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Abstract

This paper presents a new method to extract a set of correlated genes with respect to multiple
biological features. Relationships among genes on a specific feature are encoded as a graph structure
whose nodes correspond to genes. For example, the genome is a graph representing positional
correlations of genes on the chromosome, the pathway is a graph representing functional correlations
of gene products, and the expression profile is a graph representing gene expression similarities.
When a set of genes are localized in a single graph, such as a gene cluster on the chromosome,
an enzyme cluster in the metabolic pathway, or a set of coexpressed genes in the microarray gene
expression profile, this may suggest a functional link among those genes. The functional link would
become stronger when the clusters are correlated; namely, when a set of corresponding genes form
clusters in multiple graphs. The newly introduced heuristic algorithm extracts such correlated gene
clusters as isomorphic subgraphs in multiple graphs by using inter-graph links that are defined based
on biological relevance. Using the method, we found E.coli correlated gene clusters in which genes
are related with respect to the positions in the genome and the metabolic pathway, as well as the 3D
structural similarity. We also analyzed protein-protein interaction data by two-hybrid experiments
and gene coexpression data by microarrays in S.cerevisiae, and estimated the possibility of utilizing
our method for screening the datasets that are likely to contain many false positive relations.
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1 Introduction

Correlated gene clusters. The complete genome sequence contains the information about ordering
of genes along the chromosome. Besides such geometrical relationships, other features characterize
relationships among genes, including similarity relationships based on sequences or 3D structures of
gene products, and functional relationships in metabolic/regulatory pathways. When multiple gene-
gene relationships can be found on different attributes as above, it would be interesting to see whether
or not a set of genes share their mutual relationships in relation to each attribute. For example, as
reviewed by Erlandsen et al. [2], the enzymes in the glycolytic pathway (Fig. 1) commonly display
α/β folds, which is obtained by examining the relationships of enzymes with respect to their structural
similarities and neighboring relationships in the pathway. This type of observation has been made for
a specific set of genes. Here we examine all the sets of genes in a given organism that are correlated
with respect to more than one attribute.

Gene-gene relationships on a specific attribute can be denoted by using a set of binary relationships
in a general manner. For example, let a binary operator ’∼’ denote a binary relationship between two
genes, and let g1, g2, g3, and g4 be a series of genes arranged in this order in a genome sequence, their
geometrical relationships are broken down into a set of binary relationships {g1 ∼ g2, g2 ∼ g3, g3 ∼ g4}.
A set of binary relationships among genes forms a graph structure as a whole. Fig. 2 shows three
graphs G1 (genome), G2 (pathway), and G3 (similarity), where each graph node corresponds to a
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Figure 1: A series of enzymes in the glycolytic pathway display α/β folds.

gene or a gene product. In a graph, two nodes are connected by an edge (expressed by a solid line)
when they are related by a binary relationship. In a set of genes, if all or most of the genes reserve
their mutual relationships in multiple graphs, like the light gray nodes and the dark gray nodes in
Fig. 2, the biological relevance among those genes is considered to be supported at high possibility.
We call such a set of genes a correlated gene cluster (or simply, correlated cluster), by which we can
characterize, classify, and predict the activities of genes.
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Figure 2: Correlated gene clusters.

Hyperedges — Introduction of inter-graph links.
Finding correlated gene clusters can be formalized as a
subgraph isomorphism problem and has been proved to
be NP-complete. Therefore, some heuristics are required
to cope with this problem. To extract correlated gene clus-
ters from two graphs, Ogata et al. [5] introduced a notion
called FRECs (Functionally Related Enzyme Clusters).
They also introduced a set of inter-graph links between
two nodes that correspond to the same gene in each graph,
and searched isomorphic subgraphs in the two graphs so
that the nodes of the subgraphs are connected by the inter-
graph links. By comparing the genome and the metabolic
pathway, they found that seven Escherichia coli genes cat-
alyzing successive reaction steps in peptidoglycan biosyn-
thesis pathway are located in close position also along the
genome sequence, for instance.

We can extend the notion of FRECs by increasing the
number of graphs so that the additional graphs provide
information about gene-gene relations that cannot be found by just two graphs. Fig. 2 shows an
example of correlated gene clusters (C1 and C2) in three graphs G1, G2, and G3. Here, dashed lines
represent linking of corresponding genes from three graphs and grouping them into a single category
(same gene). We call this linkage a hyperedge and define a distance between two hyperedges so that
it can reflect the distance (typically, the shortest path length) between their nodes in each graph. By
gathering hyperedges based on this distance, we can find a set of nodes that are tightly coupled in the
graphs, that is, a correlated gene cluster.

Correlation among known and unknown genes. Recent high-throughput experimental tech-
nologies provide huge and potentially interesting datasets, but they often contain unknown and hy-
pothetical relationships as well as erroneous relationships. For example, coexpression relationships
by microarrays/oligochips and protein-protein interactions by two-hybrid analysis might have such
characteristics. Today’s standard approaches to analyze such datasets include, for example, clustering
the genes according to similarity of expression patterns, and extracting densely connected network
components in a protein-protein network. When a set of known genes can be placed into the same
category, such approaches may uncover functional links to unknown genes based on some biological
features. Our method basically follows this strategy. One of the advantages of our method over the
existing ones is that it makes it possible to automatically incorporate multiple features observed in
multiple datasets. Even if relationships among genes cannot be explained in a single graph, it is possi-
ble to improve the sensitivity of data analysis by evaluating corresponding relationships in additional
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graphs.
As a practical application of our method, we will present the correlated gene clusters found in

Escherichia coli datasets and Saccharomyces cerevisiae datasets. The latter includes the two-hybrid
protein-protein interaction dataset by Ito et al. [3] and the coexpression dataset based on microarray
experiments by DeRisi et al. [1].

2 Method

Input datasets. As input datasets, we use a set of n graphs G = {G1, . . . , Gn} and a set of m
hyperedges H = {h1, . . . , hm}. When n graphs are used, we denote a hyperedge with an n-tuple
hi = (x1,i1, . . . , xn,in). Here, the kth element hk

i = xk,ik is Gk’s node that constitutes the hyperedge
(1 ≤ k ≤ n), and we assume that a hyperedge consists of exactly n nodes to make the problem simple.

Distance between hyperedges. Suppose that there are n graphs. Let C1 = {hs1 , . . . , hsp} and
C2 = {ht1 , . . . , htq} be sets of hyperedges, and let Ck

1 = {hk
s1

, . . . , hk
sp
} and Ck

2 = {hk
t1 , . . . , h

k
tq} be sets

of the kth elements of hyperedges in C1 and C2, respectively. We define the distance between two sets
of hyperedges C1 and C2 as follows:

D(C1, C2) =
∑

1≤s≤n

dis(Cs
1 , C

s
2), (1)

where dis(Cs
1, C

s
2) is the distance between Cs

1 and Cs
2 . Here, for example, dis(Cs

1 , C
s
2) is defined as

max{d(x, y)|x ∈ Cs
1 , y ∈ Cs

2},1 where d(x, y) is the length of the shortest path between nodes x and y
in graph Gs (which can be calculated by Dijkstra’s algorithm or Warshall-Floyd’s algorithm).

In Fig. 2, let H = {h1, h2, . . . , h9} denote a set of hyperedges, and suppose that they are divided
into two distinct sets C1 = {h1, . . . , h4} and C2 = {h5, . . . , h9}. Distance between these two sets is
D(C1, C2) =

∑
1≤s≤3 dis(Cs

1 , C
s
2) = dis(C1

1 , C1
2) + dis(C2

1 , C2
2 ) + dis(C3

1 , C3
2 ) = 10 + 8 + 8 = 26.

Clustering of hyperedges. Using the distance D, we cluster the hyperedges. Let C be the initial
set of clusters, each of which consists of a single hyperedge, i.e., C = {{h1}, . . . , {hm}}. Starting with
C, we iterate the procedure to pick two clusters between which the distance is the smallest and to
merge them into a new cluster (i.e., hierarchical clustering using the distance D). To avoid distant
genes being merged into the same cluster, we use a threshold defined for each graph. Let pi be the
threshold for graph Gi. When the path length between two nodes x and y is greater than pi in Gi,
we change the value of d(x, y) to infinity, and leave the pairs of clusters whose distance is infinity
untouched. When there are no cluster pairs whose distance is not infinity we stop the clustering
procedure and thus obtain correlated gene clusters. Since two nodes within length pi can be merged
into the same cluster even if they are not directly connected, the parameter pi makes it possible to
find gene clusters that are not strictly conserved in the graphs.

3 Results

We implemented the algorithm by using the C++ language on a part of a SiliconGraphics Origin
38002 running under IRIX 6.5. Part of the program (e.g., calculation of N to N shortest paths
using Dijkstra’s algorithm) is parallelized by the POSIX thread library. We used this system to carry
out multiple graph comparison and found correlated gene clusters in E.coli and S.cerevisiae datasets.
Required computing resources depend on datasets. However, to estimate that the memory usage was
feasible, we limited it to 512MB by the C shell limit command.

1This definition carries out “complete linkage clustering”. For “single linkage clustering”, min is used instead of max.
2256 MIPS R14000(500MHz) processors, 256GB main memory, and 8MB L2 cache for each processor.
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3.1 E.coli correlated gene clusters

We first searched correlated gene clusters in the three E.coli datasets, whose nodes correspond to
E.coli genes or gene products. The E.coli genome dataset (G1: 4,396 nodes and 4,396 edges) defines
neighboring relationships among genes in the genome sequence. Two genes that are directly next to
each other are connected by an edge. The E.coli pathway dataset (G2: 761 nodes and 1,223 edges)
defines positional relationships among gene products in the metabolic pathway.3 The E.coli structure
similarity dataset (G3: 538 nodes and 3,823 edges) defines 3D structural similarities among proteins.4

Two proteins in the same category are connected by an edge. We used a value 1 as the weight of
each edge. Besides these three graphs, we used 917 hyperedges connecting genes and their products
in the graphs. Note that since a single node can be contained in multiple hyperedges, the number of
hyperedges can be greater than that of nodes of a graph.

By applying our algorithm with the threshold parameters p1 = 2, p2 = 3, and p3 = 0 (execution
time was 140 seconds), we found correlated gene clusters in the biotin metabolism pathway (Fig. 3(A))
and the tryptophan biosynthesis pathway (Fig. 3(B)). Table 1 shows the list of the E.coli genes con-
stituting the correlated gene clusters in those pathways. Those clusters retain mutual relationships of
genes with respect to positions in the genome sequence and structural similarity besides the relation-
ships in the pathways. All the genes in the biotin pathway classified as “alpha and beta” (α/β), and
the genes in the tryptophan pathway display TIM-barrel structures. We note, however, that these
correlations are already known. Although the result confirms the validity of our method for multiple
graph comparison, the addition of a third graph was too restrictive to uncover any new findings. Pair-
wise graph comparison is biologically more meaningful especially when the datasets do not appear to
contain erroneous data.
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Figure 3: E.coli correlated gene clusters.

(A) Biotin metabolism
b0774 bioA; adenosylmethionine-8-amino-7-oxononanoate aminotransferase (7,8-diamino-pelargonic acid aminotransferase) (dapA amino-

transferase) [EC:2.6.1.62] [SP:BIOA ECOLI]
b0776 bioF; 8-amino-7-oxononanoate synthase (7-keto-8-amino-pelargonic acid synthetase) (7-kap synthetase) (L-alanine–pimelyl CoA lig-

ase) [EC:2.3.1.47] [SP:BIOF ECOLI]
b0778 bioD; dethiobiotin synthetase (dethiobiotin synthase) (dtb synthetase) (DTBS) [EC:6.3.3.3] [SP:BIOD ECOLI]

(B) Tryptophan biosynthesis
b1260 trpA; tryptophan synthase alpha chain [EC:4.2.1.20] [SP:TRPA ECOLI]
b1261 trpB; tryptophan synthase beta chain [EC:4.2.1.20] [SP:TRPB ECOLI]
b1262 trpC; indole-3-glycerol phosphate synthase (IGPS) / N-(5’-phospho-ribosyl)anthranilate isomerase (PRAI) [EC:4.1.1.48 5.3.1.24]

[SP:TRPC ECOLI]
b1264 trpE; anthranilate synthase component I [EC:4.1.3.27] [SP:TRPE ECOLI]

Table 1: E.coli genes constituting correlated gene clusters.

3.2 S.cerevisiae correlated gene clusters
In this section, we present the results of screening the two-hybrid protein-protein interaction dataset.
To evaluate whether or not protein-protein interactions in the dataset are significant, we searched
correlated gene clusters. If an interaction or a relation is also observed in biological attributes other
than protein-protein interactions, we judge the interaction is relevant.

As the target two-hybrid protein-protein interaction dataset, we used the one developed by Ito et
al. [3]. This dataset (called “All data” in the original paper), used as the first graph G1, includes

3Compiled by Ogata et al. [5]. In this datasets, each node has a unique identifier, but it is related to genes
by its EC number that is assigned as a “label”, introducing redundancy.

4Based on SCOP database release 1.50 [4].
See also “SCOP 3D-fold” from http://www.genome.ad.jp/kegg/kegg2.html.
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3,280 genes (nodes) and 4,549 bait-prey interactions (edges). By calculating correlated gene clusters,
we compared this dataset with the following datasets (as the second graph G2) that contain biological
relationships: (1) S.cerevisiae coexpression dataset, (2) S.cerevisiae pathway dataset, and (3) E.coli
genome dataset.

(1) S.cerevisiae two-hybrid v.s. S.cerevisiae coexpression

We used the coexpression dataset that was derived from the results of microarray analysis by DeRisi
et al. [1]. This dataset consists of time-course measurements of gene expressions, and the similarities of
chronological changes of expression patterns are compared among gene pairs by means of correlation
coefficients.5 We define a pair of genes are coexpressed when the correlation coefficient is not less than
0.97. Then the dataset consists of 3,307 genes (nodes) and 81,628 coexpressed gene pairs (edges). By
using 1,547 hyperedges that connect the identical genes in the two-hybrid dataset and this coexpression
dataset, we searched correlated gene clusters (execution time was 48 minutes).

It is interesting to note that these two datasets share only one gene-gene relationship (YGR148C
-YLR295C). On the other hand, by including indirect gene-gene relationships through one intermedi-
ate gene (i.e., for the ith graph, setting the threshold pi = 2), we found a total of 249 correlated gene
clusters. The cluster size ranges from two to nine. Table 2 lists examples of correlated gene clusters
that consist of genes whose annotations contain keywords (A) “ribosomal protein”, (B) “translation”,
and (C) “transcription”.6 The genes between two horizontal lines correspond to a correlated gene
cluster.

Table 3 shows the correlated gene clusters consisting of the genes that are also referred to in Figure 3
of the original paper by Ito et al. [3]. By comparing their two-hybrid dataset with the coexpression
dataset by DeRisi et al. [1], we found additional sixteen sets of putative gene-gene relationships with
respect to (A) autophagy, (B) spindle pole body function, and (C) vesicular transport as shown in
Table 3. The genes appear in the paper by Ito et al. are hilighted with bold fonts.

(2) S.cerevisiae two-hybrid v.s. S.cerevisiae pathway

The S.cerevisiae pathway dataset (574 nodes and 851 edges) defines positional relationships among
gene products in the metabolic pathway.7 Using 745 hyperedges, we searched correlated gene clusters
that reserve their mutual relationships both in the two-hybrid dataset and this pathway dataset
(execution time was 32 seconds). The genes that interact through one intermediate gene were included
in the same cluster (i.e., for the ith graph, setting pi = 2). Table 4 shows a part of the resulting
correlated gene clusters. In this table, we divided the correlated gene clusters into two categories
according to whether each cluster contains (A) a single EC number or (B) multiple EC numbers.

In the first category with a single EC number, correlated gene clusters are mainly related to
complexes. For example, the first two gene clusters (YJL140W∼YOR210W) and (YJR063W and
YDR156W) are related to RNA polymerases. On the other hand, in the category with multiple EC
numbers, correlated gene clusters are located in close positions in a pathway. For example, YBR145W
and YER073W (being more precise, two enzymes with EC numbers 1.1.1.1 and 1.2.1.3) are next to
each other in the bile acids biosynthesis pathway, YFR047C and YLR209C (two enzymes with EC
numbers 2.4.2.19, and 2.4.2.1) are next to each other through one intermediate node in the nicotinate
and nicotinamide metabolism pathway.

(3) S.cerevisiae two-hybrid v.s. E.coli genome In the previous parts, we focused on a set of
graphs defining the relationships among genes with respect to a single organism (E.coli or S.cerevisiae),
and by using a set of hyperedges connecting the same genes or gene products in multiple graphs, we

5See also KEGG/BRITE database at http://www.genome.ad.jp/brite/
and KEGG/EXPRESSION database from http://www.genome.ad.jp/kegg/kegg2.html.

6A total list of the correlated gene clusters is obtained from http://web.kuicr.kyoto-u.ac.jp/̃ nakaya/pub/giw01/.
7Compiled by Ogata et al.1 [5]. See also the footnote of section 3.1.
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(A) Ribosomal protein
YNR037C 40S ribosomal protein S15e [SP:YN8L YEAST]
YPL004C YPL004C; Lpa13p
YNR071C similar to UDP-glucose 4-epimerase GAL10P [SP:YN9A YEAST]
YDL230W PTP1; protein-tyrosine phosphatase 1 (ptpase 1) [EC:3.1.3.48] [SP:PTP1 YEAST]
YGL222C unknown [SP:YGX2 YEAST]
YJR119C unknown [SP:YJ89 YEAST]
YDR008C unknown
YDR203W unknown
YOR097C unknown
YJR123W RPS5; 40S ribosomal protein S5e [SP:RS5 YEAST]
YDL075W RPL31A; 60S ribosomal protein L31e [SP:RL31 YEAST]
YHL033C RPL8A; 60S ribosomal protein L7Ae [SP:RL4A YEAST]
YDL208W NHP2; high mobility group-like nuclear protein [SP:NHP2 YEAST]
YMR202W ERG2; C-8 sterol isomerase [SP:ERG2 YEAST]
YNL146W unknown [SP:YNO6 YEAST]
YBL072C RPS8A; 40S ribosomal protein S8e [SP:RS8 YEAST]
YDL081C RPP1A; 60S acidic ribosomal protein LP1 [SP:RLA1 YEAST]
YLR312C unknown
YGL189C RPS26A; 40S ribosomal protein S26e [SP:R26A YEAST]
YGL030W RPL30; 60S ribosomal protein L30e [SP:RL30 YEAST]
YDR529C QCR7; ubiquinol-cytochrome c reductase subunit 7 [EC:1.10.2.2] [SP:UCR7 YEAST]
YOR167C RPS28A; 40S ribosomal protein S28e [SP:RS28 YEAST]
YLR264W RPS28B; 40S ribosomal protein S28e [SP:RS28 YEAST]
YLR340W RPP0; 60S acidic ribosomal protein LP0
YDR382W RPP2B; 60S acidic ribosomal protein LP2 [SP:RLA4 YEAST]
YGR085C RPL11B; 60S ribosomal protein L11e [SP:RL11 YEAST]
YJR048W CYC1; cytochrome c, iso-1 [SP:CYC1 YEAST]

(B) Translation
YPR016C CDC95; translation initiation factor 6 (eIF6)
YDR012W RPL4B; 60S ribosomal protein L4e [SP:RL4B YEAST]
YFL037W TUB2; beta-tubulin [SP:TBB YEAST]
YBR143C SUP45, SUP1, SAL4; eukaryotic peptide chain release factor eRF subunit 1 [SP:ERF1 YEAST]
YNL062C GCD10, TIF33; eukaryotic translation initiation factor eIF-3 gamma subunit [SP:IF33 YEAST]
YIL066C RNR3; ribonucleoside-diphosphate reductase alpha chain [EC:1.17.4.1] [SP:RIR3 YEAST]
YGR204W ADE3; methylenetetrahydrofolate dehydrogenase (NADP+) /

methenyltetrahydrofolate cyclohydrolase / formate–tetrahydrofolate ligase [EC:1.5.1.5 3.5.4.9 6.3.4.3] [SP:C1TC YEAST]
YPR041W TIF5; eukaryotic translation initiation factor eIF-5 [SP:IF5 YEAST]
YDR224C HTB1; histone H2B.1 [SP:H2B1 YEAST]
YGR222W PET54; mitochondrial splicing protein and translational activator [SP:PT54 YEAST]
YAR042W SWH1; probable NH-terminus of OSH1/SWH1 [SP:SWH1 YEAST]
YOL139C CDC33, TIF45; eukaryotic translation initiation factor eIF-4E [SP:IF4E YEAST]
YOR276W CAF20, CAP20; mRNA CAP-binding protein (eIF4F), 20K subunit [SP:IF43 YEAST]
YPR163C TIF3, STM1; eukaryotic translation initiation factor eIF-4B [SP:IF4B YEAST]
YBR038W CHS2; chitin synthase 2 [EC:2.4.1.16] [SP:CHS2 YEAST]
YKR026C GCN3, AAS2, TIF221; translation initiation factor eIF-2B alpha subunit [SP:E2BA YEAST]
YPR033C HTS1; histidyl-tRNA synthetase [EC:6.1.1.21] [SP:SYH YEAST]

(C) Transcription
YOR344C TYE7, SGC1; basic helix-loop-helix transcription factor [SP:TYE7 YEAST]
YGR151C unknown [SP:YG3N YEAST]
YNL300W unknown [SP:YN40 YEAST]
YOR062C unknown
YMR039C SUB1, TSP1; transcriptional coactivator [SP:SUB1 YEAST]
YIL004C BET1; protein transport protein [SP:BET1 YEAST]
YIL005W protein disulfide-isomerase [EC:5.3.4.1] [SP:YIA5 YEAST]
YIR017C MET28; transcriptional activator of sulfur amino acid metabolism [SP:MT28 YEAST]
YKR101W SIR1; silencing regulatory protein [SP:SIR1 YEAST]
YIL025C unknown [SP:YIC5 YEAST]
YGL112C TAF60; transcription initiation factor [SP:T2D5 YEAST]
YGL122C NAB2; nuclear polyadenylated RNA-binding protein [SP:NAB2 YEAST]
YKL109W HAP4; transcriptional activator [SP:HAP4 YEAST]
YGR236C unknown [SP:YG4Z YEAST]
YDR259C YAP6; transcription factor of a fungal-specific family of bzip proteins
YMR118C succinate dehydrogenase (ubiquinone) cytochrome b subunit precursor [EC:1.3.5.1] [SP:YM07 YEAST]
YIL084C SDS3; transcriptional regulator [SP:SDS3 YEAST]
YNL202W SPS19; peroxisomal 2,4-dienoyl-CoA reductase [SP:SP19 YEAST]
YOR358W HAP5; transcriptional activator [SP:HAP5 YEAST]
YDR277C MTH1; repressor of hexose transport genes [SP:MTH1 YEAST]
YOR028C CIN5; transcriptional activator [SP:CIN5 YEAST]
YGR167W CLC1; clathrin light chain [SP:CLC1 YEAST]
YHR058C MED6; RNA polymerase II transcriptional regulation mediator [SP:MED6 YEAST]
YOL152W FRE7; unknown
YDR423C CAD1; transcriptional activator [SP:CAD1 YEAST]
YJR019C TES1; peroxisomal acyl-CoA thioesterase [SP:YJY9 YEAST]
YGL166W CUP2, ACE1; transcriptional activator protein ACE1 [SP:ACE1 YEAST]
YIL132C unknown [SP:YIN2 YEAST]
YJR094C IME1; transcription factor involved in meiosis [SP:IME1 YEAST]
YOL042W unknown
YML015C TAF40; transcription initiation factor TFIID subunit [SP:T2D7 YEAST]
YPR120C CLB5; cyclin, B-type [SP:CGS5 YEAST]

Table 2: Correlated gene clusters related to “ribosomal”, “translation”, and “transcription”.
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(A) Autophagy
YMR159C APG16; similar to human Sin3 complex component SAP18, possible coiled-coil protein [SP:YM34 YEAST]
YJR025C BNA1, HAD1; 3-hydroxyanthranilate 3,4-dioxygenase [EC:1.13.11.6] [SP:3HAO YEAST]

(B) Spindle pole body function
YKR037C SPC34; spindle pole body protein [SP:YK17 YEAST]
YCR082W unknown [SP:YCX2 YEAST]
YLR423C unknown
YMR124W unknown [SP:YM11 YEAST]
YIL144W TID3; Dmc1p interacting protein [SP:YIO4 YEAST]
YOR089C VPS21, YPT51; GTP-binding protein [SP:YP51 YEAST]

(C) Vesicular transport
YBL050W SEC17; vesicular-fusion protein [SP:SC17 YEAST]
YDR178W SDH4; succinate dehydrogenase membrane anchor subunit [EC:1.3.5.1] [SP:SDH4 YEAST]
YMR197C VTI1; vesicle transport V-snare protein VTI1 [SP:VTI1 YEAST]
YOR036W PEP12; syntaxin (T-SNARE), vacuolar [SP:PE12 YEAST]
YDR468C TLG1; tSNARE that affects a late Golgi compartment
YGL044C RNA15; component of the cleavage and polyadenylation factor CF I involved in pre-mRNA 3’-end processing [SP:RN15 YEAST]
YBL102W SFT2; SFT2 protein [SP:SFT2 YEAST]
YNL133C unknown [SP:YNN3 YEAST]
YOR220W unknown
YIL004C BET1; protein transport protein [SP:BET1 YEAST]
YIL005W protein disulfide-isomerase [EC:5.3.4.1] [SP:YIA5 YEAST]
YMR039C SUB1, TSP1; transcriptional coactivator [SP:SUB1 YEAST]
YLR324W unknown
YDR453C YDR453C; probable thiol-specific antioxidant protein 2 [SP:TSA2 YEAST]
YNL044W YIP3; unknown [SP:YIPC YEAST]
YGR192C TDH3, GPD3; glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12] [SP:G3P3 YEAST]
YJL052W TDH1, GPD1, SSS2; glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12] [SP:G3P1 YEAST]
YDR313C PIB1; phosphatidylinositol(3)-phosphate binding protein
YGR042W unknown [SP:YG1T YEAST]
YGL198W unknown [SP:YGU8 YEAST]
YNL216W RAP1, GRF1; DNA-binding protein with repressor and activator activity [SP:RAP1 YEAST]
YJL036W SNX4; unknown [SP:YJD6 YEAST]
YDR473C PRP3; essential splicing factor
YKR014C YPT52; GTP-binding protein of the rab family [SP:YP52 YEAST]
YKL035W UGP1; UTP–glucose-1-phosphate uridylyltransferase [EC:2.7.7.9] [SP:UDPG YEAST]
YFL054C unknown [SP:YFF4 YEAST]
YDR425W unknown
YPL280W unknown

Table 3: Correlated gene clusters related to the genes listed in Ito et al. [3].

extracted correlated gene clusters. In this section, we extend the hyperedges so that they can contain
datasets from multiple organisms.

C1

G1 G2 G3

C2

(E.coli Genome) (Yeast PP)(Yeast Genome)

Orthologous genes

FSS

Figure 4: Mapping of genes.

It is well known that in prokaryotic genomes, such as in
E.coli, functionally related genes are often located continuously
on the chromosome constituting an operon. Unfortunately,
this is not usually the case for eukaryotic genomes including
S.cerevisiae. However, if we can define functional identity of
genes between the two species, the operon information in E.coli
may be utilized for identifying functional links in S.cerevisiae.

Fig. 4 shows a schematic picture. To connect two organisms,
we introduce a mapping from a set of genes in one organism to
another based on the sequence similarities (orthologous relation-
ships) as follows:

FSS : S(G1) → S(G2) (2)

where S(G1) and S(G2) denote the sets of genes in the graphs
G1 and G2 corresponding to two organisms, respectively. We use
the criterion of bidirectional best hits to define orthologs when
two genomes are compared by the Smith-Waterman algorithm
at the amino acid sequence level with the threshold similarity score of 70. To characterize genes of
an organism, its genes S(G1) are once mapped to the nodes of the graph G2 that encodes functional
orthologs in another organism. After that, we compare G2 and an additional graph G3 of the original
organism instead of comparing G1 and G3 directly.

Suppose that G1 and G3 are the binary relationships among S.cerevisiae genes with respect to
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(A) Correlated gene clusters with single EC number
YJL140W RPB4; DNA-directed RNA polymerase II 32 kD polypeptide [EC:2.7.7.6] [SP:RPB4 YEAST]
YKL144C RPC25, YKL1, UNF1; DNA-directed RNA polymerase III 25 kD polypeptide [EC:2.7.7.6] [SP:RPCY YEAST]
YOR116C RPO31, RPC1, RPC160; DNA-directed RNA polymerase III largest subunit [EC:2.7.7.6] [SP:RPC1 YEAST]
YOR210W RPB10; DNA-directed RNA polymerases I, II, and III 8.3 kD polypeptide [EC:2.7.7.6] [SP:RPBX YEAST]
YJR063W RPA12, RRN4; DNA-directed RNA polymerase I 13.7 kD polypeptide [EC:2.7.7.6] [SP:RPA9 YEAST]
YDR156W RPA14; DNA-directed RNA polymerase I 14 kD polypeptide [EC:2.7.7.6] [SP:RPA8 YEAST]
YAR071W PHO11; acid phosphatase [EC:3.1.3.2] [SP:PPAB YEAST]
YHR215W PHO12; acid phosphatase [EC:3.1.3.2] [SP:PPAC YEAST]
YBR278W DPB3; DNA polymerase epsilon, subunit C [EC:2.7.7.7] [SP:DPB3 YEAST]
YCR014C POL4; DNA polymerase IV [EC:2.7.7.7] [SP:DPO4 YEAST]
YDL066W IDP1; isocitrate dehydrogenase (NADP+), mitochondrial [EC:1.1.1.42] [SP:IDHP YEAST]
YIR037W HYR1; glutathione peroxidase [EC:1.11.1.9] [SP:GSHJ YEAST]
YDL168W SFA1; formaldehyde dehydrogenase (glutathione) / long-chain alcohol dehydrogenase [EC:1.2.1.1 1.1.1.1] [SP:FADH YEAST]
YMR083W ADH3; alcohol dehydrogenase [EC:1.1.1.1] [SP:ADH3 YEAST]
YDR226W ADK1; adenylate kinase [EC:2.7.4.3] [SP:KAD1 YEAST]
YER170W ADK2, PAK3; adenylate kinase [EC:2.7.4.3] [SP:KAD2 YEAST]
YDR256C CTA1; catalase [EC:1.11.1.6] [SP:CATA YEAST]
YGR088W CTT1; catalase [EC:1.11.1.6] [SP:CATT YEAST]
YGL070C RPB9; DNA-directed RNA polymerase II 14.2 kD polypeptide [EC:2.7.7.6] [SP:RPB9 YEAST]
YOR224C RPB8; DNA-directed RNA polymerase I, II, III 16 KD subunit [EC:2.7.7.6] [SP:RPB8 YEAST]
YGR192C TDH3, GPD3; glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12] [SP:G3P3 YEAST]
YJL052W TDH1, GPD1, SSS2; glyceraldehyde 3-phosphate dehydrogenase [EC:1.2.1.12] [SP:G3P1 YEAST]
YGR240C PFK1; 6-phosphofructokinase [EC:2.7.1.11] [SP:K6P1 YEAST]
YMR205C PFK2; 6-phosphofructokinase [EC:2.7.1.11] [SP:K6P2 YEAST]
YER081W SER3; D-3-phosphoglycerate dehydrogenase [EC:1.1.1.95] [SP:SERX YEAST]
YIL074C SER33; 3-phosphoglycerate dehydrogenase [EC:1.1.1.95]
YLR157C ASP3-2; L-asparaginase [EC:3.5.1.1] [SP:ASG2 YEAST]
YLR158C ASP3-3; L-asparaginase [EC:3.5.1.1] [SP:ASG2 YEAST]
YOR224C RPB8; DNA-directed RNA polymerase I, II, III 16 KD subunit [EC:2.7.7.6] [SP:RPB8 YEAST]
YOR340C RPA43, RRN12; DNA-dependent RNA polymerase 36 kD polypeptide [EC:2.7.7.6] [SP:RPA4 YEAST]
YIL078W THS1; threonyl-tRNA synthetase, cytoplasmic [EC:6.1.1.3] [SP:SYTC YEAST]
YKL194C MST1; threonyl-tRNA synthetase, mitochondrial [EC:6.1.1.3] [SP:SYTM YEAST]

(B) Correlated gene clusters with multiple EC numbers
YDR321W ASP1; L-asparaginase [EC:3.5.1.1] [SP:ASG1 YEAST]
YPR145W ASN1; asparagine synthase (glutamine-hydrolysing) [EC:6.3.5.4] [SP:ASN1 YEAST]
YER086W ILV1; threonine dehydratase [EC:4.2.1.16] [SP:THDH YEAST]
YBR145W ADH5; alcohol dehydrogenase [EC:1.1.1.1] [SP:ADH5 YEAST]
YER073W ALD3; aldehyde dehydrogenase [EC:1.2.1.3] [SP:DHA5 YEAST]
YER043C SAH1; adenosylhomocysteinase [EC:3.3.1.1] [SP:SAHH YEAST]
YFR055W cystathionine beta-lyase [EC:4.4.1.8] [SP:METC YEAST]
YFL022C FRS2; phenylalanyl-tRNA synthetase alpha chain [EC:6.1.1.20] [SP:SYFB YEAST]
YKL106W AAT1; aspartate aminotransferase [EC:2.6.1.1] [SP:AATM YEAST]
YFR047C nicotinate-nucleotide pyrophosphorylase (carboxylating) [EC:2.4.2.19] [SP:NADC YEAST]
YLR209C YLR209C; probable purine nucleoside phosphorylase [EC:2.4.2.1] [SP:PNPH YEAST]
YIL066C RNR3; ribonucleoside-diphosphate reductase alpha chain [EC:1.17.4.1] [SP:RIR3 YEAST]
YNR003C RPC34; DNA-directed RNA polymerase III, 34 KD subunit [EC:2.7.7.6] [SP:RPC6 YEAST]
YIL066C RNR3; ribonucleoside-diphosphate reductase alpha chain [EC:1.17.4.1] [SP:RIR3 YEAST]
YOR074C CDC21; thymidylate synthase (TS) [EC:2.1.1.45] [SP:TYSY YEAST]
YKL106W AAT1; aspartate aminotransferase [EC:2.6.1.1] [SP:AATM YEAST]
YOR374W ALD4; aldehyde dehydrogenase [EC:1.2.1.3] [SP:DHA4 YEAST]
YDR148C KGD2; 2-oxoglutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase)

[EC:2.3.1.61] [SP:ODO2 YEAST]
YFL018C LPD1, DHLP1; dihydrolipoamide dehydrogenase [EC:1.8.1.4] [SP:DLDH YEAST]
YFR055W cystathionine beta-lyase [EC:4.4.1.8] [SP:METC YEAST]
YGR124W ASN2; asparagine synthase (glutamine-hydrolysing) [EC:6.3.5.4] [SP:ASN2 YEAST]
YGL070C RPB9; DNA-directed RNA polymerase II 14.2 kD polypeptide [EC:2.7.7.6] [SP:RPB9 YEAST]
YKL067W YNK1; nucleoside-diphosphate kinase [EC:2.7.4.6] [SP:NDK YEAST]
YHR216W PUR5; IMP dehydrogenase [EC:1.1.1.205] [SP:IMH1 YEAST]
YLR209C YLR209C; probable purine nucleoside phosphorylase [EC:2.4.2.1] [SP:PNPH YEAST]
YBR035C PDX3; pyridoxamine 5’-phosphate oxidase [EC:1.4.3.5] [SP:PDX3 YEAST]
YLR058C SHM2; serine hydroxymethyltransferase, cytosolic (glycine hydroxymethyltransferase) [EC:2.1.2.1] [SP:GLYC YEAST]
YGR204W ADE3; methylenetetrahydrofolate dehydrogenase (NADP+) / methenyltetrahydrofolate cyclohydrolase / formate–

tetrahydrofolate ligase [EC:1.5.1.5 3.5.4.9 6.3.4.3] [SP:C1TC YEAST]
YOR074C CDC21; thymidylate synthase (TS) [EC:2.1.1.45] [SP:TYSY YEAST]

Table 4: Correlated gene clusters found in two-hybrid and pathway datasets.
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sce:YBR020W GAL1; galactokinase [EC:2.7.1.6] [SP:GAL1 YEAST]
eco:b0757 galK, galA; galactokinase [EC:2.7.1.6] [SP:GAL1 ECOLI]
sce:YBR018C GAL7; galactose-1-phosphate uridylyltransferase [EC:2.7.7.10] [SP:GAL7 YEAST]
eco:b0758 galT, galB; galactose-1-phosphate uridylyltransferase [EC:2.7.7.10] [SP:GAL7 ECOLI]
sce:YCR021C HSP30; heat shock protein [SP:HS30 YEAST]
eco:b2611 hypothetical protein
sce:YOR232W MGE1; GRPE protein homolog precursor [SP:GRPE YEAST]
eco:b2614 grpE; heat shock protein grpE (heat shock protein b25.3) (HSP24) [SP:GRPE ECOLI]
sce:YMR058W FET3; iron transport multicopper oxidase precursor [EC:1.-.-.-] [SP:FET3 YEAST]
eco:b0123 yacK; probable 53.4 kD blue-copper protein yacq precursor [SP:YACK ECOLI]
sce:YNL036W NCE103; involved in non-classical protein export pathway [SP:NCE3 YEAST]
eco:b0126 yadF; hypothetical 25.1 kD protein in hpt-panD intergenic region [SP:YADF ECOLI]
sce:YDR226W ADK1; adenylate kinase [EC:2.7.4.3] [SP:KAD1 YEAST]
eco:b0474 adk, plsA, dnaW; adenylate kinase [EC:2.7.4.3] [SP:KAD ECOLI]
sce:YOR176W HEM15; ferrochelatase [EC:4.99.1.1] [SP:HEMZ YEAST]
eco:b0475 hemH, popA, visA; ferrochelatase (protoheme ferro-lyase) (hemE synthetase) [EC:4.99.1.1] [SP:HEMZ ECOLI]
sce:YGR263C unknown [SP:YG5J YEAST]
eco:b0476 aes; acetyl esterase [EC:3.1.1.-] [SP:AES ECOLI]
sce:YPR125W MRS7; suppressor of mrs2-1 mutation
eco:b1384 feaR, maoR, maoB; transcriptional activator feaR [SP:FEAR ECOLI]
sce:YOR374W ALD4; aldehyde dehydrogenase [EC:1.2.1.3] [SP:DHA4 YEAST]
eco:b1385 feaB, padA, maoB; phenylacetaldehyde dehydrogenase (PAD) [EC:1.2.1.39] [SP:FEAB ECOLI]
sce:YPL005W YPL005W; Lpa12p
eco:b1696 putative ARAC-type regulatory protein
sce:YGR207C ETF-BETA; electron transfer flavoprotein beta-subunit [SP:ETFB YEAST]
eco:b1697 ydiQ; putative electron transfer flavoprotein subunit ydiq [SP:YDIQ ECOLI]
sce:YPL252C YAH1; similar to adrenodoxin and ferrodoxin
eco:b2525 fdx; ferredoxin, 2fe-2s [SP:FER ECOLI]
sce:YGL018C JAC1; molecular chaperone [SP:YGB8 YEAST]
eco:b2527 hscB; chaperone protein hscB (hsc20) [SP:HSCB ECOLI]
sce:YMR253C unknown [SP:YM87 YEAST]
eco:b3184 yhbE; hypothetical 35.0 kD protein in dacB-rpmA intergenic region (F321) [SP:YHBE ECOLI]
sce:YNL005C MRPL2; mitochondrial ribosomal protein L2 precursor [SP:RM02 YEAST]
eco:b3185 rpmA; 50S ribosomal protein L27 [SP:RL27 ECOLI]
sce:YBR034C HMT1, ODP1, RMT1; hnRNP arginine N-methyltransferase [EC:2.1.1.-] [SP:HMT1 YEAST]
eco:b3259 prmA; ribosomal protein l11 methyltransferase [EC:2.1.1.-] [SP:PRMA ECOLI]
sce:YLR401C unknown [SP:YL01 YEAST]
eco:b3260 yhdG; hypothetical 35.9 kD protein in pmra-fis intergenic region (ORF1) [SP:YHDG ECOLI]
sce:YDR268W MSW1; mitochondrial tryptophanyl-tRNA synthetase [EC:6.1.1.2] [SP:SYWM YEAST]
eco:b3384 trpS; tryptophanyl-tRNA synthetase [EC:6.1.1.2] [SP:SYW ECOLI]
sce:YOR131C unknown
eco:b3385 gph; phosphoglycolate phosphatase [EC:3.1.3.18] [SP:GPH ECOLI]
sce:YGR218W CRM1; chromosome region maintenance protein [SP:CRM1 YEAST]
eco:b3438 gntR; gluconate utilization system gnt-I transcriptional repressor [SP:GNTR ECOLI]
sce:YMR315W unknown [SP:YM94 YEAST]
eco:b3440 yhhX; hypothetical 38.8 kD protein in gntR-ggt intergenic region (F345) [SP:YHHX ECOLI]

Table 5: Correlated gene clusters obtained by multiple organism comparison.

the positions in the S.cerevisiae genome sequence and the protein-protein interactions by two-hybrid
analysis, and G2 is the binary relationships among E.coli genes with respect to the positions in the
E.coli genome sequence. To extract correlated gene clusters in the S.cerevisiae two-hybrid dataset G3

by using the E.coli genome dataset G2, S.cerevisiae genes in G1 are mapped to E.coli genes in G2

(dashed arrows). Then, the nodes in G2 and those in G3 are connected by hyperedges (dashed lines),
and by clustering those hyperedges as explained in the previous sections we obtain correlated gene
clusters like C1 and C2 that contain sets of genes reserving their mutual relationships in G2 and G3.

Actually, we connected the S.cerevisiae two-hybrid dataset and the E.coli dataset via 934 homol-
ogous relationships between two genes of these organisms.8 By clustering the hyperedges we found
eleven correlated gene clusters as shown in Table 5 (execution time was 14 seconds). Each S.cerevisiae
gene is attached by its E.coli homologue. Here, genes that interact through at most one intermediate
gene were included in the same cluster (i.e., for the ith graph, setting pi = 2). The result includes,
for example, correlated gene clusters related to the galactose metabolism (sce:YBR020W (GAL1) and
sce:YBR018C (GAL7)) and heat shock proteins (sce:YCR021C (HSP30) and sce:YOR232W (MGE1)).

4 Discussions

One crucial point of the current method is whether the graphs being compared really can provide
biological information to classify genes. Even if the dataset is based on biological facts, we must con-

8We used “best-best” entries of the KEGG/SSDB database.
See http://ssdb.genome.ad.jp/ for details.
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sider its appropriateness for this purpose. For example, when we compared the S.cerevisiae genome
dataset and the S.cerevisiae two-hybrid dataset, we actually found a total 106 “correlated gene clus-
ters”. However, considering the characteristics of the eukaryote genome sequences, it may not be
easy to interpret the result. For example, YOL147C and YOL148C are next to each other on the
S.cerevisiae genome sequence, and they are also connected through one intermediate gene YPR086W
in the two-hybrid dataset. The annotations of these genes are as follows:

sce:YOL147C PEX11; peroxisomal membrane protein [SP:PEXB YEAST]
sce:YOL148C SPT20, ADA5; transcription factor [SP:SP20 YEAST]
sce:YPR086W SUA7; transcription initiation factor IIB [SP:TF2B YEAST]

But, different from prokaryote genomes that contain functional links as represented by operons, it
is not clear whether the inclusion of the S.cerevisiae genome dataset can improve the confidence of
screening the two-hybrid dataset. It is biologically true that the two genes above are next to each
other in the S.cerevisiae genome sequence, but it cannot support that the interaction detected by
two-hybrid analysis is biologically meaningful.

Currently, the output of the method is just a list of correlated gene clusters. Deriving sub-networks
that indicate how genes are connected in a correlated gene cluster is a next subject of our analysis.
They may be found by gathering the shortest paths between the genes in a correlated gene clusters.
Those sub-networks may reveal intermediate members which are not contained in the list of genes in
the correlated gene clusters, but which may still be of interest.

Finally, in this paper, we have focused on whether or not two genes are connected by means of
binary relationships. Now, we can extend the framework so that it can cope with graphs whose edges
have weights according to similarity scores, binding constants, and other quantitative relationships.
Our algorithm works for this purpose too, but we must consider normalization of edge weights among
different kinds of graphs (e.g., corresponding to a genome and a pathway) since comparison between
their absolute values do not always make sense.
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