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ABSTRACT

Cooperative transcriptional activations among
multiple transcription factors (TFs) are important to
understand the mechanisms of complex transcrip-
tional regulations in eukaryotes. Previous studies
have attempted to find cooperative TFs based on
gene expression data with gene expression profiles
as a measure of similarity of gene regulations. In this
paper, we use protein–protein interaction data to
infer synergistic binding of cooperative TFs. Our
fundamental idea is based on the assumption that
genes contributing to a similar biological process
are regulated under the same control mechanism.
First, the protein–protein interaction networks are
used to calculate the similarity of biological pro-
cesses among genes. Second, we integrate this
similarity and the chromatin immuno-precipitation
data to identify cooperative TFs. Our computational
experiments in yeast show that predictions made by
our method have successfully identified eight pairs
of cooperative TFs that have literature evidences
but could not be identified by the previous method.
Further, 12 new possible pairs have been inferred
and we have examined the biological relevances
for them. However, since a typical problem using
protein–protein interaction data is that many false-
positive data are contained, we propose a method
combining various biological data to increase the
prediction accuracy.

INTRODUCTION

Promoter regions of higher eukaryotic genes have complex
structures to regulate their transcriptional activations and are
controlled by multiple transcription factors (TFs). TFs are
DNA-binding proteins at the terminals of signal transduction

networks, and computational representations and identifica-
tions of binding sites for TFs have been widely studied (1).

Recent molecular technologies have produced many kinds
of experimental data including whole genome sequences, gene
expression profiles and protein–protein interactions. Therefore,
several methods have been developed to infer transcriptional
regulation networks by combining these various kinds of data.
For example, Banerjee et al. (2) used expression data and
the chromatin immuno-precipitation (ChIP) data to predict
cooperativity of TFs, which is a key factor for the analyses
of complex transcriptional regulation networks. This line of
approach is very significant because according to the fact that
there are at most 200 different TFs among totally 6300 genes in
yeast organism, there must exist cooperative transcriptional
activations to control the expressions of all 6300 genes.

Recently, in addition to gene expression data, protein–
protein interaction data have been rapidly generated. In this
paper, we propose a method integrating protein–protein inter-
action data and ChIP data (our strategy is illustrated in
Figure 1), and show the effectiveness of exploiting protein–
protein interactions to identify cooperative transcriptional
activations.

The existence of interaction between two proteins suggests
that they contribute to the same or similar biological processes.
Many cellular processes and chemical events in organisms
such as enzymatic reactions and dimerization involve
protein–protein interactions. In addition, these interactions
reveal, in some cases, functional similarity of proteins.
Schwikowski et al. (3) proposed a protein function prediction
method by which a protein of unknown function is predicted to
have the three most frequent cellular functions represented
among its direct interaction partners.

However, gene expression data also have been applied
to protein function predictions. Clustering analysis of gene
expression data can be used to predict functions of unan-
notated proteins based on the idea that genes with similar
functions are likely to be co-expressed (4,5).

Based on these observations, we may deduce that the
existence of protein–protein interaction is strongly related
to the correlation of gene expressions from the viewpoint of
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functional similarity. This leads to the fundamental assump-
tion of this paper that proteins that are close to each other
in the protein–protein interaction network are likely to be
co-regulated by a same set of TFs. In fact, this assumption
is supported by the observation made by Jansen et al. (6)
that protein complexes have a strong relationship with gene
expressions. Therefore, we can use the similarities of bio-
logical processes measured by protein–protein interactions
to identify the cooperative TFs.

In our method, first, the protein–protein interaction net-
works are used to calculate the similarity of biological pro-
cesses that the genes contribute to. Second, we integrate the
similarity of biological processes based on protein–protein
interactions and ChIP data to identify synergistic binding of
TFs. Our computational experiments in yeast show that pre-
dictions made by our method based on protein–protein inter-
actions have successfully identified eight pairs of cooperative
TFs that have literature evidences and could not be identified
by the previous method based on gene expression data. In
addition, 12 new possible pairs of cooperative TFs have
been inferred. From our careful analyses of the biological
relevances for those pairs, we suggest a biological observation
that some metabolism is regulated rather on translation level
than on transcription level.

Furthermore, when using protein–protein interaction data,
a typical problem is their noisiness, i.e. the data contains many
false-positives. Integrating various kinds of data is one solu-
tion to this problem (7). In addition, it may enable us to take
many biological perspectives into consideration. In this paper,
we propose a method integrating cellular localization data and
function data with protein–protein interaction data for precise
predictions of TF cooperativity.

MATERIALS AND METHODS

Selecting target genes of TF pairs from ChIP data

We use Lee et al.’s (8) ChIP data, a genome-wide binding data
of 113 yeast regulators, to determine target genes of each TF.

We suppose that a protein is regulated by a TF if its binding
P-value PB < 0.001 is satisfied. For all pairs of TFs A and B,
we divide target genes for two TFs into three sets: those of TF
A but not B (i.e. A \ �BB), TF B but not A (�AA \ B), and both TF A
and B (A \ B). TF pairs whose overlap set (A \ B) has genes
less than threshold Omin are excluded.

Constructing protein–protein interaction network

We construct a protein–protein interaction network based on
the dataset organized by Yu et al. (9). It contains data produced
by different experiments (compiled from MIPS, BIND and
DIP databases), those by large-scale yeast two-hybrid experi-
ments and those by in vivo pull-down experiments. It consists
of 69592 interactions involving 4957 proteins. The average
number of interaction partners per protein is �27.9.

Calculating distance between two proteins
based on protein–protein interaction

We calculate a distance between any two proteins based on a
newly defined distance function exploiting the protein–protein
interaction network constructed as above.

Two typical distance measures between two proteins based
on the protein–protein interaction network are a graph–
theoretic distance DG, and the Czekanowski–Dice distance
DCD proposed by Brun et al. (10).

For the proteins i and j, DG(i, j) is defined as the minimum
number of edges needed to traverse from i to j. However,
DCD(i, j) is defined as follows:

DCD i‚ jð Þ ¼ jInt ið Þj þ jInt jð Þj � 2jInt ið Þ \ Int jð Þj
jInt ið Þj þ jInt jð Þj 1

where Int(i) and Int( j) are the lists of interactors of the proteins
i and j plus themselves (to decrease the distance between
proteins interacting with each other). DCD ranges from 0 to 1.
A feature of these distances is that the less the distance
between two proteins is, the stronger their biological or func-
tional relatedness is thought to be.

Figure 1. Strategy of identifying cooperative TF regulation using ChIP data and protein–protein interaction data. If the central tendency (we use median) of
the overlap set that includes genes which both TF A and TF B bind to is significantly lower than those of the other two sets, we conclude that TF A and TF B are
cooperative.
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However, a serious problem of these distances is that they
cannot express diversity and specificity of distances between
proteins adequately.

DG is a discrete measure and cannot be defined for proteins
that are not linked in the network. DCD is <1 only if two
proteins are within a distance of 2 in terms of DG (otherwise,
|Int(i) \ Int( j)| in Equation 1 always equals to 0), while DG > 2
for most pair of proteins in the gene sets of Yu et al. (9).

To overcome this problem, we extend the Czekanowski–
Dice distance as follows:

DI i‚ j‚ lð Þ ¼
 Xl

k¼1

1

k
jIntk ið Þj þ jIntk jð Þjð Þ

�2
Xl

n¼1

Xl

m¼1

2

m þ n
jIntm ið Þ \ Intn jð Þj

!,
 Xl

k¼1

1

k
jIntk ið Þj þ jIntk jð Þjð Þ

!
2

where Intk(i) is a list of proteins whose DG from the protein
i is equal to k [Int1(i) includes the protein i itself as in the
Czekanowski–Dice distance], and l denotes the range of DG to
be considered. DI(i, j, 1) is equal to DCD.

Finally, we define the new distance function between the
proteins i and j, denoted D(i, j, l), as

D i‚ j‚ lð Þ ¼ min
k

DI i‚ j‚kð Þ‚ k < l 3

We use D(i, j, 2) as a protein distance and represent it as D(i, j).
Further, we consider the protein pair as biologically signi-

ficant only when both proteins have direct interactors more
than threshold Imin (we use 3 as Imin).

Evaluating transcription factor cooperativity

We assume that proteins which are close to each other in the
protein–protein interaction network, or those which may con-
tribute to the same biological processes, are regulated under
the same control mechanism. On this assumption, if TF A and
TF B are cooperative, proteins that are controlled by both TFs
must be closer to each other in terms of D(i, j) than those
regulated only by TF A or TF B. To precisely measure this
differences of distance among three gene sets, we examine
whether the central tendency of the overlap distance set, which

is a set of distances D(i, j) for pairs of proteins i, j in the overlap
gene set (A \ B), must be significantly lower than those for the
two other distance sets, TF A distance set for the TF A gene set
A \ �BBð Þ and TF B distance set for the TF B gene set �AA \ Bð Þ.

First, we choose TF pairs in which the median of overlap
distance set was lower than the other distance sets. We deter-
mine the significance of differences by the Mann–Whitney
U-test. As the distribution of distances is not normal
(Figure 2), we use this non-parametric statistical test.

For a pair of TF A and TF B, if the P-value of Mann–
Whitney U-test for the combination of the overlap distance
set and TF A distance set and that for the combination of the
overlap distance set and the TF B distance set satisfy the
threshold of 0.05 with Holm’s correction, which means that
the lower of these two P-values must be <0.025 and the other
P-value must be <0.05, we conclude that TF A and TF B are
cooperative.

The P-value for the Mann–Whitney U-test is calculated as
follows (11). First, the statistic U is calculated,

U ¼ n1n2 þ
n1 n1 þ 1ð Þ

2
�
X

i

r1i‚

where n1 denotes the number of elements in first set, n2 that of
second set and r1i is a rank of i-th element in first set where
ranks are assigned according to all the elements. Second, the
statistic Z0 is calculated,

Z0 ¼ jU�n1n2=2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

12 n2�nð Þ n3�n�
Pm

i¼1ðt3
i �tiÞ

� �q ‚

where n denotes the number of all the elements, m the number
of different kinds of ranks and ti the number of elements of
i-th rank.

Finally, the P-value of Z0 is calculated based on the normal
distribution. We execute one-tailed testing so that we only
examine that the central tendency of the overlap set is signi-
ficantly lower than those of the other two sets.

Prediction of cooperative TF triads

When the pair of TF A and TF B and that of TF B and TF C are
both cooperative, we apply the same method to the triad of
TF A, TF B and TF C.

Figure 2. Comparison by other distance functions. PB < 0.001, Omin ¼ 3 and Pmw < 0.05 are used. The number of predictions with literature evidence is relevant
to sensitivity of each condition. Specificity ¼ No. of predictions with literature evidence/No. of predictions. As for DG and DCD, mean is used instead of median as the
central tendency. There are proteins whose distances are not defined in using DG with Imin ¼ 1 or 2. Thus, results on DG with Imin ¼ 1 and 2 are omitted.
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Prediction of cooperative TF module

When we consider TF A and TF B, there could be a case that
the target genes of each TF are also those of other (third) TF C
and TF D which are possibly cooperative. If the targets of
cooperative TFs, TF C and TF D, are included in the TF A set,
the TF A set can be quite close to each other in terms of D(i, j)
due to the influences of TF C and D. In that case, they may
obscure the differences between the TF A distance set and the
overlap distance set, and so obstruct the detection of their
cooperativity.

To treat this problem, in judging cooperativity of TF A and
TF B as above, we redefine the TF A gene set as genes that
only TF A binds to, the TF B gene set in the same way, and
the overlap gene set as those that both TF A and TF B, but no
other TFs bind to. We apply this method to any combination
of TFs whose TF and overlap sets have more than Omin genes.
We represent combinations of TFs that are predicted as
cooperative by this method as cooperative TF ‘modules’.

INTEGRATING OTHER KINDS OF
BIOLOGICAL DATA

Cellular localization data

In a high throughput data of protein–protein interactions, many
unnatural data such as an interaction between a protein in
the nucleus and one in the plasma membrane are included.
However, in the living cell, these interactions between pro-
teins existing apart could be never observed. Therefore, we
incorporate localization data of proteins to exclude unnatural
interactions and improve the reliability of protein–protein
interactions.

A straightforward introduction of localization information
is that for two proteins which have an interaction reported in
experiments, if these two proteins have at least one common
localization, then we accept the interaction, otherwise reject
the interaction. However, since not all localization data for the
proteins are available, this straightforward method is naive.
We use mutual information criterion on co-occurrence of loc-
alizations in proteins to judge the relatedness of two localiza-
tions and verify the possibility of protein–protein interactions.
Mutual information Im is expressed as follows:

Im i‚ jð Þ ¼
X

k¼f0‚ 1g

X
l¼f0‚ 1g

P Xi ¼ k‚Xj ¼ l

 �

· log2

P Xi ¼ k‚Xj ¼ l

 �

P Xi ¼ kð ÞP Xj ¼ l

 � ‚ 4

where i and j denote two localizations, P(Xi ¼ 1) denotes the
possibility that a protein has localization i, P(Xi ¼ 0) the pos-
sibility that a protein does not have localization i, P(Xi ¼ 1,
Xj ¼ 1) the possibility that a protein has both localization i
and j. The mutual information is a method often used to give
a quantitative relation between two discrete elements, and
produces biologically relevant results applied to biological
data (12,13).

For two proteins i and j that have an interaction reported in
experiments, if there exist at least one combination of local-
ization li that i has and lj for j in which Im(li, lj) exceeds some
threshold Iloc, then we adopt the interaction between i and j.

We use MIPS cellular localization data (14) to calculate
mutual information of localizations and to select reliable
interactions.

Function data

The existence of protein–protein interaction often reflect
functional similarity. Thus, we may incorporate function data
annotated for proteins to refine the interaction-based protein
distances. Here, we use the logistic regression to achieve this
purpose. The logistic regression is a method, often used in
medicine (15), to quantitatively evaluate a relation between
one discrete element and the others. As we here want to know
not a relation between two functions but that between a protein
that may have multiple functions and a function, the logistic
regression is more appropriate than the mutual information.
In addition, its output is more meaningful as probability and
more tractable with the range (0, 1) than the linear multiple
regression or the mutual information.

By using the logistic regression on co-occurrence of func-
tions in proteins, we can calculate the possibility that a protein
has some function z as follows:

Pr z ¼ 1jxð Þ ¼ 1

1 þ expf� 1‚xð Þt
bg

5

where a vector x denotes the list of functions that a protein has
excluding z, in which xi ¼ 1 if a protein has the function i and
0 if not, and a vector b consists of intercept and coefficients
for each element in x and is estimated based on logistic regres-
sion model.

For a protein x and a function f, using the Equation 5,
we denote P(x, f) as follows:

P x‚ fð Þ ¼
(

1 if Ff xð Þ ¼ 1

Pr Ff xð Þ ¼ 1jF xð Þ

 �

else
6

where F(x) denotes a functional vector of x.
Exploiting P(x, f), we redefine the Equations 2 and 3 for

protein distances as follows:

f Intk ið Þð Þ ¼
X

x2Intk ið Þ
P x‚ fð Þ

DIf i‚ j‚ l‚ fð Þ ¼
 Xl

k¼1

1

k
f f Intk ið Þð Þ þ f Intk jð Þð Þg

�2
Xl

n¼1

Xl

m¼1

2

m þ n
f Intm ið Þ \ Intn jð Þð Þ

!,
 Xl

k¼1

1

k
f f Intk ið Þð Þ þ f Intk jð Þð Þg

!

DIf i‚ j‚ l‚ fð Þ ¼ minkDIf i‚ j‚k‚ fð Þ‚ k < l

We represent Df(i, j, 2, f) as Df(i, j, f).
If two proteins i and j have some common functions that

are not related to the functions of the objective TFs, then we
calculate Df(i, j, f) by choosing, among functions which two
target proteins have in common, a function f that maximizes
the distance as the proteins may be strongly influenced by
other TFs. We use the mutual information to measure the
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‘relatedness’ of protein functions with some threshold Ifnc as
we have done in localization data.

We use MIPS function data (14) to construct logistic
regression model and calculate functional distance Df. We
exclude proteins whose function is unknown when construct-
ing logistic regression model.

Comparison with a method using expression data

We compare prediction results of our method with those of
Banerjee et al. (2). The method of Banerjee et al. calculates
the correlations of expression profiles for the target genes and
finds cooperative TFs based on the correlations. Therefore, in
order to investigate the relationships between predictions on
which two methods agree or disagree, we calculate the rela-
tionships between the protein distances by our method based
on protein–protein interactions and the correlations of gene
expression profiles. We exploit genome-wide cell cycle expres-
sion data (16) to obtain the correlation of expression profiles.

RESULTS

Interaction-based protein distance

First, we verify the adequacy of using extended Czekanowski–
Dice distance D(i, j, l) as a distance measure.

Figure 3 shows a distribution of D(i, j, l). As shown in the
figure, the distribution mainly depends on l, which determines
the extent of interactors to be considered. The bigger l is, the
more distant interactors are taken into consideration. D(i, j, l),
or DCD(i, j), cannot express variety of protein distances prop-
erly in which most distance is equal to 1. However, in using
D(i, j, 3), specificity of closeness may be lost as randomly
chosen two proteins tend to be rather close to each other. Thus,
it is reasonable to use D(i, j, 2) as a protein distance.

Predictions of synergistic binding

From ChIP data of Lee et al. (8), with the threshold of binding
P-value PB < 0.001, which determined target genes of each TF,
we extracted 476 TF pairs satisfying Omin ¼ 3, the threshold
for the number of genes in overlap sets. TF pairs whose over-
lap set has more than Omin genes are considered. From these

TF pairs, by calculating D(i, j, 2) for pairs of proteins i and j
both of which had more than the threshold Imin ¼ 3 direct
interactors and judging the significance of Mann–Whitney
tests on distance sets with Pmw < 0.05, we identified 24
pairs as cooperative TFs (Table 1). Figure 2 shows the results
of predictions on several parameter values for calculation of
protein distances in terms of specificity and sensitivity based
on the literature (see Supplementary Materials for details of
predictions). It explains the reason to choose these parameters
(PB < 0.001, Omin ¼ 3, Imin ¼ 3), and indicates that parameter
values which we chose produce the best result.

Compared with the literature and the predictions using
gene expression data (2), about half of our predictions overlap
with their results (Table 1 and Figure 4A, C and D).

Overlaps with literature

It is remarkable that cooperative TF pairs Hap2/Hap5, Hap3/
Hap5, Arg80/Arg81, Fkh1/Fkh2, Fkh1/Ndd1, Mbp1/Skn7,
Gcr1/Gcr2 and Skn7/Yap1 are only detected by our method
and have literature evidences. Particularly, the detection of
Hap2/Hap3/Hap5 cooperativity (Table 2) meets with the
fact that these three TFs form a heterotrimer to be a CCAAT
DNA-binding factor (17).

A half of the overlaps, including Hir1/Hir2, Fkh1/Fkh2,
Fkh1/Ndd1, Fkh2/Mcm1 and Mbp1/Skn7, are involved in
the cell cycle. Fkh1, Fkh2, Mcm1 and Ndd1 are TFs that
mainly control the S/G2, G2 and G2/M phases (18). Mbp1
and Skn7 are known to function in the G1/S phase (19).
Hir1 and Hir2, in the S phase, contribute to transcriptional
repression (20).

However, Arg80/Arg81, Gcr1/Gcr2 and Skn7/Yap1 are
involved in biological processes other than cell cycle. Arg80
and Arg81 regulate the metabolism of arginine (21). Gcr1 and
Gcr2 contribute to regulating glycolysis (22,23). Skn7 and
Yap1 play a role in the oxidative stress response (24).

In addition, Pho2/Pho4 and Stb1/Swi4/Swi6 are detected
as a module (Table 3). Pho2 and Pho4 are known to function
in the regulation of phosphate metabolism (25). Stb1,
Swi4 and Swi6 regulate START in the G1 phase of the cell
cycle (26).

Figure 3. Distributions of distances based on the protein–protein interaction network D(i, j, l). For all possible pairs of proteins that have more than Imin interactors,
D(i, j, l ) is calculated. As for D(i, j, 2) and D(i, j, 3), the probability density on several Imin is estimated using Kernel method. D(i, j, l) ranges from 0.0 to 1.0, and its
distribution depends on l, the value determining the extent of interactors of protein i (j) to be considered.
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Newly discovered TF pairs

As for newly discovered TF pairs without literature evidence,
we may classify them into three groups: cooperative pairs
involved in the cell cycle, those concerned with Nrg1 and
those including Fhl1, Rap1 and Yap5.

Predictions related to cell cycle

Mbp1/Mcm1, Mbp1/Msn4, Mcm1/Swi4 and Ndd1/Skn7 are
thought to be involved in the cell cycle (Figure 4C). Particu-
larly, we infer that Mcm1/Swi4 and Mbp1/Mcm1 cooperat-
ively function in the M/G1 phase of the cell cycle. In the M/G1

phase, it is argued that Mcm1 and Swi4 form a feed-forward
loop, in which Mcm1 activates Swi4, and both of them activate

Clb2 (8). Thus, it is very reasonable to conclude that Mcm1
and Swi4 are cooperative. However, Mbp1 is known to activ-
ate Swi4 (18) and may participate in the feed-forward loop.
The cooperativity of Mbp1/Mcm1/Swi4 and Mbp1/Mcm1/
Swi4/Swi6, in which Mbp1/Swi6 and Swi4/Swi6 are known
to be cooperative (27), supports this.

In Mbp1/Msn4 and Ndd1/Skn7, Mbp1 and Ndd1 regulate
a progression from the G phase in the cell cycle (G1 to S and
G2 to M, respectively) (18). However, Msn4 and Skn7 are
involved in the response to the oxidative stress (28,29). In
addition, in Ndd1/Skn7/Yap1, Skn7/Yap1 contributes to the
oxidative stress response (30). From these, Ndd1/Skn7 and
Mbp1/Msn4 may contribute to the mechanism of the cell
cycle arrestation by stress.

Table 1. Predicted cooperative TF pairs (PB
a < 0.001, Omin

b ¼ 3, Imin
c ¼ 3, Pmw

d < 0.05)

TF1 TF2 Pmw (versus TF1) Pmw

(versus TF2)
Literature
evidence

Expression
datae

1 HIR1 HIR2 5.41E�07 4.14E�07 (30) Yf

2 FHL1 RAP1 3.48E�04 8.10E�34 NA N
3 MCM1 SWI4 6.53E�04 2.57E�04 NA N
4 RAP1 YAP5 1.41E�03 1.43E�10 NA N
5 FKH1 NDD1 2.09E�03 9.63E�04 (46) yg

6 FHL1 PDR1 2.29E�03 2.30E�06 NA N
7 FKH2 MCM1 3.99E�03 3.02E�04 (20) Y
8 MBP1 MSN4 4.23E�03 2.88E�03 NA N
9 ARG80 ARG81 5.61E�03 2.92E�04 (39) y
10 NRG1 PHD1 6.35E�03 8.02E�05 NA N
11 RAP1 SFP1 6.42E�03 1.15E�03 NA N
12 FHL1 GAT3 6.66E�03 3.51E�08 NA Y
13 FHL1 YAP5 7.52E�03 6.77E�18 NA N
14 HAP2 HAP5 2.51E�04 1.01E�02 (17) N
15 HAP3 HAP5 7.96E�04 1.01E�02 (17) N
16 NRG1 YAP6 4.58E�07 1.17E�02 NA Y
17 MBP1 MCM1 1.17E�02 2.31E�04 NA N
18 FKH1 FKH2 3.88E�03 1.43E�02 (20,47) y
19 HSF1 RAP1 1.44E�02 1.97E�02 NA N
20 SWI5 YAP5 2.25E�02 1.17E�02 NA N
21 NDD1 SKN7 3.09E�02 1.42E�02 NA N
22 MBP1 SKN7 3.59E�02 1.80E�05 (19) N
23 GCR1 GCR2 4.21E�02 2.41E�02 (22,23) N
24 SKN7 YAP1 8.15E�03 4.34E�02 (24) N

aPB, P-value for TF binding to chromatin as described by Lee et al. (8).
bOmin, threshold for the number of genes in overlap sets. TF pairs whose overlap set has more than Omin genes are considered.
cImin, threshold for the number of interactions. D(i, j, 2) is calculated for proteins that have more than Imin interactions.
dPmw, P-value as a result of Mann–Whitney U-test.
ePredictions by using gene expression data by Banerjee et al.(PB < 0.001) (2).
fCapital ‘Y’ means that P-value < 0.05 with Holm’s correction by Banerjee et al. (2).
gSmall ‘y’ means that P-value < 0.05, but not significant with Holm’s correction by Banerjee et al. (2).

Table 2. Predicted cooperative TF triads (PB < 0.001, Omin ¼ 3, Imin ¼ 3, Pmw < 0.05)

TF1 TF2 TF3 Pmw (versus TF1) Pmw (versus TF2) Pmw (versus TF3)

FHL1 PDR1 RAP1 7.55E�03 8.19E�05 2.02E�05
HAP2 HAP3 HAP5 3.52E�04 5.01E�03 1.01E�02
FHL1 RAP1 YAP5 1.67E�02 9.08E�06 1.14E�12
MBP1 MCM1 SWI4 2.47E�02 7.10E�04 1.48E�03
FHL1 RAP1 SFP1 3.77E�02 2.95E�03 2.08E�03
aFHL1 GAT3 RAP1 4.73E�02 1.94E�04 1.37E�02
NDD1 SKN7 YAP1 7.61E�03 7.98E�03 7.81E�02
FKH1 FKH2 NDD1 2.34E�02 9.02E�02 6.19E�03
NRG1 PHD1 YAP6 1.38E�03 1.42E�04 1.16E�01
FHL1 GAT3 YAP5 5.06E�01 8.61E�03 7.67E�05

aP-value boundary upper which all of three Mann–Whitney U-tests satisfy the threshold with Holm’s correction, and below which two of them satisfy it.
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Predictions involving Nrg1

As for cooperative pairs concerned with Nrg1, a possible
function of Nrg1/Phd1 and Nrg1/Yap6 is a control of cell
adhesion. Nrg1 and Phd1 are, respectively, thought to be

involved in the control of cell adhesion, particularly a
regulation of Flo11, which is a key protein of cell adhesion
(31–33). Relation of Yap6 to cell adhesion is not yet known.
However, given a weak cooperativity of Nrg1/Phd1/Yap6

Figure 4. (A) Comparison between predictions by protein–protein interaction data (with PB < 0.001, Omin ¼ 3, Imin ¼ 3), and those by expression data (2). All TF
pairs listed in this diagram are those less than P-value cutoff (i.e. P-value < 0.05) with Holm’s correction. Predictions made only by using protein–protein interaction
or only by expression, and their possible functions are shown. The number of predictions by both data depends on parameters and expression or protein–protein
interaction data to be used, and it may fluctuate. (B) The effect of integrating various biological data. The number of true-positive predictions in each condition, with
PB < 0.001, Omin ¼ 3, Imin ¼ 2, Pmw < 0.05, and the mutual information threshold Iloc ¼ Ifnc ¼ 0.01, are shown. The total number of predictions is 34 in using only
protein–protein interaction data, and 37 in the other conditions. (C) Predicted cooperative TF clusters. The cluster of TFs involved in cell cycle. The allocations of TFs
to four cell cycle phases are determined based on Simon et al. (18). (D) The cluster of TFs related to rRNA processing. Marks surrounding a protein show a biological
process that the protein contributes to. A broken line indicates cooperativity detected as a triad or a module, and a dotted one does weak cooperativity in a triad or
a module.

Table 3. Predicted cooperative TF modules (PB < 0.001, Omin ¼ 3, Imin ¼ 3, Pmw < 0.05)

TF1 TF2 TF3 TF4 Pmw (versus TF1) Pmw (versus TF2) Pmw (versus TF3) Pmw (versus TF4)

FHL1 RAP1 <2.2E�308 1.12E�18
PHO2 PHO4 8.59E�11 2.08E�11
MBP1 SWI6 8.22E�06 8.89E�04
FHL1 RAP1 YAP5 3.55E�32 <2.2E�308 <2.2E�308
FKH1 FKH2 NDD1 1.42E�05 7.67E�104 1.18E�30
aFKH2 MCM1 NDD1 9.16E�08 1.22E�04 2.71E�48
STB1 SWI4 SWI6 6.07E�08 7.56E�02 3.17E�24
MBP1 MCM1 SWI4 SWI6 5.79E�02 1.07E�34 5.94E�43 5.21E�34

aP-value boundary upper which all of the Mann–Whitney U-tests satisfy the threshold with Holm’s correction, and below which all but one satisfy it.
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(two out of three Mann–Whitney U-tests satisfy the threshold),
it is possible that Nrg1, Phd1 and Yap6 cooperatively control
the cell adhesion.

Predictions involving Fhl1, Rap1 and Yap5

The cooperative TF pairs including Fhl1, Rap1 and Yap5 may
be classified into two groups: one including Fhl1, Rap1 and
Sfp1, and the other consisting of Gat3, Hsf1, Pdr1, Swi5 and
Yap5 (Figure 4D). Fhl1, Rap1 and Sfp1 are individually
known to play a role in rRNA processing and ribosome bio-
synthesis (34–36). Fhl1/Rap1/Sfp1 cooperativity indicates the
relations among them.

However, Gat3, Pdr1, Swi5 and Yap5 are proteins involved
in metabolism. Gat3 is known to be responsible for nitrogen
metabolism (37). Hsf1 regulates the heat shock response (38).
Pdr1 participates in metal metabolism (39,40). Swi5 and Yap5
may play a role in some drug metabolism (41,42). Hence,
according to the relations of TFs controlling rRNA bio-
process to those involved in some types of metabolism (includ-
ing Fhl1/Rap1/Yap5, Fhl1/Gat3/Rap1 and Fhl1/Pdr1/Rap1
cooperativity), we suggest that ‘some metabolism is regulated
rather on translation level than on transcription level’.

Effects of integrating other kinds of biological data

Figure 4B shows predictions made by integrating protein
localization and function data on conditions of PB < 0.001,
Omin ¼ 3, Imin ¼ 2, Pmw < 0.05 and Ifnc ¼ Iloc ¼ 0.01, the
threshold of mutual information that determines which local-
izations and functions are significantly related to one another.
As shown in Figure 4B, integrating other kinds of biological
data enables us to detect more true-positive cooperative
TF pairs. Among these, Dig1/Ste12 regulates the invasive
growth (43), Met31/Met4 is involved in the sulfur amino
acid metabolism (44) and Cbf1/Met4 in the glutathione
metabolism (45).

While predictions using protein–protein interaction or
expression data tend to be related to the cell cycle, integration
of various biological data may allow incorporation of many
biological aspects and expand the scope of predictions to other
biological processes than the cell cycle.

Relationships between protein–protein
interaction-based distance and gene
expression correlation

In the overlap sets of TF pairs that are predicted as cooperative
by our method using protein–protein interaction data, we find
that the relationship between the interaction-based protein
distance and the expression correlation can be approximated
by the following equation:

D i‚ jð Þ ¼ �aC i‚ jð Þ þ c 1=k ið Þ þ 1=k jð Þð Þ þ d

1 � bC i‚ jð Þ ‚

where D(i, j) denotes the interaction-based distance between
proteins i and j, C(i, j) the Pearson correlation coefficient
between expression profiles of proteins i and j, k(i) the number
of interactors of protein i, and a, b, c, d are appropriate
constants (a, b, c, d > 0) (Figure 5A).

This equation shows that the closeness of two proteins based
on our distance measure is proportional to the expression

correlation and the profusion of their interactors. As the fact
that an expression similarity often implies an existence of
protein complexes is already known in (6), we infer that
the detection of cooperativity of two TFs by using protein–
protein interactions depends on whether the target proteins
regulated cooperatively by those TFs can form a complex
or not.

Figure 5. (A) Relationships between protein distance D(i, j) and expression
correlation coefficient C(i, j) (Pearson correlation coefficient between two
expression profiles). For a pair of protein i and j in the overlap sets of TF
combinations that are predicted to be cooperative by using protein–protein
interaction and expression data, the circle denotes the value of their C(i, j)
and D(i, j) on the horizontal and vertical axis, respectively. The triangle denotes
approximation of D(i, j) by C(i, j) and number of interactors of proteins i and j.
Expression profiles of genes concerned with Hap2, Hap3 and Hap5. Expression
profiles of three TFs (B) and their target genes which all of these three bind to
(C) in cell cycle according to Cho et al. (16) are shown. Ylr220w, one of targets
of these three TFs, is excluded because it has only one interactor and is thought
to be less important.
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DISCUSSION

We have proposed a novel method to infer cooperativities
of TFs based on protein–protein interactions and shown the
biological relevance of our predictions (see Predictions of
synergistic binding). However, predictions by our method are
a bit limited in coverage. As mentioned above (see Relation-
ships between protein–protein interaction-based distance and
gene expression correlation), our method may sensitively
detect existence of protein complexes. We note that predic-
tions made by our method are not only based on the existence
of protein complexes but also capture other biological aspects
within protein–protein interactions (see predictions based only
on in vivo pull-down data, which consist of protein complex
data, in Supplementary Materials). Nevertheless, we found
that, though predictions made by using protein–protein inter-
actions and those by using expression data overlap on already
known cooperative TFs, most novel predictions were specific
to each method (Figure 4A). This feature shows the possibility
that methods using expression data and protein–protein inter-
action data, each with a bit limited coverage, can complement
each other.

Still, there are some advantages of using protein–protein
interaction data.

First, it may enable us to detect locally significant correla-
tions among expression profiles. For example, the expression
profiles of target genes of Hap2/Hap3/Hap5, whose cooper-
ativity is detected only by our method, are not similar as a
whole, with no higher correlation coefficient between two
expression patterns than 0.3 (Figure 5B and C). However,
in timepoints 12–15 of the cell cycle, where the expression
levels of three TFs are similar and they may form a complex to
function, the expression profiles of target genes in this short
period are rather related to each other, with three of six pos-
sible correlation coefficients exceeding 0.7 and five higher
than 0.4. The closeness in the protein–protein interaction
network may reflect this locally meaningful relatedness of
expression patterns.

Second, a method using protein–protein interaction data has
some capability for handling post-transcriptional modifica-
tions. Though the post-transcript modification is a key factor
for many biological phenomena like diseases, the expression
data give no information about it. However, by using inter-
actions between proteins with post-transcript modifications,
method using protein–protein interactions can, though
indirectly, cooperate post-transcript modifications into its
predictions.

Third, the protein–protein interaction network provides
a good platform for integrating various biological data. As
shown above (see Effects of integrating other kinds of bio-
logical data), integration of various data is essential for more
comprehensive understanding and prediction of cooperative
TFs. Particularly, integration of gene expression data on time
course is effective. By selecting time-specific and house-
keeping proteins based on expression data and constructing
a time-specific protein–protein interaction network from these
proteins, our method can be extended to detect time-specific,
or dynamic, cooperativity among TFs.

Finally, we must note that both predictions made by
protein–protein interaction data and by expression profile
data fairly depend on parameters and datasets, and that the

same methods may produce different prediction results
by using some elaborately selected dataset. As for datasets,
data from high-throughput analyses, like in vivo pull-down
data which we used, contain a lot of false-positives that should
be excluded by exploiting other biological data.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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