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Abstract

Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery

of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the

high-throughput experimental technologies suffer from high rates of both false positive and false negative

predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help

predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional

annotation. Evaluations of the information contributions from different evidences help to establish more

parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the

relationships between protein-protein interactions and other genomic information.

Results Our assessment is based on the genomic features used in a Bayesian network approach to predict

protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing

information about any of the features, our analysis shows that there is a larger information contribution from

the functional-classification than from expression correlations or essentiality. We also show that in this case

alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks

for predicting interactions.

Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS

and Gene Ontology (GO) functional similarity datasets as the dominating information contributors for predicting

the protein-protein interactions under the framework proposed by Jansen et al.. Random forests based on the

MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete

information, adding other genomic data does little for improving predictions. We also found that the data

discretizations used in the Bayesian methods decreased classification performance.

Background

Proteins transmit regulatory signals throughout the cell, catalyze large numbers of chemical reactions, and

are crucial for the stability of numerous cellular structures. Interactions among proteins are key for cell

functioning and identifying such interactions is crucial for deciphering the fundamental molecular

mechanisms of the cell. As relevant genomic information is exponentially increasing both in quantity and

complexity, in silico predictions of protein-protein interactions have been possible but also challenging.

A number of techniques have been developed that exploit combinations of protein features in training data

and can predict protein-protein interactions when applied to novel proteins. Our study is motivated by a
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study by Jansen et al. [1], who proposed a Bayesian method to use the MIPS [2] complexes catalog as gold

standard positives and lists of proteins in separate subcellular compartments [3] as gold standard negatives.

The various protein features considered in this method include time course mRNA expression fluctuations

during the yeast cell cycle [4] and the Rosetta compendium [5], biological function data from the Gene

Ontology [6] and the MIPS functional catalog, essentiality data [2], and high-throughput experimental

interaction data [7–10]. The MIPS and Gene Ontology functional annotations are used for quantifying the

functional similarity between two proteins. The MIPS functional catalog (or GO biological process

annotation) can be thought of as a hierarchical tree of functional classes (or a directed acyclic graph

(DAG) in the case of GO). Each protein is either a member or not a member of each functional class, such

that each protein describes a “subtree” of the overall hierarchical tree of classes (or subgraph of the DAG

in the case of GO). Given two proteins, one can compute the intersection tree of the two subtrees

associated with these proteins. This intersection tree can be computed for the complete list of protein pairs

(where both proteins of each pair are in the functional classification), and thus a distribution of

intersection trees is obtained. Then the “functional similarity” between two proteins is defined as the

frequency at which the intersection tree of the two proteins occurs in the distribution. Intuitively, the

intersection tree gives the functional annotation that two proteins share. The more ubiquitous this shared

functional annotation is, the larger is the functional similarity frequency; the more specific the shared

functional annotation is, the smaller is the functional similarity frequency. The essentiality data represents

a categorical variable that denotes whether zero, one or both proteins in a protein pair are essential. The

supplementary online material of [1] (http://www.sciencemag.org/cgi/data/302/5644/449/DC1/1)

provides more details about the quantification of these variables. Their Bayesian method predicts

protein-protein interactions genome-wide by probabilistic integration of genomic features that are weakly

associated with interactions (mRNA expression, essentiality and localization). The model was used for two

separate predictions of probabilistic interactomes (PI), one of which (PIE) is built on four high-throughput

experimental interaction data sets, and the other (PIP) on the mRNA expression, Gene Ontology, MIPS

functional and coessentiality data. Within the PIP sub-network, different genomic features are assumed to

be independent in prior. In addition, this method involved discretizing the raw data into groups and

representing the two mRNA expression profiles (cell cycle and Rosetta compendium data) by their first

principal component for computational convenience.

Our current study focuses on assessing the contributions of different types of genomic data towards

predicting protein-protein interactions. This may help us to understand which genomic features have the
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closest biological relationship with protein-protein interactions and hence to construct a better prediction

model. As prediction rules involving less relevant information may have lower prediction accuracy, our

analysis can give us insights into how to construct more parsimonious models with comparable or better

prediction accuracy. A potential disadvantage of the Bayesian network approach may be that the data

discretization can obscure information contained in the raw genomic data. Thus, in addition to assessing

the information content of the data sources, we also propose alternative non-Bayesian models that fully

utilize the data without discretization. These methods, such as logistic regression and random forests, do

not require prior knowledge, and we can evaluate the importance of the different genomic features in the

context of these methods.

Results and discussions

To accurately and quantitatively assess the information contributions of different genomic features, we

construct in essence a simplified problem that has some but not all of the elements of the original study.

Here, we only look at a subset of the data from [1] comprising the 18 million protein pairs in total and

approximately 8,000 gold standard positives and 2.7 million gold standard negatives. This subset contains

2,104 positives and 172,409 negatives. In this subset, we have complete information for each feature and we

can thus quantitatively assess the relative contributions of the different features on this set. This data set

can be downloaded from http://bioinformatics.med.yale.edu/PPI. In doing so, we find that some of the

features have stronger influence on the overall prediction. While this might be true for the larger problem

as well, there are a number of caveats that one has to keep in mind, such as that the features that are

present in this subset might not be the strongest in the whole set of 18 million protein pairs.

Alternative models

Here, we construct models for predicting protein-protein interactions that, given the gold standards, are

basically dichotomous classifiers. Multiple logistic regression [11] is one commonly used model for such an

application [12,13]. An alternative, more sophisticated supervised learning approach that we apply is the

random forest algorithm [14]. Note that, although not our focus here, all these methods can be used to

compute the estimated probabilities for predicted protein-protein interactions.
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Logistic regression

The logistic model has the advantage that it provides an estimated probability that a pair of proteins

interact, and is readily available in standard statistical packages. In this paper, the logistic regression

analysis was generated using PROC LOGISTIC in SAS/STAT software, Version 9 of the SAS System.

Moreover, we can evaluate the importance of different genomic features by variable selections. Among

many available schemes, we chose stepwise variable selection that is widely used in standard packages.

Stepwise selection is a greedy search algorithm that selects variables with the best marginal prediction

power given the current model. To quantify the importance of the predictor variables to the model fitting,

we can use the deviance measure

−2(log L1 − log L0),

where L0 is the likelihood of the final model given by the stepwise selection, and L1 is the likelihood of the

reduced model by removing all terms that involve the corresponding predictor variable from the final

model. However, this measure only considers the prediction power of variables for the training sample but

not for any random test samples. Therefore, this measure can be biased due to its dependence on the

training sample.

We consider, similarly as in [1], all the main effects and interaction terms among the genomic features in

the PIP (indirect evidence for protein-protein interactions) and the PIE (direct experimental

protein-protein interaction measurements) respectively. Table 1 presents all the terms remained in the final

model and their orders to enter the final model. Table 2 shows the deviance measure of predictor variables.

The Gavin data, Gene Ontology and MIPS functional similarity features, and the cell cycle gene expression

data are the most important genomic evidences for predicting protein-protein interactions according to the

deviance measure, whereas the three other high-throughput experimental data sets are less relevant or even

do not have significant effects to be included in the final model. However, the logistic model is restricted by

its linear form and may not provide an optimal solution to the prediction problem. And it will be more

objective to evaluate the variable importance according to its prediction accuracy for any random test

samples. In the following, we present the results from using the random forest, a more sophisticated

supervised learning algorithm.

Random forest

The “random forest” method [14] is a supervised learning algorithm that has previously been successfully

applied to many genomic studies. It has been implemented in the randomForest package of R [15]. A
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random forest is an ensemble of many classification trees generated from bootstrap samples of the original

data. It is well known that random forests avoid overfitting and usually have better classification accuracy

than classification trees. A natural way to evaluate the importance of the feature variables with the

random forest algorithm is to measure the increase of the classification error when those variables are

permuted. Intuitively, the more important variables will, when permuted, produce larger classification

errors. The importance score provided by the random forest is a more accurate estimate of the

classification error that considers the situation of random test samples. Therefore, this importance score

provides a more objective evaluation of the relative merit of different genomic features on protein-protein

interaction prediction. Moreover, the intrinsic tree structure of the random forest easily takes into account

the interactions among the different variables and avoids complications caused by missing data that

occurred in many other modeling procedures.

We performed our random forest analysis by growing 5,000 trees. Figure 1 shows the importance measures

of the genomic evidences used in the random forest algorithm. The result agrees mostly with that of the

logistic regression in that the MIPS and Gene Ontology functional similarity features are found to be very

important, whereas most of the high-throughput experimental data sets have negligible effects. However,

different from the result from logistic regression, the Gavin data set is shown to be less important than

MIPS and Gene Ontology functional similarity features after considering the situation of random test

samples. These observations motivated us to perform a more thorough information assessment of the

genomic evidences considered. We first compared the performance of different classification methods

(random forest, logistic regression and Bayesian network), and then evaluated the importance of the

different genomic datasets within the framework the best method (the method with the lowest

classification error).

Comparison of three methods

We conducted 7-fold cross validations on the subset with complete information (described above) on all the

features for random forest, logistic regression and the Bayesian network method. Figure 2 displays their

receiver operating characteristic (ROC) curves, where we observe a better performance of the random

forest over the other two and similar performances between logistic regression and the Bayesian network.

6



Information assessment

Information assessment of different genomic data may help us understand their relationship with

protein-protein interactions, and form a guideline for future model development.

MIPS and Gene Ontology functional similarity data

We saw that the MIPS and Gene Ontology functional similarities were the two most important information

sources under both the logistic regression and random forests methods. Histograms of the MIPS and GO

functional similarity data (Figures 3 and 4) show that they are very different for the gold standard

positives and negatives; protein pairs in the gold standard positives are associated with smaller functional

similarity values than the gold standard negatives. This pattern explains why the functional similarity

features have such a strong impact on classification accuracy in the model fitting, as observed in Figure 2.

However, the vast number of protein pairs in the gold standard negatives are likely to be those that have

not been thoroughly studied by researchers, and henceforth are observed to belong to large functional

categories that actually should be further divided into more specific categories. This conjecture suggests

that the information from MIPS and Gene Ontology function data is possibly caused by selection biases

other than intrinsic biological relevance. It deserves further investigations of the relationship between the

gold standards and the MIPS and Gene Ontology functional similarity data.

In the following paragraphs, we show quantitatively that the MIPS and Gene Ontology functional

similarities are the dominating information contributors for predicting protein-protein interactions, while

other genomic features have negligible benefit and can not provide credible predictions by themselves. We

examine the performance of random forests using three different genomic feature sets: (i) all genomic

features included, (ii) MIPS and Gene Ontology functional similarities only, and (iii) genomic features

other than the MIPS and Gene Ontology functional similarities. The random forest performance is

evaluated with the classification error (Err) defined as follows.

Denote Err1 as the proportion of protein pairs misclassified in the gold standard positives, and Err2 the

counterpart for the gold standard negatives. Then we define the classification error as the average of Err1

and Err2.

Err =
Err1 + Err2

2
.

Err is a balanced error rate across gold standard positives and negatives. Suppose the joint probability

density functions of the predictor features X are f1(X) and f2(X) for the gold standard positives and
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negatives, respectively. Denote a classifier by C(X). Then the classification error can be written as

Err =
1

2

∫
I[C(X) = 1]f1(X)dX +

1

2

∫
I[C(X) = 0]f2(X)dX, (1)

where I(A) is an indicator function equal to 1 when A is true and 0 otherwise. A minimal classification

error Errmin can be computed by minimizing (1) across the space of X. It is easy to see that

Errmin =
1

2

∫
min(f1(X), f2(X))dX

is achieved at C(X) = I(f1(X) > f2(X)) . With this formula, we can estimate the optimal (minimum)

classification error based on any estimates of f1(X) and f2(X). In our study, f1(X) and f2(X) are

estimated by their empirical density functions.

Table 3 presents the optimal classification error using the MIPS and Gene Ontology functional similarity

data. Using the MIPS and Gene Ontology functional similarity data sets alone results in a highly accurate

classification with an optimal error of only 0.28%. Table 3 also shows the effects of the data discretizations

that were originally used in the Bayesian network method (“grouped”). The significant discrepancy

between optimal classification errors using the raw data and the discretized data (“grouped”) suggests that

the discretization causes serious loss of information.

Other genomic features

We also estimated the classification errors using the other genomic features within the random forest

framework. Table 4 shows that adding the other genomic evidences in the complete-information subset

provides only negligible benefit or even reduces the classification accuracy.

Moreover, we compared the ROC curves (Figure 5) of the random forest method using all genomic

information, only the MIPS and GO functional similarities, and the genomic information other than MIPS

and GO. Figure 5 shows that we barely gain any by considering other genomic information if the MIPS

and GO are available; classifications without the MIPS and GO functional similarity data are poor on the

complete-information subset. Note, however, that the subset of full interaction data which have the

strongest expression correlations is not necessarily the complete-information set considered. Hence, we

would expect that expression correlations might be a stronger source of information in other context.

Conclusions

In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene

Ontology functional similarity datasets as the dominating information contributors for predicting the
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protein-protein interactions under the framework proposed in [1]. Random forests based on the MIPS and

GO information alone can give highly accurate classifications. In this particular subset of complete

information, adding other genomic data does little for improving predictions. The MIPS and GO

information, however, is only available for a small proportion of the ∼18M protein pairs.

We considered alternative non-Bayesian methods such as logistic regression and random forest for

predicting protein-protein interactions. These existing methods do not require prior information needed for

the Bayesian approach, and can fully utilize the raw data without discretization. The logistic model

performs similarly as the Bayesian method in terms of classifications and, like the Bayesian method,

produces estimated probabilities that two proteins interact. As a dichotomous classifier, the random forest

method outperforms the other methods considered and efficiently uses the information, although it is

computationally more expensive. In particular, its importance measure provides a more objective

assessment of different genomic features on predicting protein-protein interactions than simply considering

contributions to model fitting. These findings are motivation to look for other, more sensible data

resources and superior models.

We found that the data discretizations used in the Bayesian methods decreased classification performance.

We note here that the genomic features datasets investigated here themselves are highly processed versions

of the datasets they were derived from and that there may be better ways to take the original data into

account.

Another caveat is that the predictions might be just defining groups of proteins that have the same

genomic properties as the protein complexes in the MIPS data. This does not necessarily mean that they

really represent protein complexes. Rather, they may represent groups of proteins that have the same

properties as protein complexes.

In this analysis we have looked at the relative weights of various features in predicting protein-protein

interactions based on the previous study in [1]. We looked at a particular subset of the data where we had

complete information and we were able to show that, for this particular subset of the full information, we

are able to show that the functional classification features in Gene Ontology were the most informative and

that particular machine learning algorithms, such as random forests were more effective than Bayesian

networks. However, one has to keep in mind that in the full problem there is the issue of incomplete

information. On data sets with incomplete information Bayesian approaches maybe more effective because

they can easily handle the missing information. Further careful studies such as these will be needed to

determine what the optimum machine learning method is and the optimum features are in presence of
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incomplete information. It will be also of great interest to consider other genomic features such as

phylogenetic profiles [16] and local clustering information [17]. This is just the first step in that direction.

Methods
Logistic regression

Denote the gold standards by random variable Y and the other genomic features by X1, X2, . . ., Xn. Let

Y = 1 when two proteins interact, i.e., they are in the same complex, and Y = 0 when not. The logistic

model is of the form

log
Pr(Y = 1)

1 − Pr(Y = 1)
= α + βX,

where the random vector X consists of X1, X2, . . ., Xn and their interaction terms.

Stepwise variable selection

The stepwise selection procedure starts from a null model. At each step, it adds a variable with the most

significant score statistics among those not in the model, then sequentially removes the variable with the

least score statistic among those in the model whose score statistics are not significant. The process

terminates if no further variable can be added to the model or if the variable just entered into the model is

the only variable removed in the subsequent elimination. Here, the score statistic measures the significance

of the effect of a variable.

ROC curve analysis

Receiving operator characteristic (ROC) curve [18] is a graphical representation used to assess the

discriminatory ability of a dichotomous classifier by showing the tradeoffs between sensitivity and

specificity. Sensitivity is calculated by dividing the number of true positives (TP) through the number of

all positives, which equals the sum of the true positives and the false negatives (FN); specificity is

calculated by dividing the number of true negatives (TN) through the number of all negatives, which

equals the sum of the true negatives and the false positives (FP).

Sensitivity = TP/(TP + FN), Specificity = TN/(TN + FP ).

The plot shows 1 − specificity on the X axis and sensitivity on the Y axis. A good classifier has its ROC

curve climbing rapidly towards upper left hand corner of the graph. This can also be quantified by

measuring the area under the curve. The closer the area is to 1.0, the better the classifier is; and the closer

the area is to 0.5, the worse the classifier is.
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Figures
Figure 1 - Importance measure of genomic features from the random forest algorithm

The horizontal axis presents the importance measure whereas the vertical axis denotes the genomic

features.

Figure 2 - ROC curves of random forest, logistic regression and Bayesian networks using 7-fold cross

validations

Figure 3 - Histograms of MIPS and Gene Ontology function data for gold standard positives and

negatives

Figure 4 - Zoom-in histograms of MIPS and Gene Ontology function data for gold standard positives

and negatives on the lower end

Figure 5 - ROC curves of random forest using different genomic feature sets

‘All’–all genomic information; ‘MIPS+GO’–only MIPS and Gene Ontology function data; ‘ELSE’-genomic

features other than MIPS and Gene Ontology function data
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Tables
Table 1 - Order of variables that enter the final model by stepwise selection in logistic regression

Variables Order
Gavin 1
MIPS 2
Rosetta 3
GO 4
cellcycle 5
essentiality 6
Rosetta*cellcycle 7
cellcycle*essentiality 8
Ho 9
GO*essentiality 10
Uetz 11
GO*cellcycle 12
GO*cellcycle*essentiality 13
MIPS*essentiality 14
MIPS*Rosetta 15

Table 2 - Deviance of the reduced model from the final model by removing corresponding variables

Variable Deviance
GO 1376.437
MIPS 1333.97
essentiality 579.988
Rosetta 778.493
cellcycle 1271.461
Ho 68.718
Uetz 20.513
Gavin 1839.181

Table 3 - Optimal classification errors when using different genomic features

Variables Optimal Classification Error
MIPS 1.69%
GO 2.15%
MIPS+GO 0.28%
MIPS (grouped) 7.31%
GO (grouped) 13.35%
MIPS+GO (grouped) 6.34%

Table 4 - Classification errors of the random forest algorithm when using different genomic features

Variables Err1(positives) Err2(negatives) Err
MIPS+GO 114/2104=5.42% 180/172409=0.1% 2.76%

ALL 165/2104=7.80% 89/172409=0.05% 3.95%
ELSE 1056/2104=78.09% 313/172409=0.20% 25.20%
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Additional file
Additional file 1 - The complete-information subset in ZIP file.
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Additional files provided with this submission:

Additional file 1: PPIr.zip : 1973KB
http://www.biomedcentral.com/imedia/3406880004907570/sup1.zip
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