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ABSTRACT

The availability of computerized knowledge on
biochemical pathways in the KEGG database opens
new opportunities for developing computational
methods to characterize and understand higher level
functions of complete genomes. Our approach is
based on the concept of graphs; for example, the
genome is a graph with genes as nodes and the
pathway is another graph with gene products as
nodes. We have developed a simple method for
graph comparison to identify local similarities,
termed correlated clusters, between two graphs,
which allows gaps and mismatches of nodes and
edges and is especially suitable for detecting biological
features. The method was applied to a comparison of
the complete genomes of 10 microorganisms and the
KEGG metabolic pathways, which revealed, not
surprisingly, a tendency for formation of correlated
clusters called FRECs (functionally related enzyme
clusters). However, this tendency varied considerably
depending on the organism. The relative number of
enzymes in FRECs was close to 50% for Bacillus
subtilis and Escherichia coli, but was <10% for
Synechocystis and Saccharomyces cerevisiae. The
FRECs collection is reorganized into a collection of
ortholog group tables in KEGG, which represents
conserved pathway motifs with the information
about gene clusters in all the completely sequenced
genomes.

INTRODUCTION

The biological function of a nucleic acid or protein molecule is
encoded in the linear arrangement of nucleotide or amino acid
units. With the accumulation of sequence data in the publicly
available databases and with the sophistication of various
computational methods, sequence analysis has become an
extremely powerful tool to uncover functional properties of
these molecules. In general, however, the biological function is
a result of many interacting molecules; it cannot be attributed

to just a single molecule. The information about molecular
interactions is at least as important as the information about
individual molecules for the understanding of any biological
function. This is especially true for the analysis of complete
genome sequences, which requires concurrent prediction of
how a set of genes and proteins are networked to make up a
functioning biological system.

Although not explicitly stated, traditional molecular biology
contains such a systemic view of biological function. In order
to understand a specific functional aspect, say metabolism,
signal transduction, cell cycle or apoptosis, experiments have
been performed not simply to isolate genes and proteins
that play key roles, but rather to uncover biological processes
—reactions and pathways—involving those genes and
proteins. The problem here is that such experimental data and
accumulated knowledge are not well computerized and conse-
quently very few computational methods have been developed
to analyze reactions and pathways. The sequence databases,
such as SWISS-PROT (1), may occasionally contain
comments on cellular processes or links to bibliographic data-
bases, but this is in no way comprehensive. Besides, there is a
problem of ontology; a function is inherently an attribute of a
single sequence or a single molecule. Sequence databases are
not suitable for analyzing higher level function, which should
be attributed to a network of interacting molecules.

We have been computerizing current knowledge on cellular
processes in KEGG (2,3), whose primary objective is to link
genomic information with higher level functional information:
a functional reconstruction for each genome that has been
sequenced. KEGG contains three main databases: PATHWAY
for representation of higher order functions in terms of the
network of interacting molecules; GENES for the collection of
gene catalogs of all the completely sequenced genomes and
some partial genomes; and LIGAND (4) for information about
chemical compounds, enzyme molecules and enzymatic
reactions. Currently the best organized part of the KEGG/
PATHWAY database is metabolism, which is represented by
about 90 metabolic pathway diagrams. While there have been
similar attempts to computerize metabolic pathways, such as in
EcoCyc (5) and MPW/WIT (6), the KEGG databases are
intended not only for searches and browsing but also for
computation of network data.

*To whom correspondence should be addressed. Tel: +81 774 38 3270; Fax: +81 774 38 3269; Email: kanehisa@kuicr.kyoto-u.ac.jp
Present addresses:
Hiroyuki Ogata, Information Génétique et Structurale, CNRS-UMR 1889, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
Wataru Fujibuchi, National Center for Biotechnology Information, National Institutes of Health, Building 38A, Room B2N14, Bethesda, MD 20894, USA



4022 Nucleic Acids Research, 2000, Vol. 28, No. 20

It is well known that a set of genes for enzymes catalyzing
successive reactions in a specific metabolic pathway is some-
times found in an operon in bacterial genomes (7). Although
such gene clusters on the chromosome imply common
mechanisms of gene regulation, it is still unclear to what extent
the correlation is conserved or diversified among different
organisms with a wide variety of physiology. In this paper an
automatic procedure is presented to extract ‘functionally
related enzyme clusters’ (FRECs) based on a new graph
comparison algorithm that analyzes physical distance of
enzyme genes in the genome and functional relatedness of
enzymes in the metabolic pathways. In addition to such a
genome–pathway comparison, the algorithm can be applied to
other types of comparisons, especially genome–genome
comparisons (8). Here we report a comparative analysis of
FRECs in 10 microorganisms with complete genome
sequences, and the development of KEGG ortholog group
tables that extend the FRECs collection to include additional
complete genome sequences.

MATERIALS AND METHODS

Databases

The complete genomes were analyzed for 10 microorganisms:
the bacteria Escherichia coli (9), Haemophilus influenzae (10),
Helicobacter pylori (11), Bacillus subtilis (12), Mycoplasma
genitalium (13), Mycoplasma pneumoniae (14) and
Synechocystis PCC6803 (15), the archaea Methanococcus
jannaschii (16) and Methanobacterium thermoautotrophicum
(17) and the eukaryote Saccharomyces cerevisiae (18)
(Table 1). They are part of the GENES database in KEGG
(http://www.genome.ad.jp/kegg/kegg2.html ). The sequence
data and the catalog of genes were taken from the complete
genomes section of GenBank (19). The annotation of each
gene is maintained in KEGG in a relational database, which
contains composite information taken from the original data-
base of each genome project, from the GenBank database and
from the SWISS-PROT database (1), as well as additional
annotation by KEGG, especially the EC number assignment.

The specific organism metabolic pathways are automatically
generated in KEGG by matching the EC numbers for the
enzyme genes in the genome and the EC numbers for the
enzymes in the KEGG reference metabolic pathway diagrams.

In KEGG the reference pathway diagrams were first
collected from two printed sources (20,21) and continuously
modified and updated according to other literature. In addition
to such graphical diagrams, an extensive collection of KEGG
metabolic pathways is represented in a computable form called
the binary relation (22). A binary relation of two enzymes
represents two successive reaction steps. In this study, the
E.coli metabolic pathway data were examined in detail also
using EcoCyc (4) and other references (23–25). The E.coli
operon data were taken from the compilation by Blattner et al.
(9), which included experimentally confirmed operons as well
as predicted ones. We used an enzyme-related subset of their
data totaling 118 operons, each of which contains two or more
enzyme genes that appear in the E.coli metabolic pathways.

Graph representation

An essential procedure in our analysis is to extract a set of
enzymes that catalyze successive reactions in the metabolic
pathway and that are encoded in close locations on the chromo-
some. Such a set of enzymes is termed a FREC. The extraction
of FRECs thus requires a comparison of the ordering of genes
in the genome and the clustering of enzymes (gene products) in
the pathway, which is formulated here as a comparison of two
graphs.

Let us consider a labeled, undirected graph G(V,E), where V
is a series of named vertices (nodes) and E is a set of edges. In
a standard view the metabolic pathway is a graph with
chemical compounds as vertices and reactions (enzymes) as
edges. Here an alternative view is taken; the metabolic
pathway is treated as a graph with enzymes (gene products) as
vertices and chemical compounds as edges. Thus, two adjacent
vertices representing successive enzymes or reaction steps in
the pathway are connected by at least one edge representing a
specific chemical compound which is both a substrate of one
reaction and a product of the other reaction. For simplicity, all

Table 1. The numbers of data used for genome–pathway comparisons

aThe number of genes coding for the enzymes that appear in the KEGG metabolic pathways.

Category Species (abbreviation) Genome Pathway

Proteins Enzymesa Reactions Binary relations

Bacteria E.coli (Eco) 4289 665 761 1223

H.influenzae (Hin) 1709 332 476 690

H.pylori (Hpy) 1566 220 326 404

B.subtilis (Bsu) 4100 466 607 869

M.genitalium (Mge) 480 66 109 116

M.pneumoniae (Mpn) 677 80 118 131

Synechocystis (Syn) 3168 402 513 697

Archaea M.jannaschii (Mja) 1770 257 278 345

M.thermoautotrophicum (Mth) 1869 330 250 282

Eukaryote S.cerevisiae (Sce) 6241 617 574 851
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reactions are considered to be reversible; therefore, the
metabolic pathway is an undirected graph.

The genome is a one-dimensionally connected graph whose
vertices correspond to genes. The sequential order of the genes
is defined by the first nucleotide positions of the genes in one
strand and the last nucleotide positions of the genes on the
complementary strand. Then two adjacent genes on the
chromosome are considered to be connected by a single edge,
ignoring the direction of transcription. Thus, a double-stranded
circular DNA genome is represented as a connected graph in a
circular form and a eukaryotic genome with several linear
chromosomes is represented as a graph comprised of
separately connected subgraphs.

Graph comparison algorithm

To compare two graphs it is necessary to identify corres-
ponding vertices. The correspondences between genes in the
genome and gene products (enzymes) in the metabolic
pathway are given by matching EC numbers. Then, a list of
correspondences between the vertices of the genome and those
of the pathway can be regarded as a set of virtual edges that
connect the vertices across the two different graphs under
consideration. In general, the correspondences can be many-to-
many, because an enzyme may catalyze different reactions in
the metabolic pathway and a reaction may be catalyzed by a
multi-component enzyme complex. Given newly introduced
virtual edges (correspondences of nodes), the extraction of a
FREC becomes a problem of detecting a cluster of virtual
edges formed by clusters of corresponding vertices on both of
the graphs, as illustrated in Figure 1. Thus, a FREC is a typical
example of a correlated cluster. In order to implement this
notion of FRECs, we have developed a heuristic algorithm that
compares two graphs with a list of corresponding vertices.

Consider two graphs, G1(V1,E1) and G2(V2,E2), and a matrix
representing the correspondences between V1 and V2. Here V
and E denote sets of vertices and edges, respectively, in graph
G and n is the number of one-to-one correspondences between
V1 and V2. Many-to-many correspondences are decomposed
into one-to-one correspondences and stored in different rows
of the matrix. Let us first regard each row of the matrix as an
individual cluster. Then we obtain n initial clusters. Since an
initial cluster i (i = 1, ..., n) is associated with one vertex in one
graph, v1i ∈ V1, and one vertex in the other graph, v2i ∈ V2, we
utilize two measures for the distance between the initial
clusters i and j. One, denoted by d1(i,j), is defined as the length
of the shortest path between v1i and v1j in graph G1 and the
other, denoted by d2(i,j), is defined in the same way in graph
G2. Detection of FRECs is achieved by adopting a single
linkage clustering algorithm using the following function
δ(i,j).

1 if min
r,s

{d1(r,s)r ∈ Ci,s ∈ Cj} ≤ 1 + Gap1

and
δ(i,j) = min

r′,s′
{d2(r′,s′)r′ ∈ Ci,s′ ∈ Cj} ≤ 1 + Gap2

0 otherwise

This represents whether a larger cluster is to be formed by
merging clusters Ci and Cj, δ = 1 and 0 representing promotion
and prohibition of the merging process, respectively. Here the gap
parameters, Gap1 and Gap2, are non-negative integers. For effi-
ciency of computation, the distances d1 and d2 are pre-computed

for the two graphs (genome and pathway) from the sets of
binary relations. However, it is not necessary to compute the
shortest paths for all the pairs of vertices in each graph. A
minor modification of the dynamic programming formulation
known as the Floyd–Warshall algorithm (26) enables us to
compute all pairwise shortest paths that are shorter than or
equal to the gap parameter. Our algorithm is implemented in a
computer program written in Perl 5.0. The source code, the
data used in this study and the results are available at http://
kanehisa.kuicr.kyoto-u.ac.jp/Paper/fclust/

Gap parameters and statistical significance

When the genome of a given organism and the entire KEGG
metabolic pathway are compared by this algorithm, the
resulting clusters that contain two or more enzyme genes are
reported as FRECs. The sizes and numbers of FRECs vary
depending on the gap parameters utilized. To determine an
appropriate set of gap parameters, we examined 15 combinations
with values of 0, 1 and 2 for the genome and 0, 1, 2, 3 and 4 for
the metabolic pathway. By comparing the obtained FRECs
with the E.coli operon data, we empirically chose 1 and 3 for
the gap parameters for the genome and pathway, respectively.

The statistical significance of the extracted number of
FRECs, N, is examined by comparison against the numbers of

�
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�

Figure 1. A schematic representation of the graph comparison algorithm to
detect correlated clusters or local similarities in two graphs, given a list of
correspondences between vertices (nodes) from the two graphs. Initially, each
pair of corresponding vertices is a separate cluster. Then similar clusters
(shaded) are merged progressively by single linkage with a given measure of
similarity.
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FRECs extracted from randomized graphs. The randomization
of the graph is carried out by shuffling the vertices without
changing the topology (edges) of the graph. The shuffling is
performed 100 times to calculate the mean (µ) and the standard
deviation (σ) of the number of FRECs. The P value according
to Chebyshev’s inequality

P ≤ 1/[(N – µ)/σ]2

is used to estimate the statistical significance of the number of
FRECs.

RESULTS

Correspondence of FRECs and operons in E.coli

An example of a FREC in E.coli is shown in Figure 2. Seven
enzymes associated with the peptidoglycan biosynthesis
pathway are found to be encoded in a gene cluster on the
chromosome. The order of the genes on the chromosome does
not necessarily correspond to the order of the enzymatic
reaction steps in the pathway. Because gaps are allowed in our
graph comparison algorithm, a single stretch of a genomic
segment is detected containing seven enzyme genes and a non-
enzyme gene, ftsW, which is a cell division protein. The genomic
segment is likely to be transcribed in a long mRNA which carries
12 genes, including four genes upstream of murE (9).

The total number of FRECs detected in E.coli was 100,
including this example. This number was considerably higher
than the expected value estimated by random shuffling experi-
ments (P < 0.005), demonstrating well-organized dispositions
of enzyme genes along the E.coli chromosome. The size distri-
bution of FRECs ranges from 2 to 13, as shown in Figure 3,
where the size is measured by the number of enzyme genes in
a FREC. When each FREC is compared with the assignment of
operons by Blattner et al. (9), 89 (89%) out of the 100 FRECs
shared at least two enzyme genes with the operons. On the
other hand, among the 118 operons that contain two or more
enzyme genes, 89 (75.4%) were at least partially detected as
FRECs. The number of complete correspondences between the
FRECs and known operons was 39. Thus, most of the FRECs
found in E.coli contain multiple enzyme genes that are likely to
be co-regulated by polycistronic transcription, namely as
operons.

Tendency for FREC formation in 10 microorganisms

The numbers of FRECs found in 10 microorganisms, including
E.coli, are shown in Table 2. All of these numbers exceeded
the expected numbers calculated by shuffling experiments. For
E.coli, H.influenzae, B.subtilis, M.jannashii and M.thermoauto-
trophicum the deviations from the expected values were statis-
tically highly significant (P < 0.05). The direction of genes was

Figure 2. An example of E.coli FRECs. Seven enzymes catalyzing successive reaction steps in the peptidoglycan biosynthesis pathway are located in close
positions along the E.coli chromosome. Open arrows with dotted lines indicate the correspondences between the enzymes and their genes. While the figure shows
a part of the genome that was detected as a FREC, a larger gene cluster associated with membrane structure and cell division proteins is found at this chromosomal
location. It consists of 14 genes: the seven enzyme genes and ftsW shown here, two upstream genes (ftsL–ftsI) and four downstream genes (ftsQ–ftsA–ftsZ–lpxC).

Table 2. The numbers of FRECs and enzyme genes

Species No. of FRECs Expected value
(mean ± SD)

No. of FRECs on
the same strand

No. of enzyme genes
in FRECs

Ratio to total no.
of enzyme genes

E.coli 100 23.2 ± 4.5 91 278 0.42

H.influenzae 46 12.9 ± 3.2 45 117 0.35

H.pylori 13 5.4 ± 2.4 11 39 0.18

B.subtilis 82 12 ± 3.2 79 230 0.49

M.genitalium 7 3.4 ± 1.5 7 17 0.26

M.pneumoniae 11 3.5 ± 1.7 11 27 0.34

Synechocystis 15 9.8 ± 3.5 14 32 0.08

M.jannaschii 23 7.4 ± 2.8 19 72 0.28

M.thermoautotrophicum 41 9.7 ± 3.0 39 207 0.37

S.cerevisiae 16 10.9 ± 2.9 7 34 0.06
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well conserved within each FREC except for yeast. The ratio
of the FRECs comprised of genes all encoded in the same
strand was, on average, 93% for bacteria and archaea, ranging
from 83% in M.jannaschii to 100% in the two mycoplasmas. In
contrast, the ratio for yeast was 44%, which was about the
same as the random level (50%).

Although it is likely that the number of FRECs reflects the
tendency for operon formation in each genome, the number is
obviously dependent on the size of the genome and the amount
of metabolic pathway data available. For the purpose of
excluding the latter effect, we examined the relative abundance
of FRECs, which is defined by the ratio of the number of
enzyme genes in the FRECs to the total number of enzyme
genes that appear in the known metabolic pathway in each
organism. As shown in the last column of Table 2, the ratio
exhibits considerable variation among organisms; from a
smallest value of 6% for yeast, which is expected, to a largest
value of 49% for B.subtilis. This variation is also shown in
Figure 4.

The smallest value obtained for bacteria and archaea was
that of Synechocystis (8%). Since the Synechocystis genome
contains a normal proportion of homologous sequences to
other bacterial and archaeal sequences (15), the implication of
the scarcity of operon structures is intriguing. Tomii and
Kanehisa (27) also observed the same tendency based on an
analysis of the ATP binding cassette (ABC) transporter family.
More than half of the genes for the ATP binding protein
components do not form operon structures with the membrane
protein components in Synechocystis. The distribution of non-
coding spacer regions seems to be consistent with these
observations. The proportions of non-coding regions in the
E.coli, B.subtilis and Synechocystis genomes are roughly the
same: 11, 12 and 13%, respectively. However, the proportion
of genes that are separated by more than 100 bases from
adjacent genes on the same strand was 43% in Synechocystis,
while it was 31 and 32% in E.coli and B.subtilis, respectively.

Thus, more genes are likely to be individually regulated in
Synechocystis, suggesting the possibility of the existence of
regulatory mechanisms that compensate for the dispersion of
functionally related genes on the genome. Further computer
analyses on regulatory sequences and experimental studies of
transcripts and expression profiles are necessary to elucidate
regulatory mechanisms in Synechocystis.

Ortholog grouping of enzyme gene clusters

The 10 genome–pathway comparisons identified a total of
354 FRECs (Table 2), which corresponded to a total of
213 metabolic pathway segments, because multiple genomes
often share common pathway segments. By taking each of
these segments as a reference, it was then possible to super-
impose multiple genome–pathway alignments and to obtain a
multiple alignment of up to 10 genomes. Such computationally
derived alignments were manually refined with additional
analyses of sequence similarities and gene orders. Figure 5
shows an example of the resulting alignment for the peptido-
glycan biosynthesis pathway, to which nine more complete
genomes were manually added. It is interesting to observe that
the gene cluster in E.coli (Fig. 2) is completely conserved in
H.influenzae and partially conserved in most bacterial species.
Note that mycoplasmas do not have this pathway. Further-
more, two adjacent genes in E.coli and H.influenzae are fused
into a single gene in Chlamydia trachomatis and Chlamydia
pneumoniae. In contrast, the genes are totally dispersed in
Synechocystis and Aquifex aeolicus, which is consistent with
the observation made in Figure 4.

The compilation of related genes in different organisms in
the form of Figure 5 is called the ortholog group table in
KEGG; examples are listed in Table 3. The ortholog group
table often represents a set of genes for a functional unit in
various cellular processes, such as a set of enzymes that are
required for a specific biosynthetic pathway or a set of subunits
that form an enzyme complex (8). Each row of the table shows
whether genes are present for the components of the unit and,
if they are, whether they are adjacent on the chromosome,

Figure 3. The size distribution of E.coli FRECs. The number of FRECs is
plotted against the number of enzyme genes in a FREC for the cases where a
FREC is identical to a known or predicted operon (filled bar), a FREC
partially overlaps with an operon sharing at least two enzyme genes (shaded
bar) and a FREC shares just one gene or does not correspond at all to an
operon (open bar).

Figure 4. The number of enzyme genes in FRECs (filled bar) and the total
number of enzyme genes (open bar), together with the ratio of the two, in
10 organisms (see Table 1 for abbreviations).
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which is indicated by the coloring of cells in the table. Each
column represents a set of orthologous genes, where the orthol-
ogous relation is based not simply on sequence similarity but
also on positional correlation of genes on the chromosome.
The FRECs alignments for the 10 genomes were extremely
useful in organizing the KEGG ortholog group tables for the
metabolic pathway. Note, however, that computational align-
ments based on the matching of EC numbers had to be refined
manually by inspecting sequence similarities and gene order
alignments (8), because multiple genes often corresponded to
the same EC number in an enzyme complex and because the

same EC number did not necessarily mean an orthologous
relationship. The KEGG ortholog group tables thus obtained
generally contain conserved portions of the metabolic
pathway, which may be called pathway motifs, and which are
likely to be co-regulated at the gene expression level because
of the possible operon organization in the genome.

DISCUSSION

As sequence comparison is the most fundamental method for
understanding molecular functions encoded in sequence data,

Figure 5. The ortholog group table for peptidoglycan biosynthesis. Abbreviations (see also Table 1): Rpr, Rickettsia prowazekii; Mtu, Mycobacterium tuberculosis; Ctr,
Chlamydia trachomatis; Cpn, Chlamydia pneumoniae; Bbu, Borrelia burgdorferi; Tpa, Treponema pallidum; Dra, Deinococcus radiodurans; Aae, Aquifex
aeolicus; Tma, Thermotoga maritima.

Table 3. Examples of ortholog group tables that correspond to the KEGG metabolic pathway

Ortholog group URL

Glycolysis/gluconeogenesis http://www.genome.ad.jp/kegg/ortholog/tab00010.html

Citrate cycle (TCA cycle) http://www.genome.ad.jp/kegg/ortholog/tab00020.html

Fatty acid biosynthesis (path 1) http://www.genome.ad.jp/kegg/ortholog/tab00061.html

Purine metabolism http://www.genome.ad.jp/kegg/ortholog/tab00230.html

Glycine, serine and threonine metabolism http://www.genome.ad.jp/kegg/ortholog/tab00260.html

Valine, leucine and isoleucine biosynthesis http://www.genome.ad.jp/kegg/ortholog/tab00290.html

Lysine biosynthesis http://www.genome.ad.jp/kegg/ortholog/tab00300.html

Histidine metabolism http://www.genome.ad.jp/kegg/ortholog/tab00340.html

Phenylalanine, tyrosine and tryptophan biosynthesis http://www.genome.ad.jp/kegg/ortholog/tab00400.html

Lipopolysaccharide biosynthesis http://www.genome.ad.jp/kegg/ortholog/tab00540.html

Peptidoglycan biosynthesis http://www.genome.ad.jp/kegg/ortholog/tab00550.html

Porphyrin and chlorophyll metabolism http://www.genome.ad.jp/kegg/ortholog/tab00860.html
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graph comparison is expected to become most useful for
understanding higher order cellular functions encoded in the
network of interacting molecules (28). Sequence comparison
identifies the maximal common subsequences, while graph
comparison can identify the maximal common subgraphs. The
concept of subgraph isomorphism has been applied to protein
docking and other problems and is known to be solvable by a
clique-finding algorithm (29). However, subgraph isomorphism
is, in a sense, a perfect match between two graphs, which may
not be of biological relevance. In fact, the power of sequence
comparison methods lies in their ability to detect subtle
similarities containing mismatches and gaps. Thus, instead of
pursuing a rigorous clique-finding algorithm whose computational
complexity would be enormous, we have taken a heuristic
approach with a different concept of graph similarity.

This is the concept of the correlated cluster, which represents
a more relaxed condition of graph similarity and which we
think is biologically more relevant than isomorphic subgraphs.
In Figure 1, for example, the subgraph with nodes A, B and C
is not isomorphic to the subgraph with nodes a, b and c because
the edges are different. However, they are identified as a corre-
lated cluster by our graph comparison algorithm, which allows
mismatches of edges and gaps in nodes. Because correlated
clusters are identified with a less stringent condition, isomorphic
subgraphs may then be selected if necessary.

Table 4 shows examples of correlated clusters that can be
identified by biological graph comparisons. The genome–pathway
comparison detects the correlation of positional coupling of
genes on the chromosome and functional coupling of gene
products in the pathway, such as FRECs, as reported here.
Positional coupling of genes is likely to represent co-regulation
of genes, which can be measured directly by gene expression
profiling experiments with cDNA microarrays or other
methods. Gene expression profile data can be interpreted as a
network of expression similarity or a set of co-regulated genes
and another type of graph comparison will detect clusters of
co-regulated genes that appear as functional clusters in the
pathway. In another example, a network of sequence similarity
may be compared against the pathway, which will detect
possible gene duplication events in the formation of pathways.
While these graph comparisons require reference knowledge
of pathways, the genome–genome comparison is able to detect
conserved clusters of unknown function (8).

In the standard biochemistry textbooks the metabolic
pathway is considered to be a network of chemical compounds.
The pathway is drawn as a graph with chemical compounds as
nodes and enzymes (reactions) as edges. In contrast, the

KEGG metabolic pathway, such as shown in Figure 2, should
be viewed as a network of indirect protein–protein interactions,
where nodes are proteins (enzymes) and edges are common
chemical compounds shared by two successive reactions. This
view can be generalized to include other types of protein–
protein interactions: direct protein–protein interactions, such
as binding and phosphorylation in the signal transduction
pathway, and so-called gene regulatory networks, which
consist of another class of indirect protein–protein interactions,
namely the relations of transcription factors and transcribed
proteins. Thus, the generalized protein–protein interaction
network (28) consists of direct protein–protein interactions,
enzyme–enzyme relations and gene expression relations and it
is the basis for computerizing knowledge of metabolic and
various regulatory pathways in KEGG.

The correlated clusters detected by graph comparisons
represent biological features, or empirical rules, that relate
different types of data and knowledge. The generalized
protein–protein interaction network is actually an abstract
network of gene products, which is especially suited to
integrating genomic information with pathway information
because direct correspondences of nodes, genes versus gene
products, can be made (Table 4). We are currently developing
a method for multiple graph comparison to integrate different
types of data and knowledge in knowledge-based prediction of
cellular functions from the complete genome sequence.
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