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Abstract

Background: Many biological processes involve the physical interaction between protein domains. Understanding

these functional associations requires knowledge of the molecular structure. Experimental investigations though

present considerable difficulties and there is therefore a need for accurate and reliable computational methods.

In this paper we present a novel method that seeks to dock protein domains using a contact map representation.

Rather than providing a full three dimensional model of the complex, the method predicts contacting residues

across the interface. We use a scoring function that combines structural, physicochemical and evolutionary

information, where each potential residue contact is assigned a value according to the scoring function and the

hypothesis is that the real configuration of contacts is the one that maximizes the score. The search is

performed with a simulated annealing algorithm directly in contact space.

Results: We have tested the method on interacting domain pairs that are part of the same protein

(intra-molecular domains). We show that it correctly predicts some contacts and that predicted residues tend to

be significantly closer to each other than other pairs of residues in the same domains. Moreover we find that

predicted contacts can often discriminate the best model (or the native structure, if present) among a set of

optimal solutions generated by a standard docking procedure.

Conclusions: Contact docking appears feasible and able to complement other computational methods for the

prediction of protein-protein interactions. With respect to more standard docking algorithms it might be more

suitable to handle protein conformational changes and to predict complexes starting from protein models.
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Background

Physical interactions between proteins are central to many cellular processes [1]. For example they are

crucial to the functioning of the immune system and are involved in the regulation of enzyme activity. In

order to understand how these interactions are related to biological and biochemical processes, structural

information about the complex are essential as they reveal the underlying molecular mechanisms [2, 3].

Experimental studies, though, are faced with remarkable technical difficulties and the number of solved

complexes deposited in the Protein Data Bank (PDB) [4] is still relatively small. Computational methods,

if accurate and reliable, could therefore play an important role, both to infer functional properties and to

guide new experiments [5, 6].

Docking algorithms attempt to predict the native three-dimensional (3D) structure of a complex starting

from the atomic coordinates of its constituent proteins, solved in isolation (“unbound”) [7]. It is a

challenging problem which has attracted a great deal of interest in view also of its potential biomedical

applications (e.g rational drug design and protein engineering [8]). A related problem of considerable

importance is domain docking where the aim is to predict the structure of a multi-domain protein from the

structures of its component domains. As domain interactions often determine protein function (e.g. by

creating a binding site), an understanding of how domains combine and assemble is clearly

necessary [9–12]. Moreover, with the progress of structural genomics it can be expected that this question

will acquire even more relevance. Structural genomics projects are in fact determining a large number of

structures, but focusing primarily at the level of individual domains. The structure of most domains will

soon be known either directly from experiments or through accurate homology modeling. The challenge

will then be to use them to model large, multi-domain proteins [13].

Most docking procedures treat the individual proteins (or protein domains) as rigid bodies and try to

orient them so as to optimize their shape and/or chemical complementarity [14]. Surface side-chain

rearrangements and possibly some backbone flexibility are introduced only at a final refinement stage. This

strategy can be effective in predicting the structure of the complex in cases where proteins undergo limited

conformational changes upon binding. It is clearly inadequate in cases with substantial backbone

displacement between bound and unbound forms. As highlighted in recent Critical Assessment of
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PRedicted Interactions (CAPRI) blind trials [15], this is one of the major limitations of present docking

algorithms [16].

In general, docking methods greatly benefit from some biological indications on the likely regions or

residues involved in the interaction [17]. This information can be used to guide docking calculations,

restricting the search of allowed complex configurations or filtering out wrong solutions [18]. Information

about interaction sites can sometimes be available from experiments, e.g. site-directed mutagenesis.

Alternatively, one can resort to computational methods. These methods are based on structural,

physicochemical and evolutionary properties that distinguish binding sites from the rest of the protein

surface (e.g. amino acid composition and residue conservation) [19]. Although no single property is able to

reliably locate the interface region in an unbound protein, a number of studies have obtained promising

results by combining different features [20–23].

It is known that some residues within the binding interface make a dominant contribution to the stability

of protein complexes [24]. These residues can be identified experimentally by alanine scanning mutagenesis

and have been named “hot spots”. When hot spots are mutated a significant drop in binding affinity is

observed whereas the effect is negligible for other residues [25]. Their importance is also confirmed by an

evolutionary analysis which shows that hot spots tend to be more conserved [26, 27]. It has been observed

that hot spots are preferentially located either on protrusions (“knobs”) or in depressions (“holes”) of the

protein surfaces and they are coupled across the interface in tight fitting regions that exclude solvent

molecules [28, 29]. Interestingly, hot spot residues appear to undergo little conformational changes upon

binding [29], a property that might facilitate their identification in the unbound state [30, 31].

The picture that emerges from previous experimental and theoretical studies is that protein-protein

interfaces are highly heterogeneous: they have many packing defects and are locally optimized at just few

critical positions [32]. Statistical analysis of entire interfaces might therefore be unable to capture

significant differences between binding sites and the rest of the surface [19]. Analysis focused on the

residues important for binding might instead be more discriminating. These considerations suggest an

alternative strategy to the docking problem: rather than considering the full three dimensional structure of

the complex, it might be more effective to predict just few key contacts across the interface. These could

then be used to infer the correct relative orientation of proteins.

In this paper we focus on the (intra-molecular) domain docking problem and present a method to predict

contacting residues between domain pairs. The method is based on a pairwise contact function (score) that

combines structural, physicochemical and evolutionary information. We use a contact map representation

3



to search for the configuration of contacts that maximizes the score. We show that the approach leads to

some contacts correctly predicted and that predicted residues tend to be significantly closer to each other

than other pairs of residues in the same domains. Moreover we find that predicted contacts can often be

used to discriminate the best model (or the native structure, if present) among a set of 10 optimal

solutions generated by a standard docking procedure. In the next paragraph we discuss our results, leaving

technical details in the Methods section, after the Conclusions.

Results and Discussion

Contact maps are convenient representations of protein structures that can also be used to describe the

interaction between two protein domains (see Fig. 1). In this imaginary example, filled circles correspond

to residue pairs in contact across the interface. Within our framework, each contact is assigned a score and

the score of a configuration is the sum over all contacts. For simplicity and because we are looking for a

few important contacts, we consider maps with a fixed number of contacts, nc = 10. The working

hypothesis is that the map configuration that maximizes a suitable scoring function corresponds to the

correct interacting residues.

There are a number of advantages in working with contacts maps: it is a simple representation and it

should be possible to search the contact space in an efficient manner; a small number of changes on a map

may correspond to substantial changes in three dimensions, therefore reducing computational times; in

principle any interaction pattern can be represented even allowing for backbone flexibility upon docking.

On the other hand, there are some difficulties and limitations: it does not produce directly a 3D complex

and more than one structure may correspond to a given contact configuration; if precautions are not taken,

many maps do not even correspond to a physically realizable conformation.

Docking methods are generally tested on their capacity to predict the protein complex starting from the

unbound components [7]. It is simpler but biologically less relevant to reconstruct a complex using the

bound structures. The latter are in fact artificially biased toward the native solution. To address this issue,

we have selected multi-domain proteins that have been solved experimentally in two conformations which

differ for the significant displacement of one of the domains. One conformation can be denoted as “closed”,

the other as “open” (see Fig. 2). Our data set consists of 20 non redundant domain pairs and the aim is to

predict a subset of the contacts in the closed conformation starting from the structure in the open one (in

the following we use the PDB code in the closed conformation to identify a protein).

As detailed in the Methods section, the scoring function is constructed from five different terms: shape
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complementarity, residue pair potentials, interface propensity, residue conservation and correlated

mutations. We have analyzed each scoring component individually and assessed its efficacy in

discriminating native contacts from random contacts. In Fig. 3 we report the z-score for each component

averaged over the data set, together with the standard deviation (a plot detailing the contributions of each

protein can be found in Additional File 2, Figure S1). The z-score and standard deviation of the combined

scoring function is also plotted.

Residue conservation provides the strongest signal. This is in agreement with a recent study reporting that

the number of conserved positions at the interface is significantly higher than on the rest of the protein

surface [33]. It should be remarked that statistical analysis performed on the entire interface instead show

marginal differences in average conservation between interface and non-interface residues [34]. This

apparent discrepancy is likely to derive from the hot-spot organization of interfaces: the few residues

important for binding are evolutionary conserved but when averages are taken over the whole interface

their distinctive character does not emerge [19, 33]. In our approach we consider only the top scoring

contacts and this possibly explains the agreement with ref. [33].

The five different components are combined linearly into a unique scoring function. The parameter space of

weights has been explored “semi”-exhaustively, i.e. weights are iteratively varied by a factor 2. Given a set

of weights, a z-score can be evaluated for each protein in the dataset. We use a leave-one-out cross

validation strategy: in turn one protein is singled out (test protein) and the remaining ones are used as the

training set. The optimal weights are selected as those that maximize the average z-score on a training set.

In Fig. 3 we report the mean and standard deviation of z-scores of the combined (optimal) scoring

functions, calculated on test proteins. The average value is larger than for individual components although

the improvement appears limited e.g. with respect to residue conservation. As a term of comparison we

have tested the method with just the residue conservation term in the scoring function.

Weights calculated for different proteins are consistent: the dominant contribution derives from

evolutionary information (see Table 4 in the Methods section). Interestingly, correlated mutations have the

lowest average z-score when considered individually (see Fig. 3) but play an important role in combination

with other terms. The weight of residue interface propensity turns out to be negligibly small and

accordingly set to zero in our calculations. It is likely that its contribution is already accounted for by the

pair potential term. For 15 of the 20 proteins we obtain the same set of parameters: if surface

complementarity is given a weight of 1, pair potential, residue conservation and correlated mutations are

weighted respectively 2, 8 and 4. These weights are also obtained if the z-score average is taken over the
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whole data set (i.e. no cross validation). Parameters differ in the remaining cases but confirm the

importance of evolutionary information.

The scoring function is maximized directly in contact space using a simulated annealing algorithm. Some

constraints are set on the allowed configurations to avoid unphysical conformations (see Methods for more

details). In Fig. 4 we report the result for a specific example (ribose-binding protein, PDB code 2dri). Of

the 10 predicted contacts, 2 are correct (i.e. within 5 Å), 4 are within 8 Å and 5 are within 12 Å. The

number of correct contacts expected by chance can be estimated from the number of real of contacts, 75,

and surface residues (103 and 118 for the two domains respectively). The result is ∼ 6 × 10−2. Another

quantity of interest is the number of residues that are correctly predicted to be at the interface even if the

predicted contact is wrong. In the case of 2dri, 5 out of 7 residues are correctly at the interface in both

domains 1 and 2 (note that in general the number of predicted residues at the interface varies because a

residue might be be involved in more than one contact).

The results for each protein in our database are reported in Table 1. The average number of correct

predictions is 1.8 which should be compared with an average random expectation of ∼ 5 × 10−2 (the

corresponding value for the residue conservation term alone is 1.2). In 14 cases at least one correct contact

is identified; in one case (PDB code 8atc) 4 correct contacts are predicted. In general, predicted residues

tend to be near the interface and often the binding site is reasonably well located. To illustrate this point

we have calculated the average distance of the predicted contacts in the native (closed) configuration,

Dpred. Fig. 5 reports Dpred for each protein (red stripes bars) and compare it with the expected average

distance of 10 pairs of residue (one for each domain) picked randomly. If all the predicted contacts were

correct then by definition Dpred < 5 Å. In our case we obtain that in 15 cases Dpred < 15 Å (in 12 cases

Dpred < 12 Å) with a significant improvement with respect to random predictions. Fig. 5 also reports the

values of Dpred for predictions obtained with just the residue conservation term (black stripes bars). It can

be noted that in most cases the results are acceptable but worst than those obtained with the combined

scoring function.

A second more stringent test is to assess the predicted contacts in relation to the best solutions generated

by a standard docking algorithm rather than a set of random contacts. The server GRAMM-X [35] returns

10 possible models of a complex, corresponding to local optima of surface and chemical complementarity.

The aim is to verify if the predicted contacts are useful to discriminate the native structure and/or the best

available solution in the decoy set (the best model is defined as the one that identifies the largest fraction of

native contacts, fnc). To this end, given a prediction of contacts, we have calculated the average distance
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Dpred on each model (besides the native structure) and ranked the solutions in increasing order of Dpred.

The results for all the proteins in the data set are given in Table 2. The native structure has the lowest

Dpred in 13 cases out of 20; in 3 cases (PDB codes 1uae, 9aat and 1h9m) it is ranked second; in 1 case

(PDB code 2dri) it is ranked third. For 1uae and 9aat the structures with lowest Dpred correspond to the

best models produced by GRAMM-X, which identify a consistent fraction of native contacts (fnc = 0.15

and 0.84 respectively). For 1h9m instead the model ranked first has fnc = 0 but identifies correctly 35%

and 40% of interface residues in the two domains; for 2dri the model with lowest Dpred has fnc = 0.09 (the

best model has fnc = 0.12 and is ranked second).

For 17 targets out of 20 it is possible to define the best GRAMM-X model according to the parameter fnc

(in the 3 remaining cases fnc = 0 for all models). For 15 of these targets both the native structure and the

best model are ranked within the first three positions in terms of Dpred. This suggests that even if the

right solution is not present in the decoy set, a solution close to it should be identifiable. In 16 of the 17

cases our contact prediction improves or confirms the GRAMM-X ranking; in the case that is worsened

(PDB 1l7p), the best model is re-ranked to second best. We report in Additional File 3 the plot of Dpred

for each decoy set (Figure S2).

There are cases for which our method does not provide satisfactory results. Two clear examples are PDB

codes 1jmc and 1dpp. In the first case, none of the properties we consider or the combined scoring function

are able to distinguish clearly between real and random contacts (see Figure S1 in Additional File 2). As a

consequence, real contacts do not have particularly high scores and in the search for the maximum are

ignored. In the second case, instead, there are correct contacts with relatively high-scores and it is harder

to understand the causes of the poor result. One possible explanation is that 1dpp is composed of 3

domains and in our approach we completely ignore one of them, more precisely the intermediate one

connecting the N to the C terminal domains. This might introduce some spurious effects as additional

interface residues (which in reality are buried) become effectively available for binding. Indeed the

predicted contacts appear clustered on the wrong interface. It should be underlined that both 1jmc and

1dpp are likely to be difficult targets. Indeed also GRAMM-X does not perform well: none of the models

generated for them has fnc > 0.

There are other cases where the contact prediction method encounters difficulties, e.g. for 1a8e and 1ex7.

It is interesting though that in both cases the predictions, although inaccurate, provide useful indications

for selecting an acceptable model among those generated by GRAMM-X. For 1a8e the native structure and

the best available model have respectively the lowest and the second lowest value of Dpred. For 1ex7, the
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model ranked second according to Dpred has fnc = 0.28 with 75% and 42% of interface residues predicted

correctly on the two domains respectively.

Conclusions

In this work we have presented a novel method to infer contacting residues at domain-domain interfaces.

The method attempts to dock protein domains in contact space finding the best configuration of contacts

that suits an objective scoring function. It differs and it is complementary to other computational

approaches for the prediction of physical protein interactions. In fact it works at an intermediate level

between binding site predictions and standard docking algorithms. The former methods attempt to

identify the interface residues on a protein without specifying the contacts they actually form, the latter

aim to provide a detailed atomic model of the putative complex. Combining and integrating these methods

is likely to lead to effective prediction tools. For example, we have shown in this paper that contact

predictions can be used in conjunction with the GRAMM-X docking server to discriminate acceptable

models. Other methods have also used physicochemical and evolutionary information to improve the

ranking of docking solutions [33, 36–38]. The emphasis of our work, though, has been more on producing a

direct list of putative contacts (and then in case use these to re-rank models). An interesting development

would be to guide docking calculations by including from the start the predicted contacts. Provided the

predictions are reliable, this would significantly reduce the number of possible complex configurations to be

sampled, with clear advantages e.g. in the case of large systems and genome-wide studies. A conceptually

similar scheme has been recently proposed [39], in which predicted interface residues (rather than predicted

contacts) are used to drive docking calculations.

Overall, contact docking appears feasible and worth considering further. The accuracy of the method is

still somewhat limited but amenable to improvements. At present the scoring function is a simple linear

combination of five different terms. It is generally recognized that non-linear machine learning algorithms

(e.g. neural networks or support vector machine) are more effective in combining heterogeneous sources of

information achieving a far higher overall discriminative power. At the same time, some of the individual

scoring components might be improved or additional terms included. For example, the description of the

energetics of binding is far from adequate as it is based on statistical potentials derived from analysis of

entire interfaces and does not include any characterization of binding hot-spots.

We have further shown that contact maps are convenient representations for the docking problem. Contact

maps have long being used in the context of single proteins, mainly for structure comparison
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purposes [40, 41]. Some partial success has also been obtained in applying contact maps to predict protein

folds [42]. One of the main difficulties in using contact maps for protein folding is to restrict the search to

physical maps, i.e. maps that can indeed be reproduced by a 3D protein structure. The same problem

recurs in the context of docking as well, i.e. not all maps correspond to a 3D complex, but it is likely to be

less severe. In fold prediction, one deals with the protein chain which is quite flexible and in principle can

take many different conformations. In docking, although the two domain structures have some degree of

plasticity, it is certainly more limited and some geometrical constraints on the allowed contact are easier to

introduce. It is clear, though, that the more stringent the constraints the more limited the method will be

in handling conformational changes. On the other hand, one can hope that by improving the scoring

function, the geometric constraints can be relaxed.

In future work it is our aim to extend the contact docking approach beyond the modeling of multi-domain

proteins. We plan to apply the method to the problem of docking two different proteins, though some

additional issues will need to be addressed in this case. The correlated mutations analysis, for example,

rely on the multiple sequence alignment of co-evolved proteins and on the identification of the correct

interacting orthologs. This is a non trivial problem which will require careful consideration. In general, we

expect the scoring function will need to be re-adjusted (e.g. the weights). It is also likely that protein

conformational changes (upon binding) will be more pronounced. Another direction we plan to explore is

the docking of protein models [43]. As the majority of individual protein structures in a genome are going

to be models, docking methods will need to be able to handle structural inaccuracies. Contact docking is

essentially a low resolution approach and does not depend heavily on structural details. It might therefore

be an ideal method for this task. Interestingly, similar considerations could lead to reconsider some of the

early docking algorithms [44, 45] which, contrary to subsequent developments, were not based on stringent

steric match criteria.

Methods
Data

Our data set consists of multi-domain proteins that have been solved experimentally in two conformations

which differ in the relative orientation of one of the domains. The conformational change brings the

domain in closer contact with the rest of the protein. Accordingly, one conformation is denoted as “open”,

the other as “closed”. Proteins have been selected from the Database of Macromolecular Movements [46]

and from an analysis of the structural classification database CATH [47]. We have found 20 non redundant
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examples for which a number a sequence homologs are known. The list is reported in Table 3: 18 are

two-domain proteins and 2 are three-domain proteins. In the latter case, only the two domains most

affected by the conformational change have been selected. These are domains that are distant in the open

configuration and become more strongly interacting in the closed conformation.

The dataset thus comprises 40 domain pairs (20 pairs in the closed conformation and a corresponding set

in the open conformation). Ideally, the amino acid sequence of a given domain in the open and closed

conformations should be identical. In practice, this is too restrictive and therefore the condition is relaxed

to requiring at least 90% sequence identity. Domain definitions and boundaries are taken from CATH

which assigns a number to each homologous superfamily. The data set is non-redundant in that no two

pairs of interacting domains have the same CATH numbers (at the H-level). Domains from the same

superfamily can be present more than once but their domain partners must belong to different

superfamilies. Within each superfamily, CATH identifies sequence families (S-level) with a threshold at

35% identity. In our dataset no two domains belong to the same sequence family, i.e. there are no domains

sharing more than 35% sequence identity. We report in Additional File 1 the CATH identification numbers

(up to the S-level) for the proteins in the dataset.

Interacting domains in the closed configuration must form more than 30 contacts, with each domain having

at least 10 residues at the interface (for a definition of inter-domain contacts and interface residues see

below). Domains structures generally display some flexibility. In Table 3 we report the Cα-root mean

square deviation (RMSD) of the two domains between the open and close configurations. The Cα-RMSD

of interface residues is also reported. For these calculations we have used the program ProFit [48]. Domain

structures in the open conformations are used as input in our docking calculations. Domains are separated

and treated as independent units, disregarding any knowledge of the chain connectivity or on their relative

orientation in the open configuration. No prior information on the binding area is assumed. The results are

then compared with the protein structures in the close configuration.

Of the 40 protein structures, one has been determined by NMR spectroscopy (PDB code 1tfb). The best

model in the ensemble as defined by the NMRCLUST procedure has been selected as the

representative [49]. The remaining structures have been solved by X-ray diffraction with a resolution better

than or equal to 3.2 Å (the 20 protein structures in the open configuration have been solved with a

resolution below 3 Å). For data uniformity, only heavy atoms are considered and no hydrogen atom

included. Missing residues and atoms have been modeled with ModLoop [50]. Ligands (cofactors and/or

substrates), which are often the cause for the domain motion, are removed for simplicity.
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Surface, interface and contact definitions

Following the convention established at CAPRI [51], two residues in different domains are considered to be

in contact if any of their heavy atoms are within 5 Å. Interface residues are defined as those that are

involved in at least one contact [52]. Just for the purpose of calculating the interface RMSD, the contact

threshold is set to 10 Å and interface residues identified accordingly [51].

The program MSMS is used for molecular surface computations [53]. Given an atomic protein structure,

MSMS can produce a triangulated representation of the solvent excluded surface. For each vertex the

normal vector to the surface is also calculated. Default values for the radius of the (solvent) probe sphere

(1.5 Å) and triangulation density (1.0 vertex/Å
2
) have been used.

Surface atoms are atoms with at least one vertex generated on their van der Waals surface. Residues with

one or more surface atoms are surface residues. We have defined a representative point and a representative

normal vector for each surface residues. The representative point is given by the geometric average of all

vertices generated for that residue (strictly speaking, it might therefore not lie on the protein surface). The

representative normal vector is obtained by averaging over all normals associated to that residue.

Scoring Function

The scoring function F is defined at the amino acid level and assigns a value to each set of 10 contacts. It

is a sum of a pairwise contact function Sij ,

F =
10
∑

n=1

Sin,jn

where indices in and jn refer to residues in the first and second domain respectively.

The pairwise contact function Sij is a linear combination of five different contributions (shape

complementarity, residue-residue pair potential, residue interface propensity, residue conservation and

correlated mutations), which are described below. Since the five components (S
(k)
ij ), k = 1, . . . , 5), have

different orders of magnitude, they have been rescaled by their standard deviation such that Sij can be

written as:

Sij =

5
∑

k=1

ω(k)

(

S
(k)
ij − < S(k) >

σ(k)

)

where ω(k) are appropriate weights, < S(k) > and σ(k) are respectively the average and standard deviation

(over all possible contacts) of the components. In general, several different methods are available for

scoring each individual component. Our preference has gone to simple, fairly established methods which

have possibly been already tested on docking applications.
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Shape complementarity

Shape complementarity rewards a contact between protrusions (knobs) and depressions (holes) at

domain-domain interfaces. Our approach to locate knobs and holes on domain surfaces is based on a shape

function [54] and it is similar in spirit to other methods described in literature [55, 56]. Domains are

mapped onto a 3D grid, with lattice constant of 0.25 Å. Occupied grid points are defined as those inside

the protein domains. They are identified by constructing a set of spheres, one at each protein atom. For

surface atoms the sphere radius is the the van der Waals radius of the atom. For interior atoms, the sphere

has a radius which is equal to the sum of the atomic van der Waals radius and the probe radius. Grid

points that lie inside one of the spheres are considered to be interior points.

To define the shape function, a sphere of radius 6 Å is constructed at each MSMS vertex of the

triangulated surface. The shape function at a vertex is then the volume of the sphere that is within the

protein domain. The intersection volume is estimated by counting the number of interior grid points. The

shape function measures the local convexity of the surface: small values corresponds to knobs, large values

to holes. Knobs and holes are identified as vertices at which the shape function is respectively < 1
3V and

> 2
3V , where V is the volume of the 6 Å radius sphere. Moreover, a knob (hole) is selected only if it is a

local minimum (maximum). To this end, the shape function at vertices within a distance of 4 Å is checked.

A residue is designated as a knob or a hole if one of the vertices on its surface is respectively a knob or a

hole. Note that as a consequence of this coarse-grained assignment a residue can carry both labels at the

same time. A match between a knob and a hole is rewarded, i.e. S
(s.c.)
ij = 1 if i is a knob and j a hole (or

viceversa), S
(s.c.)
ij = 0 otherwise.

Pair potentials

Residue-residue pair potentials are taken from the RPSscore matrix [57]. They are empirical potentials

derived from a library of protein-protein interfaces. They have been estimated by comparing the observed

to the expected frequencies of residue-residue pairs across the interface and therefore represent the

likelihood of two residues type to be in contact (potentials of mean force). The matrix favors certain type

of contacts (e.g. Trp-Tyr or Ile-Phe) while disfavoring others (e.g. Lys-Lys or Ser-Ser). The potentials have

been derived using a distance cut-off for a contact of 4.5 Å rather than 5.0 Å used in this work.
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Interface propensity

This term represent the propensity of some amino acid types to be at the interface rather than on the rest

of the protein surface. A study by Chakrabarti et al [58] based on known protein complexes has identified

two distinct regions at the interface: a core of buried residues and a rim of solvent accessible residues. The

rim has similar amino acid composition to the rest of the protein surface whereas the core has distinctive

composition. The latter for example has an excess of aromatic residues such as Trp and Tyr and a deficit

in charged residues such as Glu and Lys. In our work we have used the core residue propensities. The score

of a contact has been defined as the sum of the propensities of the two amino acids involved.

Residue conservation

Surface residues that are important for binding are often conserved within a protein family. The

evolutionary information can be derived from multiple sequence alignments and quantified by a

conservation score. We have used the Variability scale provided in the HSSP database [59]. Variability

ranges from zero (perfectly conserved positions in the multiple sequence alignment) to 100 (highly variable

positions). For homogeneity with the other scoring terms, we have used the negative value of the Variability

(ranging therefore from −100 to 0) so that the higher the score the more conserved is the position. The

score assigned to a contact is obtained by adding the (negative) Variability scores of the two positions.

Correlated mutations

Correlated mutation analysis identifies sequence positions that tend to evolve in a coordinated manner;

The rationale is that if two residues are interacting across the domain interface, changes in one of the two

will affect the other so that in turn it will be more likely to mutate to compensate. Correlated mutations

are detectable in multiple sequence alignments and we have followed the approach introduced in [60] which

has later been extended to domain interactions in [61].

Multiple sequence alignments have been taken from the HSSP database and subsequently filtered. A

protein sequence has been retained in the alignment only if: (i) the percentage identity is greater than 30%

to the seed protein; (ii) it is alignable over at least 80% of the length of the seed protein; (iii) it is less than

95% identical to any other protein in the alignment. Sequences have been analyzed individually in

decreasing order of sequence similarity to the seed protein. They have been added to the filtered alignment

only if the above conditions are met. Only proteins with at least 40 homologous sequences in the filtered

alignment were included in the data set and considered for the correlated mutations analysis.
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We use the McLachlan substitution matrix to quantify amino-acid changes in the multiple alignment [62].

The McLachlan matrix assigns similarity values (≥ 0) between residues. Each column in the alignment is

therefore characterized by a set of similarity values, representing all amino-acid pairs observed at that

position (a similarity of zero is assigned if a gap is involved). A correlation coefficient between similarity

sets at different positions can be calculated. This correlation value ranges from −1 to +1 with a score of

+1 indicating highly co-varying positions. As in [63], the correlation value is set to −1 if one of the two

positions analyzed has a percentage of gaps > 10%; it is set to 0 if one position is perfectly conserved (and

the other has not more than 10% gaps).

Weight optimization and cross validation

Given a set of weights,{w(k)}, the z-score for each domain pair can be calculated. The score of the 10 best

contacts among real contacts, F (max), is compared to the expected score of 10 random contacts,

z-score =
F (max)− <F >

σF

,

where <F > is the average random score and σF its standard deviation (both <F > and σF can be

calculated from the pairwise contact function, Sij).

Our criterion for weight optimization has been to maximize the average z-score over the protein dataset.

The weight for the shape complementarity term is set arbitrarily to 1 without loss of generality. The search

for the best weights is then carried out combinatorially, sampling the parameter space in the form

w(k) = 2n with n integer number (−9 ≤ n ≤ 8). In practice, the range of values considered for each term is

more limited, e.g. n = 1, . . . , 8 for the residue conservation component, as one can locate the important

region through preliminary searches.

A leave-one-out cross validation strategy is used. This implies removing one protein from the data set and

calculating the optimized weights based on the reduced data set (having 19 proteins). These are then used

in the scoring function to predict inter-domain contacts in the selected protein. In Table 4 we list the 20

sets of optimal weights so obtained. The weight for the interface propensity component turns out to be

negligible, i.e. w(3) = 1
128 or 1

256 and therefore set to zero and not reported.

Contact map representation

Contact maps are two dimensional plots that report contacting residues. In the case of inter-domain

contacts between two protein domains, having respectively n and m residues, the contact map is an n × m
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matrix. The matrix cell (i, j) is occupied if residue i in the first domain and residue j in the second one are

in contact, empty otherwise (see Fig. 1). Each matrix cell is assigned a score and the score of a

configuration of contacts is given by their sum. We considered configurations with a fixed number of

contacts, nc = 10 and with no more than two contacts per residue. Only surface residues are considered as

potentially interacting and included in the contact map.

Distances and orientations of contacting residues on the two domains should be compatible. As discussed

above, we assign to each residue a representative point and a normal. We then introduce some geometrical

constraints on pairs of contacts, adapted from [55] . Let p1 and q1 be two residues on domain 1 in contact

respectively with p2 and q2 on domain 2. We denote with d(1) the Euclidean distance between p1 and q1.

The angles formed by the line connecting p1 and q1 and each of the respective normals are denoted with

α
(1)
p and α

(1)
q ; the torsion angle between the two normals with ω(1). Similar notations with superscript (2)

refers to residues p2 and q2 on domain 2. Absolute values of differences between quantities are denoted

with a ∆, e.g. ∆αp =
∣

∣

∣
α

(1)
p − α

(2)
p

∣

∣

∣
.

Two pairs of contacts, (p1, p2) and (q1, q2), are considered compatible if:

• d(1), d(2) ≤ 20 Å,

• ∆d ≤ 8 Å,

• ∆αp, ∆αq ≤ 1 radian,

• ∆ω ≤ 1 radian,

• ∆αp + ∆αq + ∆ω ≤ 2 radians.

Compared to ref [55], these thresholds are more permissive, reflecting the fact that we are working at an

amino-acid level and therefore at a lower resolution. They are introduced to filter out pair of contacts that

are clearly non geometrically compatible.

Simulated annealing and Monte-Carlo moves

The total number of configurations to be searched in contact space is potentially vast. As we are looking

for the maximum of the scoring function, the configurational space can be significantly reduced by

considering only high scoring contacts. These are defined as those with a score Si,j ≥ <S> +σS

2 , where

<S> is the average contact score evaluated over all entries in the contact map and σS is the standard

deviation. This corresponds roughly to consider the top 32% contacts.
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The problem can be mapped on a random graph: nodes represent contacts, with an associated weight

equal to the contact score; edges between nodes connect pairs of compatible contacts. Typically, 3 − 6% of

all possible edges are present in a graph. A clique is a set of nodes with edges between any pair of nodes,

i.e. it is a set of mutually compatible contacts. In order to limit the occurrence of non-physical contact

configurations we restrict to configurations formed by a central clique of n nodes with each of the

remaining 10 − n nodes connected to at least one of the nodes in the clique. As a convention, in the

following we refer to central and peripheral nodes respectively (see Fig. 6). Typically we set n = 5 although

in some cases we use n = 4.

The search for the configuration that maximizes the score is done through a stochastic simulated annealing

algorithm. For ease of calculation, we assign each peripheral nodes to one central node (although in

principle it might be connected to more than one) and keep track of this relation. We consider two set of

Monte Carlo moves, local and large scale, schematized in Fig. 6. Local moves consist of selecting one of the

peripheral nodes and replacing it with another that is connected to the central clique (not necessarily

connected to the same node). Large scale moves instead select one of the clique nodes and replace it with

another node such that the central nodes still form an n-clique. The peripheral nodes attached to the old

clique node are also removed and replaced by nodes connected to the new central node. In this manner the

structure of a central clique of size n with attached peripheral nodes is preserved.

The annealing schedule in the simulation is as follows. Starting with 5-clique dynamics, we first run a cycle

of 100Nnodes large-scale moves at infinite temperature (Nnodes is the number of nodes in the graph). We

monitor the number of distinct nodes that are visited by the central clique. If the graph coverage is below

70% we turn to 4-clique dynamics and repeat the infinite temperature cycle. This ensures that a consistent

fraction of contacts are sampled and that most contact patches are reachable through the clique dynamics.

In practice, 4-clique dynamics has been used in 3 cases (PDB codes 1ex7, 1l7p and 1dv2).

The infinite temperature cycle is also used to estimate the largest change in score following a Monte Carlo

move, ∆Fmax. The simulation proper is then started at an effective temperature T = 10∆Fmax. Each

cycle consist of 100Nnodes large-scale moves with 20(10− n) local moves within any two large-scale moves.

Moves are accepted or rejected according to the standard Metropolis test. At the end of a cycle, the

temperature is reduced by 10%. The simulation is stopped when no large-scale moves are accepted. A final

quenching for the peripheral nodes is then performed. Each simulation is repeated at least 3 times to

ensure we obtain consistent results (i.e. we find the same global maximum).
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Result analysis

For each prediction we report c5, c8, c12 which are respectively the number of predicted contacts that are

found within 5, 8 and 12 Å in the native structure (c5 is therefore the number of correct contacts

predicted). A quantity of interest is the average distance of predicted contacts in the native structure, i.e.

Dpred =
1

10

10
∑

n=1

din,jn

where din,jn
is the distance between residue in and jn. Were all the predictions correct then Dpred < 5 Å.

In general, the smaller Dpred the more accurate is the prediction.

Each set of 10 predicted contacts corresponds to two sets of residues, one for each domain. These sets

might comprise less than 10 residues because each residue is allowed to have up to two contacts. We denote

with I1 and I2 the fraction of correctly predicted residues at the interface in the two domains.

The results have been assessed against random predictions of 10 contacts. The expected number of correct

contacts obtained by chance can be estimated as c
(r)
5 ≃ 10nn.c.

s1s2

where nn.c is the number of native contact

and s1 and s2 respectively the number of surface residues in domain 1 and 2. The expected average

distance and standard deviation of 10 random contact in the native structure can be calculated from the

known values of di,j . The z-score of Dpred can then be evaluated and its statistical significance assessed.

A second test has been carried out with predictions provided by a docking server, GRAMM-X [35]. For

each domain pair the server returns a ranked list of 10 possible models of the complex. We have assessed

the quality of the models on the basis of the fraction of native residue-residue contacts identified, fnc,

which is one the evaluation criteria at CAPRI. High-quality, good and acceptable models have respectively

fnc greater than 0.5, 0.3 and 0.1. Other parameters are also used in CAPRI to define the three categories

(e.g. backbone and interface root mean square deviations). For simplicity and because fnc is the most

pertinent in our context, we have not included them in the discussion.

For 17 of the 20 targets in our data set, GRAMM-X provides at least one model with some native contacts

correctly identified; in 7 cases the best model (i.e. the one with highest fnc) is ranked first. For 12 targets

the server returns at least one acceptable (fnc > 0.1) solution (5 times the best model is ranked first) and

for 5 targets it returns high-quality models (4 times the best model is ranked first). These numbers should

not be considered an evaluation of GRAMM-X performances but merely an indication of the non-triviality

of our data set.

For each target we have a decoy set composed of the 10 models plus the native structure. Given a contact

prediction, the average distance Dpred can be evaluated for each model and used to re-rank them. Ideally,
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the native structure should emerge with the lowest Dpred value. Moreover, for the 17 targets which have at

least one GRAMM-X model with fnc > 0, the best model should be ranked just after the native structure.
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30. Fernandéz A, Scheraga HA: Insufficiently dehydrated hydrogen bonds as determinants of protein

interactions. Proceedings of the National Accademy of Sciences 2003, 100:113–118.

31. Rajamani D, Thiel S, Vajda S, Camacho CJ: Anchor residues in protein-protein interactions.
Proceedings of the National Accademy of Sciences 2004, 101:11287–11292.

32. Halperin I, Wolfson H, Nussinov R: Protein-Protein Interactions: Coupling of Structurally Conserved

Residues and of Hot Spots across Interfaces. Implications for Docking. Structure 2004, 12:1027–1038.

33. Duan Y, Reddy BVB, Kaznessis YN: Physicochemical and residue conservation calculations to

improve the ranking of protein-protein docking solutions. Protein Science 2005, 14:316–328.

34. Caffrey DR, Somaroo S, Hughes JD, Mintseris J, S HE: Are protein-protein interfaces more conserved

in sequence than the rest of the protein surface? Protein Science 2004, 13:190–202.

35. Tovchigrechko A, Vakser IA: Development and Testing of an Automated Approach to Protein

Docking. Proteins: Structure, Function, and Bioinformatics 2005, 60:296–301.

19



36. Aloy P, Querol E, Aviles FX, Sternberg MJE: Automated structure-based prediction of functional sites

in proteins: applications to assessing the validity of inheriting protein function from homology in

genome annotation and to protein docking. Journal of Molecular Biology 2001, 311:395–408.
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Figures
Figure 1 - Contact map

Schematic representation of a contact map for two interacting domains. Amino acid sequences of the two

domains are reported along the axis, in red and blue respectively. Filled circles represent residues in

contact.

Figure 2 - Open and close conformation

Ribose-binding protein in its open (left, PDB code 2dri) and close (right, PDB code 1urp) conformation.

Domains are identified by different colors.

Figure 3 - Average z-scores

Average and standard deviation of z-scores for the individual scoring components and for the combined

scoring function, calculated over the data set of 20 proteins (z-score values corresponding to each single

protein are reported in Fig. S1 of Additional File 2).

Figure 4 - Contact prediction

An example of the prediction for ribose-binding protein (PDB code 2dri). Predicted residues are displayed

as spheres. Correctly predicted contacts are indicated by a green line joining the residues.

Figure 5 - Average distance of predicted contacts

In (a) the average distance of predicted contacts in the native structure is reported as obtained for the

combined scoring function (red stripe bars) and for the residue conservation term alone (black stripe bars).

They are compared to the average and standard deviation of 10 random contacts. In (b) the corresponding

z-scores are plotted.

Figure 6 - Monte Carlo moves

Contact configurations with 5 central nodes (shadowed circles) and 5 peripheral nodes (empty circles). In

(a) is displayed a local move, in (b) a large-scale move. Thick lines represent internal connections before

the move, thin lines are the new connections after it
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Tables
Table 1 - Results

Results of contact predictions for the protein in the data set. c5 is the number (out of 10) of predicted

contacts that are within a distance of 5 Å (i.e. correctly predicted contacts); c8 and c12 are the numbers of

predicted contacts within respectively 8 Å and 12 Å. I1 and I2 are the fractions of correctly predicted

residues at the interface in the two domains. c
(r)
5 is the expected number of randomly predicted correct

contacts.

PDB code c5 c8 c12 I1 I2 c
(r)
5 (×10−2)

1d4f 2 7 9 3/6 6/7 3
1jmc 0 0 0 0/7 1/8 3
1uae 3 3 6 7/7 5/9 2
1a8e 0 0 1 3/7 0/7 5
1arz 2 6 8 5/7 6/8 3
2dri 2 4 5 5/7 5/7 6
1tfb 1 4 6 5/7 3/6 9
13pk 0 4 7 5/8 6/7 2
2nad 1 4 7 3/5 2/5 2
1ex7 0 0 0 1/6 0/6 6
1tde 1 1 2 2/8 4/6 2
9aat 3 4 5 6/6 5/8 3
6adh 1 3 6 3/6 3/6 3
1h9m 3 4 7 4/6 4/6 12
8atc 4 8 9 6/6 5/8 6
1l7p 1 4 9 5/7 3/5 12
1njf 2 4 8 3/5 2/6 3
4cts 0 3 5 5/7 6/8 4
1dpp 0 0 0 0/7 2/8 3
1dv2 1 2 4 1/5 4/6 2
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Table 2 - Results for the decoy set

The decoy set comprises 10 GRAMM-X solutions plus the native structure. The decoys have been ordered

in increasing values of Dpred. The rank and the corresponding Dpred of the native structure are reported.

Similarly for the best model generated by GRAMM-X, for which fnc is also shown (fnc ≡ 1 for the native

structure). In 3 cases (1jmc, 1tde and 1dpp) is not possible to identify a best model.

PDB code native structure best model
rank Dpred rank Dpred fnc

1d4f 1 8.20 2 12.72 0.05
1jmc 9 31.74 -
1uae 2 10.92 1 10.89 0.15
1a8e 1 22.10 2 23.45 0.17
1arz 1 8.16 2 18.98 0.02
2dri 3 10.67 2 10.35 0.12
1tfb 1 10.81 3 19.37 0.11
13pk 1 10.35 2 11.72 0.05
2nad 1 11.69 3 21.31 0.13
1ex7 6 18.50 2 16.10 0.28
1tde 1 17.24 -
9aat 2 10.23 1 10.12 0.84
6adh 1 12.57 2 12.69 0.81
1h9m 2 12.72 5 17.27 0.13
8atc 1 6.55 2 8.29 0.82
1l7p 1 8.26 3 8.75 0.82
1njf 1 9.70 2 16.41 0.03
4cts 1 14.64 2 15.17 0.90
1dpp 8 35.12 -
1dv2 1 11.80 2 15.89 0.08
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Table 3 - Data set of protein domains

PDB codes and domain numbers (according to CATH) of the proteins in the close and open configurations.

RMSD1 and RMSD2 are the Cα-RMSD respectively of domain 1 and 2 between the open and close

configurations; IRMSD is the Cα-RMSD of interface residues. The last two entries in the table are 3-domain

proteins, all others are 2-domain proteins.

close conf open conf RMSD1(Å) RMSD2(Å) IRMSD(Å)
1d4f A1-A2 1b3r A1-A2 0.76 0.45 0.67
1jmc A1-A2 1fgu A1-A2 1.47 2.18 0.93
1uae O1-O2 1ejd A1-A2 0.45 2.34 2.65
1a8e O1-O2 1bp5 A1-A2 0.54 1.24 1.27
1arz C1-C2 1dru O1-O2 1.12 0.35 0.66
2dri O1-O2 1urp A1-A2 0.50 0.82 0.81
1tfb O1-O2 1c9b A1-A2 3.22 3.21 3.67
13pk A1-A2 16pk O1-O2 0.54 1.37 1.71
2nad A1-A2 2nac A1-A2 0.41 0.40 0.41
1ex7 A1-A2 1ex6 A1-A2 0.96 0.83 0.94
1tde O1-O2 1f6m E1-E2 0.68 1.03 0.71
9aat A1-A2 1ama O1-O2 0.90 0.33 0.77
6adh A1-A2 8adh O1-O2 0.80 0.86 0.91
1h9m A1-A2 1h9k A1-A2 0.34 0.60 0.40
8atc A1-A2 5at1 A1-A2 1.25 2.25 1.09
1l7p A1-A2 1l7o A1-A2 0.56 2.82 2.00
1njf A1-A2 1njg A1-A2 0.28 0.57 0.63
4cts A1-A2 1cts O1-O2 1.14 1.71 1.19
1dpp A1-A3 1dpe O1-O3 0.53 0.62 0.78
1dv2 A2-A3 1bnc A2-A3 0.51 2.55 2.05
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Table 4 - Optimized weights

Linear weights of the scoring function obtained with a leave-one-out cross validation. The first column

reports the PDB codes; w2, w4 and w5 are respectively the weights associated with pair potential, residue

conservation and correlated mutations. The weight of surface complementarity has been set arbitrarily to

w1 = 1; the weight for interface propensity is negligible and therefore ignored (i.e. w3 = 0).

PDB code w2 w4 w5

1d4f 2 8 4
1jmc 2 8 4
1uae 2 8 4
1a8e 2 8 4
1arz 16 32 32
2dri 2 8 4
1tfb 2 8 4
13pk 16 32 32
2nad 2 8 4
1ex7 2 8 4
1tde 1 4 2
9aat 2 8 4
6adh 2 8 4
1h9m 2 8 4
8atc 2 8 4
1l7p 2 8 4
1njf 2 8 4
4cts 16 32 32
1dpp 8 32 16
1dv2 2 8 4
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Additional Files
Additional File 1

• File name: add file 1.pdf

• File format: PDF (Adobe Acrobat)

• Title of data: Table S1 - Data Set

• Description of data: Table containing additional information on the data set used in this study

Additional File 2

• File name: add file 2.pdf

• File format: PDF (Adobe Acrobat)

• Title of data: Figure S1 - z-scores

• Description of data: Figure plotting the z-scores of the individual scoring components and of the

combined scoring function for each protein in the data set.

Additional File 3

• File name: add file 3.pdf

• File format: PDF (Adobe Acrobat)

• Title of data: Figure S2 - Dpred values

• Description of data: Plot of the average distance of predicted contacts, Dpred, for each decoy set.
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