Oposterior = L(g1, g2, g3,..., gN) Oprior, (1)

where g1, g2, g3,....., gN are genomic features of an
interaction,
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Oprior = prior odds of an interactions being true,

Oposterior = posterior odds of an interaction with N
genomic features being true,

L(g1, g2, g3,..., gN) = likelihood ratio of an interaction with
genomic features.

where P (true) = probability of an interaction being true.

where P(true|g1, g2, g3,..., gN) = probability of an interac-
tion with N genomic features being true.

From equation (1), the likelihood ratio is,

,

where P (g1, g2, g3,..., gN |true) = probability of a true inter-
action having N genomic features.

If the N genomic features, g1, g2, g3,......, gN, are condition-
ally independent, then the resulting Bayesian network is
called a naïve Bayesian network and its likelihood ratio
can be given as the product of the likelihood ratios for
each feature:

where T = all true interactions (gold standard positives),

F = all false interactions (gold standard negatives),

TPi = number of true interactions in the high-throughput
data set with the ith feature

FPi = number of false interactions in the high-throughput
data set with the ith feature

For any organism, L(g1, g2, g3,..., gN) > 1, results in Oposte-

rior > Oprior. This is because, in equation (1), Oprior is a con-
stant and depends on the number of interactions in any
organism. Hence, Oposterior is directly proportional to L(g1,
g2, g3,..., gN). Thus, the posterior odds of an interaction
being true, if it has one or more genomic features,
increases as L(g1, g2, g3,..., gN) increases i.e. larger the L(g1,
g2, g3,..., gN), the higher are the odds of an interaction
being true.

ROC curve analysis
A Receiver Operating Characteristic (ROC) curve is a
graphical representation of the accuracy of a test and
expresses the trade-off between the sensitivity and the spe-
cificity of the test [40]. Sensitivity of a test is defined as the
ability to identify a true positive in a data set. Specificity is
defined as the ability to identify a true negative in a data
set.

where TP = number of true positives,

TN = number of true negatives,

FP = number of false positives,

T = total number of positives,

F = total number of negatives.

The ROC curve is plotted with the Sensitivity on the Y-axis
and (1-Specificity) on the X-axis. The smooth ROC curve
is plotted using JROCFIT [41].

Cross-validation
Since the training set (data set used to calculate the likeli-
hood ratios) and the test set (data set used to calculate the
sensitivity and specificity) are the same yeast high-
throughput data set, we used 10-fold cross-validation to
assess our predictions. We divided the positive and nega-
tive gold standards into 10 approximately equal sets. We
used 9 of these to calculate likelihood ratios for each
genomic feature. Then we identified the true positives and
false positives in the remaining set using these likelihood
ratios. We did this in turn, so that each of the 10 sets was
a test set and the remaining 9 sets were training sets. We
then summed the number of true positives and false pos-
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itives across all the 10 test sets to obtain the Sensitivity and
Specificity and plotted the ROC curve.
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