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ABSTRACT

The refinement and high-throughput of protein inter-
action detection methods offer us a protein–protein
interaction network in yeast. The challenge coming
along with the network is to find better ways to
make it accessible for biological investigation.
Visualization would be helpful for extraction of mean-
ingful biological information from the network.
However, traditional ways of visualizing the network
are unsuitable because of the large number of pro-
teins. Here, we provide a simple but information-
rich approach for visualization which integrates topo-
logical and biological information. In our method, the
topological information such as quasi-cliques or
spoke-like modules of the network is extracted into
a clustering tree, where biological information span-
ning from protein functional annotation to expression
profile correlations can be annotated onto the repre-
sentation of it. We have developed a software named
PINCbasedonourapproach.Comparedwithprevious
clusteringmethods,ourclusteringmethod ADJWper-
forms well both in retaining a meaningful image of the
protein interaction network as well as in enriching the
image with biological information, therefore is more
suitable in visualization of the network.

INTRODUCTION

It is now thought that the complexity of organisms rise not
from the number of their macromolecules but rather from the
relationships between them (1). Protein interactions are one of
the major sources of this complexity. Since several high-
throughput protein interaction detection approaches already
have been developed (2–7), the information about protein
interactions in yeast, which is one of the best-characterized
model organisms, has grown considerably. A number of large-
scale protein interaction data sets (2–5) have recently been

published. These large-scale data sets provide a yeast protein–
protein interaction network, in which proteins are depicted as
vertices and interactions as edges.

The challenge coming along with the network is to find
better ways to make it accessible for biological investigation.
A visualization method would be helpful for extraction of
useful biological information from the network. The present
algorithms represent a vertex as a point, an edge as a straight
line, and focus on how to draw these graphs more nicely and
neatly either on two-dimensional (2D) picture (8) or in three-
dimensional (3D) space (8,9) by adjusting positions of the
points and lines. However, as there are thousands of proteins
and tens of thousands of interactions in the yeast protein–
protein interaction network, much information in the network
remains hidden with this kind of visualization methods. For
instance, in high linkage density areas such as cliques, the lines
will overlap in a 2D picture, and is difficult to obtain informa-
tion from dense parts even in a 3D representation.

Since the limitations of traditional visualization methods are
unavoidable, we here present an alternative visualization
method, which aims at combining the topological and biological
information in a better way. The topological information is
extracted from the network and displayed in a clustering tree.
Based on the clustering tree, a graphical representation was
created. The representation takes the form of a graphical adja-
cency matrix where proteins are listed according to the order of
the clustering tree, and in which a pixel depicts an interaction
between two proteins. Biological information is then, added into
the graphical representation of the network. Different colors
could be used to represent different biological information,
spanning from protein functional annotation to expression pro-
file correlations. We also provide a software (PINC, protein
interaction network clustering) which can cluster and visualize
protein–protein interation networks based on our method.

Topological clustering methods have proven to be a good
solution for metabolic networks (10) and complicated net-
works in other areas (11,12). Recently, two research groups
separately applied two clustering methods on the yeast protein
interaction network (13,14). Several studies (15–19) have
shown that there exists meaningful topological information
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in a protein–protein interaction network, commonly in the
form of quasi-clique (20) or spoke-like patterns (21). Both
patterns can be clustered in separate branches of topological
clustering trees, thus revealing information about sub-topolo-
gical modules of the network. However, different clustering
methods reveal different parts of the network. Here, we pro-
vide two methods. One is a new topological clustering method
which is called ADJW clustering, in which a modified adja-
cency matrix of the network was employed as the similarity
matrix for the clustering. The other is a topological clustering
method based on Hall (12). In this method the proteins were
first projected into Euclidian space and then clustered accord-
ing to their positions using a hierarchical clustering method.
We applied both to the yeast protein–protein interaction
network. Compared to two previously published methods
(13,14), the ADJW clustering method is more suitable for
visualizing several aspects of the network. We further ana-
lyzed the distribution of protein complexes and unclassified
proteins in the ADJW clustering tree. The results show that the
ADJW clustering method is an efficient tool for clusters of
protein complexes. Further analyses show the Hall’s method
provides different and complementary results.

MATERIALS AND METHODS

Data source

This approach is applied to the yeast Saccharomyces
cerevisiae protein–protein interaction network. The protein–
protein interactions data detected by experiments, such as the
yeast two-hybrid assay (5), HMS-PCI and TAP methods (2),
were collected from the MIPS (http://mips.gsf.de/), PreBIND
(http://bind.ca/index2.phtml?site=prebind), BIND (http://
bind.ca/) and GRID (http://biodata.mshri.on.ca/grid/servlet/
Index). In a preprocessing step, self interactions and redundant
interactions were filtered out. For interactions detected by the
HMS-PCI and TAP methods, the spoke model data (21,22)
that assign interactions only between the bait and the asso-
ciated proteins were used. This yielded an interaction data set
containing 13 344 physical interactions among a total of 4537
yeast proteins (see Supplementary Material).

Methods

The topological information of the network was represented in
a clustering tree produced by a Hierarchical Clustering algo-
rithm. Biological information was annotated with color into
the adjacency matrix base on the order of the clustering tree.
Functional P-value and P-value of complex were employed as
criteria to compare our topological clustering with the methods
of Brun et al. (14) and Rives and Galitski (13).

Hierarchical Clustering Algorithm. A protein–protein interac-
tion network is represented as a bi-directed graph G(V,E), i.e.
each protein is noted as a vertex and each interaction between
proteins as an edge between vertices. Let A be the adjacency
matrix, where A = (aij), aij = 1 when there is an edge between
vertices i and j, and aij = 0 otherwise.

ADJW. The adjacency matrix A is employed as the similarity
matrix. The average linkage hierarchical clustering is applied

to this matrix. For two groups M and N, their average linkage is

DMN =
P

m2M

P
n2N amn

jM jjN j : 1

Here DMN represents the density of the edges between these
two groups. The average linkage hierarchical clustering is a
greedy algorithm based on DMN. Two groups I and J which
have the max value of DIJ are clustered into one group in each
step. By iterating these steps, a hierarchical clustering tree is
generated.

In the beginning of the clustering, the method treats all of
the edges as the same, and the proteins with edge are clustered
together. As we know, the more common neighbors the two
vertices in an edge have, the better the initial clustering of their
edge. In order to decide which edge should be clustered first
we made a modification based on the adjacency matrix A.
Thus, we defined a similarity matrix as

S = A + w�A2, 2

where w is a very small number, here, with an assigned value
of 10�8. The modification w�A2 ensures that the inter-
acting protein pair which shares more neighbors should be
clustered first.

The tree based on A is called the ADJ Tree while the tree
based on S is called the ADJW Tree.

Hall Clustering (12). The clustering tree was obtained through
a two-step process. First, the proteins in the network were
projected into Euclidian space based on an optimization.
Second, a hierarchical cluster method was applied to the pro-
teins according to their positions in the Euclidian space.

Step 1: Projecting proteins into an r-dimensional
Euclidean space. The vertices were projected into an
r-dimensional Euclidian space according to the principle
that two vertices should be as near as possible if there is an
edge between them (12). For simplification, the problem to
find one dimension to match the above requirement equals the
problem of finding the vector X = (x1, x2, . . . , xn)T by mini-
mizing the following formula:

min Q =
Xn

i¼1

Xn

j¼1

xi � xj

� �2
aij = XTLX, jXj = 1: 3

Here, let L = D � A be the Laplacian matrix, and D be the
diagonal matrix Dii =

P
kaik, Dij = 0 (i „ j).

It has been proved that Q will reach a minimum when X is
the eigenvector with the minimal eigenvalue of the Laplacian
matrix L (12). Hence, finding the first dimension can easily
be solved by setting it as the eigenvector of the minimal
eigenvalue.

Notice that all eigenvectors are mutually orthogonal
because L is a symmetric matrix. The eigenvectors are
employed to produce the r-dimensional space we aim at.
That L is a positive semi-definite (12) matrix should facilitate
the computation of eigenvectors. The rank of L will be n � 1
if G is a connected graph, which means only one eigenvalue of
L equals 0. This trivial solution is not useful because it would
mean that all proteins would be projected into one point. So we
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can start from the second minimal eigenvector (Fiedler Vec-
tor) to get r eigenvectors for r dimensions. Here, r = 350 was
chosen.

Step 2: Ward clustering method. The Ward hierarchical
clustering method (23) was applied to cluster the projected
vertices into a clustering tree. The Euclidean distances were
used as a metric to measure the topological distance of vertices
in the network. Since the two groups with the smallest sum
form a new group for each step, the groups closer in the
distance space will be chosen earlier during the clustering
process. As a result, a clustering tree is produced step by step.

The tree based on this method is called the H Tree.

Visualization and annotation. Using our software PINC, we
drew the adjacency matrix of the interaction network with row
and column protein headings ordered according to the cluster-
ing tree. A filled-in row/column entry indicates an interaction
between the two proteins heading the row and column. The
color of the entry was used to symbolize different biological
information such as information concerning individual protein
(function annotation, complex annotation and degree of evo-
lutionary conservation) or protein interactions (expression
profile correlations, interaction confidence and regulatory rela-
tionship). Different patterns in the picture imply different
topological structures in the network, i.e. a block means
that the involved proteins form a clique while a line means
a spoke module.

Comparison and validation

P-value of a branch. As a branch may involve different func-
tional categories, P-values (24,25) were employed to assign
each branch a main function, which is a criterion of coinci-
dence of topological cluster and biological function.

Hypergeometric cumulative distribution was applied to
model the probability of observing, by chance, at least k pro-
teins in a branch size n belonging to a category containing C
proteins from a total genome size of G proteins, such that the
P-value is given by

P = 1 �
Xk�1

i¼0

C

i

� �
G � C

n � i

� �

G

n

� � : 4

The above test measures whether a branch is more enriched
with proteins from a particular category than that would be
expected by chance. If the P-value of a category is near 0, the
proteins of the category in a branch will have low probability
be chosen by chance. The functional category with the lowest
P-value in a branch was assigned as its main function, and used
to evaluate our clustering method.

The P-value of a complex

Each branch was assigned a P-value (see Equation 4) for a
complex containing C proteins. The P-value of the complex
P(Cj) is the minimum P-value attained at any branch Bi in the
hierarchical clustering tree T. That is,

P Cj

� �
= min

Bi2T
P Bi, Cj

� �� �
: 5

RESULTS

We applied our clustering method ADJW to a yeast
S.cerevisiae protein–protein interaction data set containing
4537 yeast proteins and 13 344 physical interactions (see
Materials and Methods). The ADJW clustering tree was dis-
played using TreeView (26) (http://rana.lbl.gov/EisenSoftwar-
e.htm) with functional annotation (22,27). The outline of the
tree is shown in Figure 1. The graphical representation of the
interaction network according to the ADJW Tree is outlined in
Figure 2a (for details see Supplementary Figure 1).

This representation revealed many hidden modules in the
network such as quasi-cliques and spoke-like modules. These
modules, which are not easily revealed through conventional
visualization, are believed to be biological meaningful and
ready to be further analyzed by adding biological information.
Among them, we presented two examples in Figure 2b, which
was a representation of a branch of the clustering tree. A
densely interconnected module (square block), which was
clustered together, was a quasi-clique pattern (20) (Figure 2c).
On the other hand, proteins that were clustered together in
spoke-like patterns, were represented by slender blocks at right
angles (21) (Figure 2d). Using our software PINC, the MIPS
functional annotations are added into the representation
(Figure 3). It indicated that the proteins in Figure 2c belong
to cellular fate/organization function category and most pro-
teins in Figure 2d belong to an unclassified category.

Using PINC, we analyzed quasi-cliques revealed in the
ADJW Tree by adding biological annotation. Most of them
are protein complexes. Details about the distribution of com-
plexes in the ADJW Tree are shown in Supplementary Table 1
and Supplementary Figure 1. This representation also revealed
a number of unclassified proteins clusters which are poten-
tially new complexes or executing special biological functions
(20). A selection of clusters from Tree comprising mostly
unclassified proteins are shown in Supplementary Table 2.

In order to illustrate the advantages of the ADJW clustering
method, we compared this method with the previously
reported methods of Brun et al. (14) and Rives and Galitski
(13), which have been used on the yeast protein–protein inter-
action network. We also applied these two methods on our data
set along with the ADJ method and the Hall clustering method.
The resulting trees were called the B Tree, the R Tree, the
ADJ Tree and the H Tree, respectively. Together with the
ADJW Tree, these trees were compared by several criteria.

A good test of how well the interaction information is
retained in the clustering tree would be to compute the dis-
tribution of the shortest path in the tree between interacting
proteins. We computed these distributions in the five trees, the
result showing in Figure 4a. In comparison, the ADJW Tree is
as good as the R Tree and better than the B Tree and the H Tree
(Figure 4a). The topology of the network is well preserved in
the ADJW clustering tree.

Besidesthenetworktopologyreservation,biologicalinforma-
tion enrichment is another important criterion for evaluation
of a clustering method. Applying MIPS functional annotation
(27), the P-value was introduced to measure these enrichments
in a clustering tree. We calculated the P-value of
each branches in the five trees. In total, 264 branches covering
541 proteins in the ADJW Tree had P-values below 0.001
(25,28). Compared to other trees (see Table 1), the ADJW
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Tree is almost as good as the B Tree and much better than the R
Tree, H Tree and the ADJ Tree.

The P-value (see Methods) was used to measure the coin-
cidence between the protein complexes and branches in a tree.
We calculated the coincidence between 307 complexes from
MIPS (27) (or complex categories) and the branches in five
trees. The result is shown in Figure 4b. Among 307 complexes,
222 complexes had a P-value lower than 10�5 in the ADJW
Tree. Compared to the other trees (see also Table 1), the

ADJW Tree is better than the other four trees measured by
this criterion. As the results show, biological information is
much enriched through clustering by ADJW.

Another important criterion for visualization is the distance
between interacting proteins in the visualized adjacency
matrix ordered according to the clustering tree. An interaction
will be near the diagonal of the matrix if the distance between
the proteins is small. If there are many interacting proteins
which have a small distance in the matrix, a major part of the

Figure 1. The ADJW clustering tree with protein functional annotation added (MIPS) which is drawn by TreeView (26). The length of the branches indicates the
average linkage density of the local group. Two branches with protein annotations are highlighted on the right. The proteins were divided into 12 functional categories
and one category for unclassified proteins (U). The color pattern shows the functional category of each protein. Proteins in a single branch tend to share common roles.
The two branches highlighted mostly consist of proteins with Genome Maintenance (D) and Protein Fate (F) functions respectively. Other functional categories are as
follows: E, energy production; G, amino acid metabolism; M, other metabolism; P, translation; T, transcription; B, transcriptional control; O, cellular organization; A,
transport and sensing; R, stress and defense; C, cellular fate/organization.
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information will be found in this relatively narrowly diagonal
area. We recorded separately the interactions in the selected
area in the adjacent matrix of the five trees (Figure 4d), show-
ing that the ADJW method performed well also on the basis of
this criterion (Figure 4c).

In summary, the ADJW clustering method performed well
both in retaining the interaction information and in enriching
of the network with biological information. This clustering
method thus has an advantage over other methods in visualiz-
ing the protein–protein interaction network.

However, the different clustering results revealed different
information of the network. For example, the H Tree revealed
an unusual, hidden module (Supplementary Figure 3), consist-
ing of two quasi-cliques, in which the proteins were mostly
unclassified according to the MIPS annotation. Classified pro-
teins in this module were mostly related to RNA processing,
and the unclassified proteins in one of the quasi-cliques have
also been suggested to be involved in pre-rRNA processing
(20,29). This module could not be easily seen in the other
clustering trees.

Figure 2. Details of a single branch. The outline of the graphic representation of the clustering tree (a), and a branch of it (b) are shown. The branch of the tree consists
of a quasi-clique (see proteins in red) and a spoke-like fashion (see proteins in green). The traditional visualization of the quasi-clique and the spoke-like fashion is
depicted in (c) and (d), respectively.
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DISCUSSION

The refinement and high-throughput of the protein interaction
detection methods offer us a chance to study the protein–
protein interaction network. However, because of the large
number of proteins, the network is too complicated to be easily
visualized. Here, we attempt to visualize this network in a
simple but information-rich way. We drew the adjacency
matrix of the interaction network according to the clustering
tree, and used different colors to represent different biological
information. Based on this approach, we have developed the
software PINC. Using PINC, our approach was subsequently

applied to visualize any two or more categories of proteins in
yeast protein–protein interaction network, e.g. ‘prokaryotic’
‘eukaryotic’ proteins (i.e. proteins with or without a prokar-
yote ortholog, see Supplementary Figure 1). Other biological
information such as the expression profile (see Supplementary
Figure 2), interaction confidence and regulatory relationships
can also be integrated into this approach. Given the abundant
information linked to proteins and protein relationships, a
versatile visualization approach such as ours should be highly
useful. Compared with conventional visualization methods,
our method has an advantage in that it reveals more hidden
modules in a large network.

However, since some information about the network is lost
through our visualization method, we also integrated a con-
ventional visualization method into our software PINC. The
PINC software has a friendly graphical interface and can be
downloaded from http://www.bioinfo.org.cn/clustering.

The ADJW clustering is a newly developed method,
whereas application of Hall’s method for clustering of geno-
mic networks represents an older strategy applied to a new
field. The former method has the advantage of being simple
and easy in implementation; however, when further devel-
oped, Hall’s clustering may still have a potential in visualiza-
tion of biological networks (see Figure 4c). These methods and
all the other clustering methods which are mentioned in this

Figure 3. Visual impact of the yeast protein network using our software PINC. Unclassified proteins are in red, the cellular fate/organization proteins are in green and
the others are in black. The color of the interaction between two proteins is computed by PINC using linear interpolation between the color codes representing the
functional category of each of the linked proteins.

Table 1. The P-value of branches and of protein complexes

R B H ADJ ADJW

P < 0.001
Branches 173 274 155 163 264
Proteins 362 568 331 387 541

P < 10�5

Protein complexes 204 214 182 212 222

The first and second row show, for all five trees, the number of branches with a
P-value less than 0.001, and the number of proteins covered by the respective
branches. The third row shows the number of protein complexes with a P-value
less than 10�5.
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paper were also integrated in PINC. We hope that biologists
will find useful biological information based on our software
when studying the distribution of the proteins they focus on.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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