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Abstract  

Background: Protein microarrays represent an emerging class of proteomic tools to investigate 

multiple protein-protein interactions in parallel. A sufficient proportion of immobilized proteins 

must maintain an active conformation and an orientation that allows for the sensitive and specific 

detection of antibody and ligand binding. In order to establish protein array technology for the 

characterization of the weak interactions between leukocyte membrane proteins, we selected the 

human leukocyte membrane protein CD200 (OX2) and its cell surface receptor (hCD200R) as a 

model system. As antibody-antigen reactions are generally of higher affinity than receptor-ligand 

binding, we first analyzed the reactivity of monoclonal antibodies (mAb) to normal and mutant 

forms of immobilized CD200R.   

Results: Fluorescently labelled mAb DX147, DX136 and OX108 were specifically reactive with 

immobilized recombinant hCD200R extracellular region, over a range of 0.1-40 µg ml-1 

corresponding to a limit of sensitivity of 0.01-0.05 femtomol per spot. Orientating hCD200R 

using capture antibodies, showed that DX147 reacts with an epitope spatially distinct from the 

more closely related DX136 and OX108 epitopes. A panel of soluble recombinant proteins with 

mutations in hCD200R domain 1 produced by transiently transfected cells, was arrayed directly 

without purification and screened for binding to the three mAb. Several showed decreased 

binding to the blocking mAb DX136 and OX108, suggesting close proximity of these epitopes to 

the CD200 binding site. Binding of hCD200 to directly immobilized rat, mouse, and hCD200R 

was achieved with multimeric ligands, in the form of biotinylated-hCD200 coupled to FITC-

labelled avidin coated beads.  

Conclusion: We have achieved sensitive, specific and reproducible detection of immobilized 

CD200R with different antibodies and mapped antigenic epitopes for two mAb in the vicinity of 
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the ligand binding site using protein microarrays. We also detected CD200 binding to its 

receptor, a low affinity interaction, using beads presenting multivalent ligands. Our results 

demonstrate the quantitative aspects of protein arrays and their potential use in detecting 

simultaneously multiple protein-protein interactions and in particular the weak interactions found 

between leukocyte membrane proteins.  
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Background  

Protein-protein interactions are fundamental to biological processes and their analysis is essential 

for the understanding of cellular pathways. Given the complexity and the dynamic range of the 

proteome, estimated at 107 proteins, the elucidation of protein interactions requires the 

development of comprehensive, high-throughput proteomic methods that allow quantification of 

multiple proteins simultaneously [1, 2]. The development of protein microarrays represents an 

attractive new high-throughput technology platform. It involves the printing of ordered arrays of 

biomolecules onto a solid surface in miniaturized format that allows for the simultaneous 

determination of multiple interactions using small amounts of samples within a single 

experiment. The basic principles for highly sensitive “microspot” ligand-binding assays were 

described by Ekins [3, 4] who proposed the “ambient analyte theory” and showed that 

microspots containing small amounts of capture molecules were able to detect low analyte 

concentrations with very high accuracy and sensitivity. Since then, miniaturized protein arrays 

are emerging as one of the most powerful proteomics tools but their application is far more 

complex [5] than the DNA microarrays (reviewed in [6-8]) due to structural complexity and 

heterogeneity of proteins, including their post-translational modifications. Binding of the 

proteins onto the solid surface of an array must maintain tertiary structure sufficient for functions 

such as receptor-ligand binding or antibody reactivity. Chemically derivatized microarray 

surfaces [9, 10] or the use of mAb [11, 12] have been shown to maintain protein functionality, 

thus increasing the potential for successful application of microarray technology in proteomics.  

 

The study of leukocyte membrane protein interactions provides a particular need because of the 

large number of interactions yet to be defined [13, 14] and a technical challenge as these 
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interactions are often of very low affinity with KD in the range 1-200 µM [15, 16]. Although 

weak, these interactions are important in the context of leukocytes interacting with other cells as 

illustrated by all the functional data on the interaction of CD8 with MHC Class II  (KD = 200 

µM) [17]. The proteins involved usually contain folded domains, the most common type 

belonging to the immunoglobulin superfamily (IgSF) [13]. Such domains often interact through 

large faces of the proteins and require proper folding [18, 19]. When measuring low affinity 

interactions, misleading results can be obtained from unfolded or aggregated materials which are 

not really a problem when dealing with high affinity interactions such as with cytokines and their 

receptors, or between proteins and linear epitopes such as lectins and carbohydrates. In addition 

many leukocyte surface proteins are heavily glycosylated and the oligosaccharides, even if not 

directly involved in binding, may be important in maintaining biologically active proteins [20]. 

Thus, in applying the protein microarray technology to the study of leukocyte surface protein 

interactions, it is imperative that the proteins are expressed in eukaryotic systems to ensure 

correct disulphide bond formation and post-translational modifications.  

 

In this study we chose a well characterized interaction between CD200 (previously called OX2) 

and its receptor CD200R (reviewed in [21]) as a model system to devise a high throughput 

protein array method for characterization of the interactions between leukocyte surface proteins. 

CD200 is a widely distributed membrane protein with two extracellular IgSF domains and a 

short cytoplasmic region unlikely to signal. It interacts with a receptor (CD200R) expressed 

mostly on myeloid cells, which also has two extracellular IgSF domains but a longer cytoplasmic 

region with several tyrosine residues that can be phosphorylated [22]. Functional analysis 

suggests that the leukocyte CD200 protein can mediate a down-regulatory signal to myeloid cells 
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through the inhibitory CD200R. Thus the CD200 null mice have an increased susceptibility to 

autoimmune disease induction and myeloid cells expressing CD200R are more activated [23]. 

CD200 and a viral homologue found in Kaposi sarcoma virus, when expressed at the cell 

surface, gave inhibition of production of inflammatory cytokines from activated macrophages 

[24]; and targeting the CD200-CD200R interaction with agonistic mAb or CD200-Fc fusion 

proteins in vivo ameliorates autoimmunity in disease models [25, 26]. 

 

Protein arrays can be divided into two major classes: ‘forward phase’ if the analytes are captured 

from solution; or ‘reverse phase’ if the analytes are bound directly to the solid phase [27]. In 

forward phase protein microarrays, a bait molecule such as an antibody is immobilized onto a 

solid support to capture the analytes which can be proteins in purified form, or in complex 

solutions such as cell lysates [12] or tissue samples [27, 28]. The bound analytes are detected 

either by direct labelling or via a secondary antibody. In reverse phase arrays, the analytes 

(typically purified proteins or cell lysates) are directly immobilized on the solid phase and 

antibodies or interacting proteins are applied in solution phase. The analytes can be labelled 

directly or detected using tags and signal amplification. 

 

We have used the forward phase approach in the mapping of antigenic epitopes of hCD200R 

where different antibodies were immobilized on epoxy coated glass slides, incubated with the 

hCD200R analyte and detected with fluorescently labelled anti-CD200R antibodies. We have 

applied reverse phase arrays to three different purposes: -to test the reactivity of the fluorescently 

labelled mAb with directly immobilized hCD200R protein, -to map epitopes located near the 

ligand binding site using arrayed mutant hCD200R recombinant proteins and detection with 



 

 7

fluorescently labelled mAb that block ligand-receptor interactions and -to detect the low affinity 

binding of immobilized CD200R to the multivalent CD200 ligand presented on fluorescently 

labelled beads. Our study extends the use of protein microarrays to the detection of transient cell 

surface protein interactions, which are of lower affinity than the reported cytokine arrays [29, 

30].  

 

Results and Discussion 

 

Quantitative binding of DX147, DX136 and OX108 mAb to human CD200R 

Purified, soluble recombinant hCD200R protein, engineered with domains 3 and 4 of rat CD4 as 

an antigenic tag (hCD200R-CD4d3+4) [31] was directly immobilized at different concentrations 

on epoxy-coated glass slides, in a reverse phase array as illustrated schematically (Fig. 1A). The 

hCD200R array was tested for reactivity with three different mAb: DX147, and two previously 

reported [31] mAb DX136 and OX108 able to block ligand binding. Controls on the arrays 

included recombinant mouse CD200R-CD4d3+4 protein (mCD200R) [31] and rat CD4d3+4. 

Figure 1B and C illustrate the strong and specific binding of all three fluorescently labelled mAb 

to hCD200R, as demonstrated by minimal reactivity with rCD4 (rat CD4d3+4) and lack of cross-

reaction with mCD200R. DX147 gave the strongest labelling with linear binding from 0.08 to 20 

µg ml-1 mAb, reaching the upper limits of detection under the optimized voltage settings (65,000 

units of green fluorescence) at 40 µg/ml (Fig.1B). Binding of DX136 was linear over the full 

range of concentrations with a maximum binding of 48,000 units. OX108 bound more weakly, 

reaching a maximum value of 32,000 units. Sensitivity of detection, defined as two-fold binding 

above background, was estimated as the lowest hCD200R-CD4d3+4 concentration tested (0.08 

µg ml-1) for DX136. A three-fold signal to noise ratio was achieved for DX147 at that 
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concentration suggesting that sensitivity of detection was closer to 0.05 µg ml-1. For OX108, the 

limit of sensitivity was estimated at 0.3 µg ml-1. Thus DX147, DX136 and OX108 were able to 

detect 0.5 pg, 0.8 pg and 3.0 pg of hCD200R per spot respectively estimating a spot volume of 

10 nl. The limit of sensitivity achieved was therefore between 8 and 50 attomol, assuming a 

molecular weight of 60,000 for hCD200R-CD4d3+4 protein. The amounts of human and mouse 

CD200R-CD4d3+4 and rCD4d3+4 protein on the microarray spots were similar as visualized by 

the red fluorescence of OX68 mAb recognising the CD4 tag present in each of the recombinant 

proteins (Fig. 1B and D). This indicates that the amount of protein detected is proportional to the 

amount arrayed in each spot and is highly reproducible. The limit of sensitivity of protein 

detection with Alexa 647-OX68 was approximately 0.3 µg ml-1, corresponding to 50 attomol of 

CD200R-CD4d3+4 proteins. Although not all molecules will be in a proper orientation for equal 

access to both anti-CD200R and anti-CD4, as illustrated in Fig. 1A, our results suggest that on 

average, there is a good correlation between the amount of specific antibody bound and the 

amount of protein arrayed. 

 

Orientation via antibody immobilization for epitope mapping on human CD200R 

We used forward phase protein microarrays to define the epitopes of hCD200R recognized by 

the three mAb introduced in the previous section.  Serial dilutions of DX147, DX136 and OX108 

mAb and the control CD4 mAb OX68 were directly immobilized on epoxy-coated glass slides as 

shown (Fig. 2A). The mAb arrayed act as capture reagents for hCD200R, used at a concentration 

of 20 µg ml-1. Each capture mAb binds to a different epitope on the hCD200R-rCD4d3+4 

recombinant protein, thus orientating the protein on the array in a conformation that permits or 

restricts access to the same panel of mAb, used as detection reagents (Fig. 2A). Visual 
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observation (Fig. 2B) and quantitative analysis (Fig. 2C) showed that DX147 reacts with an 

epitope spatially distinct from the more closely related DX136 and OX108 epitopes. As 

expected, OX68 is the most suitable capture mAb, as it binds the common CD4 tag allowing 

exposure of the two extracellular domains of hCD200R and binding of all three specific mAb. 

When the detection mAb is the same as the capture mAb, no significant binding above 

background is observed (Fig. 2C). DX147 binds specifically to hCD200R-CD4d3+4 orientated 

via OX68 and DX136 (16,021 and 12,570 green fluorescence units respectively at 80 µg ml-1 of 

capture mAb), but not via OX108 or via itself. This is an indication that the binding epitopes for 

DX136 and DX147 are dissimilar. DX136 in turn, binds well to hCD200R-CD4d3+4 

immobilized on OX68 (13,954 units of green fluorescence at 80 µg ml-1) and to a lesser degree 

to hCD200R-CD4d3+4 immobilized on DX147 (2,647 units), while not at all to hCD200R 

captured by OX108 (496 units). These data indicate that the DX136 epitope is spatially distinct 

from the DX147 epitope, but in close proximity to the OX108 epitope. This conclusion is 

substantiated by the lack of binding of OX108 mAb to hCD200R-CD4d3+4 captured on DX136. 

Orientating hCD200R via mAb OX68 allows for specific binding of all three anti-human 

CD200R mAb, in a linear fashion with limits of sensitivity of about 5 µg ml-1 of immobilized 

mAb. The maximum amount of signal was obtained by capturing hCD200R with 80 µg ml-1 of 

mAb OX68 and was equivalent to that observed by directly immobilizing approximately 10 µg 

ml-1 hCD200R. OX68 is therefore the best mAb for capturing the chimaeric hCD200R-CD4 

protein for optimal detection of hCD200R epitopes.   
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Mapping of CD200R antigenic epitopes using mutants 

Both CD200R and its ligand, CD200 contain two extracellular IgSF domains. The ligand-

receptor interaction is therefore likely to occur in an end-to-end topology, requiring opposing cell 

surfaces to come into close proximity [22]. Previous studies have shown that the membrane 

distal N-terminal domain of CD200 is involved in binding its receptor [32]. In a recently 

published study [33], site directed mutagenesis was employed to map the ligand-binding domain 

of human CD200R using the structure of a typical Ig V domain, that of the human junctional 

adhesion molecule 1, JAM1 to predict the positions of out-pointing residues [34]. A panel of 

mutants was designed so as to target residues likely to be out-pointing from predictions of the 

beta strands of the N-terminal IgSF domain of hCD200R. The binding sites of CD200 and of the 

OX108 mAb known to block ligand interaction to the hCD200R mutants, were shown to be on 

the GFCC’ face of the N-terminal IgSF domain [33].  

 

The same panel of hCD200R-CD4d3+4 mutant proteins (Table 1) was analyzed by reverse 

protein microarrays (analogous to Fig. 1A) for binding to mAb DX147, DX136 and OX108 in 

order to map these epitopes. The mutant proteins were expressed by transient transfection in 

serum-free medium, concentrated and arrayed. Purified human and murine CD200R serving as 

positive and negative controls were immobilized at concentrations ranging from 0.08 to 40 µg 

ml-1. Lack of binding by a specific mutant or group of mutants is suggestive of the corresponding 

residues defining the location of the antigenic epitopes. None of the hCD200R mutants tested 

had lost binding to DX147, confirming unpublished data that this epitope lies, not in the N-

terminal domain of CD200R but in the membrane proximal domain. Some of the mutants 

showed increased binding of mAb over the wild type despite these being normalized with OX68 
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(e.g. R67, I71K). This presumably reflects variations in epitope availability due to direct 

immobilization of the mutant proteins on the array, which are less likely to occur in BIAcore 

studies where mutants were immobilized via OX68 mAb [33]. Thus our data analysis was 

focused on mutants with major impairment in binding activity. Nine of the mutants showed 

reduced binding to either DX136 and/or OX108 mAb, relative to wild type hCD200R, as 

represented graphically in Figure 3. One mutant illustrated (E75K) did not affect binding in a 

significant manner. The position of these mutants is shown on the model of the N-terminal 

domain of hCD200R, based on a typical IgSF domain of similar size (Fig. 4). Panel A shows the 

mutants affecting CD200 binding, as reported in [33]. These mutants were mostly in the GFCC’ 

face and in particular the F and C strands. Panel B shows the mutants with reduced binding to 

DX136 and/or OX108. It is immediately noticeable that mutants within the F and C strands also 

appear to have lost binding to DX136 and OX108 mAb, suggesting close proximity of these 

epitopes to the CD200 binding site, in agreement with the ligand blocking activity of these mAb. 

However, the key residues were not identical as shown by the differing effects of the mutants 

I71K and R67D. Furthermore, the microarray study confirms the results obtained by individual 

analysis of each mutant by surface plasmon resonance in terms of residues involved in OX108 

binding; the most critical amino acid appears to be R67 located in the B-C loop [33]. The finding 

of mutants that had apparently gained CD200R mAb binding activity compared to the OX68 

mAb recognising the CD4 tag, shows that spotting can have effects not seen by indirect methods 

such as the BIAcore. However there was very good correlation between available BIAcore data 

and microarray data. Thus this method provides a rapid high throughput method to identify the 

rare mutants that affect antigenic activity that can then be characterised further e.g. by BIAcore 

analysis. 
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Reactivity of human, rat and mouse CD200R with multimeric human CD200  

The interaction of human CD200 with its receptor hCD200R is of low affinity, with a KD of ~0.5 

µM at 37oC and t1/2 of 7 s [24], typical of the interaction of many leukocyte membrane proteins 

[15]. Such an interaction could not be detected when immobilized hCD200R was incubated with 

fluorescently labelled purified monomeric hCD200 protein (data not shown). In order to develop 

leukocyte membrane receptor-ligand microarray assays, high avidity detection reagents are 

required. Recombinant hCD200 protein was constructed by linking the extracellular domains of 

human CD200 with domains 3 and 4 of rat CD4 (CD4d3+4) as an antigenic tag. This construct 

contains a 19 amino acid sequence at the C-terminus of the protein, which can be enzymatically 

biotinylated on a specific lysine residue using the E. coli BirA enzyme [35]. Expression of the 

construct was demonstrated by inhibition of a rat CD4 ELISA using OX68 mAb. The 

recombinant protein bound the mAb OX104 (mouse anti-human CD200), indicating that it was 

antigenically active, as assessed by BIAcore analysis (data not shown) and its biotinylation was 

confirmed by streptavidin binding. The biotinylated hCD200-CD4d3+4 protein or the control 

CD4d3+4 protein were attached to avidin-coated FITC-fluorescent beads via their biotin tag, 

thus creating polyvalent CD200 and control reagents. These beads were used to detect specific 

binding of CD200 to human, mouse and rat CD200R proteins arrayed directly on epoxy-coated 

glass slides (Fig. 5A). Additional controls included rCD4d3+4 protein arrayed on the slide and 

tested for reactivity with both types of beads. Strong binding of hCD200-beads to all three 

CD200R proteins was observed (Fig. 5B and C) indicating that the proteins immobilized on the 

glass surface had retained their capacity to bind ligand with maximum mean values of 63,500 

green fluorescence units for rat CD200R (saturating), 43,600 for mouse CD200R and 23,800 for 
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human CD200R. The fluorescence appears granular as one is actually visualizing the small 

fluorescent beads. Binding was detected at concentrations of receptors ranging from 

approximately 5 to 40 µg ml-1 corresponding to 1-8 femtomol per spot on the microarray. The 

non-specific binding of hCD200-beads to immobilized rCD4 protein was negligible (Fig. 5B and 

C) and control CD4d3+4 beads did not react with any of the arrayed proteins (data not shown).  

The multivalent hCD200-beads cross-reacted with rat and mouse CD200R as expected, as 

BIAcore analysis has shown that hCD200 interacts with human, rat and mouse CD200R with 

affinity constants within a log of each other [31]. Sensitivity of detection, defined as two-fold 

binding above background was achieved with concentrations of 5 µg ml-1 for rat CD200R and 10 

µg ml-1 for human and murine CD200R. This corresponds to 1-2 femtomol of immobilized 

receptors interacting with the multimeric human CD200 ligand.  

 

Conclusions 

In order to study interactions of leukocyte membrane proteins using high throughput microarray 

techniques, it was essential that the proteins be immobilized at low concentrations and in a 

biologically active form. It is critical that weak interactions between leukocyte membrane 

proteins be detected without interference by the anomalous binding due to denatured proteins, 

which is more of a contributing factor in the study of low affinity interactions. We first 

established that recombinant CD200R proteins could be immobilized directly in reverse phase 

arrays, in a conformation capable of reacting with three different mAb. We then demonstrated 

that recombinant mutant hCD200R proteins produced in transient expression systems were 

present in sufficient amounts to be immobilized directly and tested for reactivity with specific 

mAb, permitting mapping of epitopes. These data show that high throughput analysis of cell 
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surface proteins can be achieved in reverse phase arrays using recombinant proteins derived from 

transient transfectants in a non-purified form. We also used forward phase arrays for competitive 

analysis of antibodies and mapping of their epitopes. This approach is valuable for rapidly 

screening antibody specificities and assessing protein orientation needed for optimal presentation 

of immunogenic determinants.  

 

We also showed that binding of CD200 ligand to its cell surface receptor can be achieved by 

increasing the avidity of the reaction via coupling of the biotinylated recombinant CD200 protein 

to fluorescently labelled avidin coated beads. The fluorescent beads offer an efficient technology 

for the analysis of low affinity interactions typical of those observed for leukocyte membrane 

proteins and many other cellular proteins.  

 

Methods 

Materials 

Monoclonal antibodies (mAb) DX147 (rat IgG1), and DX136 (rat IgG2a) to human CD200R 

were generously given by DNAX Research Institute (Palo Alto, CA). The mAb OX108 (mouse 

IgG1) to human CD200R [31] and OX68 (mouse IgG1) to rat CD4 domains 3 and 4 (rCD4d3+4) 

have been described previously [36].  

 

Recombinant proteins  

The soluble biotinylated forms of human, mouse and rat CD200R were produced as described 

[22, 31, 36]. Briefly, the entire extracellular region of human, mouse or rat CD200R was 

amplified by PCR and cloned in the pEF-BOS-CD4d3+4bio-XB vector [35]. These constructs 
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were then subcloned into the expression vector pEE14, and stably secreting CHO.K1 cell lines 

were established [37]. Human, mouse or rat CD200R-CD4d3+4 proteins were purified from the 

tissue culture medium by immunoaffinity chromatography with OX68 mAb-Sepharose 4B that 

recognizes the CD4 protein tag [36]. Prior to use, the purified CD200R proteins were 

fractionated by gel filtration on Superdex S-200 (Pharmacia, Uppsala, Sweden) to exclude 

protein aggregates. The soluble, biotinylated form of human CD200 was produced in an identical 

fashion, by subcloning the amplified extracellular region of human CD200 [38] using XbaI/SalI 

digestion to the pEF-BOS-CD4d3+4bio-XB vector [36]. This construct was used to transfect 

HEK293T cells using the calcium phosphate method. The protein expressed was enzymatically 

biotinylated and used to generate multivalent binding reagents  by coupling to avidin-coated 

fluorescein isothiocyanate (FITC)-loaded beads (Spherotech Inc., Libertyville, IL) as described 

previously [35].   

 

Mutants of human CD200R (hCD200R) were prepared as described [33]. Briefly, the mutations 

were introduced by site directed mutagenesis using PCR and two mutagenic oligonucleotides 

into a construct comprising the extracellular domains of human CD200R together with domains 

3 and 4 from rat CD4 (CD4d3+4) as an antigenic tag. The mutants were transiently expressed in 

HEK 293T cells using X-VIVO 10 media (BioWhittaker, Nottingham), concentrated about 10 

fold and levels of expressed protein quantified by ELISA. This media contains 1 mg ml-1 BSA so 

after concentration the final protein concentration is around 10mg/ml. 

 

Antibody labelling  
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Purified antibodies were dialysed against PBS prior to labelling with Alexa Fluor 555 or Alexa 

Fluor 647 fluorescent amine-reactive dyes using the Molecular Probes Monoclonal Antibody 

Labelling Kits (Cat. No. A-20186 and A-20187) and according to the manufacturer’s instructions 

(Molecular Probes, Invitrogen Ltd.). Labelling reactions were carried out using 100 µg of IgG 

and yielded labelled proteins ranging in concentration from 1 to 4 x 10–6 M. The degree of 

conjugation was estimated at 2-4 moles of dye per mole protein. Labelled antibodies were stable 

for up to 2 months at 4˚C.  

 

Preparation of microarrays 

Protein solutions to be arrayed were prepared in 96 well plates and 12 µl aliquots were 

transferred to single wells of Genetix 7020, 384-well plates (Genetix Ltd, New Milton, UK). 

Concentrations tested ranged from 0-80 µg/ml and all dilutions were performed in Protein Array 

Spotting Solution (Genetix) with the addition of 0.5 mg/ml BSA and 0.02% NaN3. A 

QArrayMini microarray printer (Genetix) was used to apply the protein solutions onto epoxy-

coated microscope slides using 300 µm solid tipped tungsten microarraying pins (Genetix). 

Preliminary experiments established the printing conditions with fluorescently labeled OX68 

mAb. Of several types of slides tested, the epoxy-coated ones were the best in terms of spot 

morphology, cost and reproducibility and were used in all subsequent experiments.  

 

Most array designs were performed using 8 pins to obtain spots with a 440 µm diameter and 

centre-to-centre spot spacing of 700 µm in both directions. Source plates were kept at 8˚C, and a 

65% average internal humidity was maintained. After printing, the slides were left in the arraying 

chamber for 30-60 minutes under the same conditions. The slides were then washed using the 
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Protein Array Processing Kit (Genetix Ltd; stored at 4˚C and the solutions supplemented with 

0.02 % NaN3) by inversion for 1 min in Clean Up Buffer (Genetix) to remove unbound proteins 

and incubation for 30 min in Blocking Buffer. Slides were washed 3 times in PBS, once in H2O 

to remove excess salt and dried using an air brush, and stored at 4˚C, with desiccant in a sealed 

slide box. Preliminary experiments were done by forward phase arrays to establish optimal 

conditions. OX68 mAb (100 µg ml-1 to 20 µg ml-1) was immobilized, incubated with rat CD4 at 

5 µg ml-1 0.1mg ml-1 BSA, washed and incubated with labeled W3/25 mAb (5 µg/ml) and 

linearity of detection demonstrated. Specificity was also shown by the fact that OX68 was not 

reactive with CD4 immobilised on OX68 and vice versa. 

 

Labelling of microarrays 

Slides were placed in hybridization chambers (Corning Incorporated, UK) and the humidification 

wells filled. LifterSlips, (Erie Scientific, Portsmouth, USA) were placed gently over the marked 

boundaries of the arrays and the binding reagent (25-70 µl) was introduced with a micropipette. 

In experiments where CD200R-CD4 hybrid proteins (including the mutant studies) were arrayed, 

Alexa-555 anti-CD200R antibodies (mAb DX147, DX136 or OX108; 5-10 µg ml-1) were added 

to measure the amount of specific antibody bound and Alexa-647-CD4 mAb (OX68 5-10 µg ml-

1) was included to assess the amount of hybrid protein present. In experiments where capture 

antibodies were arrayed (Fig. 2), a 2 h incubation with purified protein, such as CD200R-

CD4d3+4 or CD4d3+4 at 20 µg ml-1, was performed prior to incubation with the detection 

antibodies. In the experiments detecting CD200 (ligand) binding to immobilized CD200R (Fig. 

5), arrays were incubated with biotinylated hCD200-CD4d3+4 streptavidin-FITC beads. 

Incubations with detection reagents were carried out for 16 h at 4oC unless otherwise stated. The 
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slides were immersed upside down in PBS/0.05% Tween-20, washed thrice with copious 

amounts of PBS/Tween-20, alternating shaking up and down under liquid in the Copeland jar 

and gentle rocking for 5-10 min each, followed by PBS (twice for 5 min) and a final H2O rinse. 

All washes were at room temperature and repeated following each incubation. After drying the 

slides with an air brush, the arrays were scanned using a GenePix4000B microarray scanner 

(Axon Laboratories, Palo Alto, CA) scanner using 532 nm and 635 nm lasers using the GenePix 

Pro 5.0 (Axon Laboratories) software. The PMT values were 720 and 1000 (532 nm and 635 nm 

respectively) for Figure 1, 780 and 950 for Figure 2, 900 and 1000 for Figure 3 and 850 for 

Figure 5 (532 nm only).  

 

Data Analysis 

All samples were tested in quadruplicate and all experiments repeated several times. The amount 

of antibody or ligand bound to the arrayed proteins and the amount of protein present in each 

spot were determined by comparing the fluorescence intensities read at 532 and 635 nm. 

Extraction of spot intensity data was performed using GenePix Pro 5.0 (Axon Laboratories) and 

ScanArray Express (Perkin Elmer). The background, calculated as the median of pixel intensities 

from the local area around each spot, was subtracted from the mean pixel intensity within each 

spot. To graphically represent the data, the values of the background-subtracted signal intensities 

were plotted against the known concentration of the protein spotted in the array. Sensitivity of 

detection for each spot was defined as a signal to noise ratio (S/N) of two-fold above 

background. S/N was calculated as: S/N = (background-subtracted median signal intensity) / 

(standard deviation of background signal intensity).  

 



 

 19

In the case of the mutant hCD200R proteins generated from culture supernatants of transient 

transfections, where protein concentration is unknown, the background-subtracted values for 

both 532 and 635 nm-signal intensities were corrected for internal protein signal by subtracting 

the corresponding value of a “mock transfectant” spot. The corrected values for the red channel 

(representing the amount of protein assessed from the CD4 content) were normalised to 100% 

with respect to the wild-type hCD200R transient transfection sample. All hCD200R mutants 

with red channel values below 50% were assumed to contain insufficient amount of protein and 

were excluded from the analysis. The green channel background-subtracted, “mock”- 

transfectant corrected values (G) were divided by the corresponding red channel ones (R) to 

correct for variations in the amount of expressed protein contained in each individual spot (G/R 

ratio). Finally, the G/R ratio was normalized to 100% with respect to the hCD200R-CD4d3+4 

wild-type protein, before graphical representation.  

 

List of abbreviations 

IgSF, immunoglobulin superfamily; hCD200, human CD200; CD200-CD4d3+4, chimaeric 

recombinant CD200 protein with rat CD4 domains 3+4; hCD200R, human CD200 receptor; 

mCD200R, mouse CD200 receptor; rCD200R, rat CD200 receptor; SPR, surface plasmon 

resonance; WT, wild type. 
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Figure 1 – Quantitative binding of mAb to hCD200R-CD4d3+4. 

(A). Scheme illustrating a reverse phase microarray in which purified CD200R proteins were 

immobilized and then screened with fluorescent mAb specific for hCD200R or for the antigenic 

rCD4 tag (OX68) of the hybrid recombinant protein. (B). Typical microarray shows binding of 

OX68 mAb (red) to control proteins or the overlapping binding of hCD200R mAb and OX68 

(yellow) to immobilized human CD200R. (C). Shows the green fluorescence intensity of each 

spot for all four replicates (mean ± SEM). (D). Shows red fluorescence intensity due to binding 

of OX68 mAb using data in left panel for DX147 (similar levels were found with the other 

mAb).  Serial two-fold dilutions of purified, soluble, recombinant human and mouse CD200R-

CD4d3+4 proteins, and of control rat CD4d3+4 were arrayed onto epoxy-coated microscope 

slides. Each protein dilution series was arrayed in 3 rows of 4 spots, ranging in concentration 

from 40 µg ml-1 (first spot) to 0.08 µg ml-1 (spot 10), with control spotting buffer containing 0.5 

mg ml-1 BSA in the last two spots. All arrays were performed in quadruplicate and a 

representative set is shown in (B). Each slide was incubated for 16 h at 4oC with a mixture of 

hCD200R mAb (DX147, DX136 or OX108) labelled with Alexa-555 (indicated as green 

fluorescence measured at 532 nm) and rCD4 mAb (OX68, detecting the antigenic tag and 

allowing for measurement of recombinant protein concentration) labelled with Alexa-647 (red 

fluorescence measured at 635 nm). At the highest concentrations, the hCD200R spots appear 

either white (saturating conditions) or yellow, due to the combination of green and red signals 

given by the specific binding of the Alexa-555-mAb to hCD200R and Alexa-647-OX68 mAb 

respectively. Quantitative measurements are expressed as mean fluorescence units at 532 nm 

(green) and 647 nm (red) versus amount of protein arrayed.  

 



 

 24

Figure 2 – Analysis of mAb reactivity with hCD200R by orientation via antibody 

immobilization. 

 (A). Scheme of one forward phase microarray in which purified human CD200R protein was 

immobilized via OX68 mAb and detected with the DX136 hCD200R mAb (green fluorescence). 

(B). Typical microarray shows binding of the hCD200R mAb (green) and OX68 mAb (red) to 

hCD200R immobilized via four different capture mAb. (C). Shows the mean fluorescence 

intensity ± SEM for each spot of all replicates. Serial two-fold dilutions of capture human 

CD200R mAb OX108, DX136 and DX147 and control rat CD4 mAb OX68 were arrayed onto 

epoxy-coated microscope slides. Each mAb dilution series was arrayed in quadruplicate of 2 

rows of 6 spots, ranging in concentration from 80 µg ml-1 (first spot) to 0.16 µg ml-1 (spot 10), 

with control spotting buffer containing 0.5 mg ml-1 BSA in the last two spots. The whole array 

was repeated on the slide for a total of 8 replicates per spot. Each slide was incubated for 2 h 

with 20 µg ml-1 of purified recombinant hCD200R-CD4d3+4 protein, prior to incubation with 

Alexa-555-labeled CD200R mAb (DX147, DX136 or OX108) or Alexa-647 control rCD4 mAb 

(OX68). Quantitative measurements are expressed as mean fluorescence units at 532 nm (green) 

and 635 nm (red) versus amount of capture mAb arrayed.  

 

Figure 3 – Mapping of antigenic epitopes on hCD200R mutants.  

The hCD200R mutants described in Table 1 and produced by transient transfection were arrayed 

(reverse phase) and tested for specific binding to mAb DX147, DX136 and OX108 and for 

reactivity with OX68 to quantify the relative amount of protein in each sample as described in 

Methods. Results for a panel of 10 mutants are plotted as percent antibody binding normalized to 

the wild type, non-mutated hCD200R protein (WT) values.  
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Figure 4 – Mapping of DX136 and OX108 epitopes on the N-terminal domain of human 

CD200R. 

(A). The mutants giving complete or nearly complete inhibition of CD200 binding, determined 

by BIAcore analysis, are indicated with red circles (<35% binding compared to non-mutated WT 

hCD200R protein), whereas those giving partial effects (35-70% binding) are depicted in orange. 

Data from [33]. (B). The mutants giving severe inhibition (<35% compared to WT) of OX108 

and DX136 mAb binding, as determined by microarray analysis, are depicted in blue and yellow 

respectively. Dark green circles represent mutants that severely impaired both OX108 and 

DX136 mAb binding. Mutants partially affecting DX136 binding (35-50%) are shown in pale 

yellow. Mutants that severely affect DX136 binding (35% binding or less) but have only a partial 

effect on OX108 binding (50%) are represented in pale green. Open circles depict mutants that 

did not affect the binding of CD200, OX108 or DX136 mAb. The CD200R model is based on a 

typical Ig V domain from the human junctional adhesion molecule-1 (JAM1) [34]. The beta 

sheets are labelled with the GFC face orientated in front and the BED face behind. 

 

Figure 5 – Binding of multimeric CD200 ligands to CD200R proteins.  

(A). Diagram of the reverse phase array depicting immobilized CD200R interacting with the 

multivalent bead ligand. (B). A representative microarray set showing binding of hCD200 beads 

to CD200R-CD4d3+4 proteins, but not control rat CD4. (C). Mean fluorescence intensity ± SEM 

of all four sets is shown versus receptor protein concentration arrayed. Serial two-fold dilutions 

of purified, soluble, recombinant human, mouse and rat CD200R-CD4d3+4 proteins, and of 

control rat CD4 were arrayed onto epoxy-coated microscope slides. Each receptor protein 

dilution series was arrayed in 3 rows of 4 spots, ranging in concentration from 40 µg ml-1 (first 

spot) to 0.08 µg ml-1 (spot 10), with control spotting buffer containing 0.5 mg ml-1 BSA in the 
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last two spots. Only the first 8 dilutions (2 rows) are shown in (B) and analyzed in (C). All arrays 

were performed in quadruplicate. All receptors were arrayed on the same slide, which was 

incubated for 16 h at 4oC with polyvalent human CD200-CD4d3+4 FITC-fluorescent beads. At 

the highest concentrations, the hCD200R spots appear white (saturating conditions). Quantitative 

measurements are expressed as fluorescence units at 532 nm (green) versus amount of protein 

arrayed.  
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Table 1.  hCD200R protein mutants tested   

Mutant proteins were constructed as described in [33], expressed by transient transfection in 

serum-free medium, concentrated and immobilized on epoxy-derivatized slides. The predicted 

positions of the residues are located in the modelled V-like N-terminal IgSF domain unless noted 

otherwise (C domain). * Mutants expressed with concentration below sensitivity threshold, for 

which no antibody binding data could be derived. 

# Mutant Name Predicted Position 

1 Wild-type  

2 D30K* N-term 

3 K40D*  A strand 

4 L42E* A strand 

5 E44K* A strand 

6 E44A A strand 

7 E44D* A strand 

8 M53K A-B loop 

9 N56D B strand 

10 P62F B strand 

11 I64S* B-C loop 

12 R67D B-C loop 

13 I71K C strand 

14 T73R C strand 

15 E75K C strand 

16 R79E C-C' loop 

17 Q81K C-C' 

18 S83D* C'' strand 

19 E97K C'' strand 

20 T106D* D strand 

21 D116K* D-E loop/ E strand 

22 A123D E strand 

23 Y129D F strand 

24 R131E F strand 

25 I133K F strand 

26 D138K* F-G loop 

27 R143D* F-G loop 

28 H146D G strand 

29 Q148E* G strand 

30 L150D* G strand 

31 T156N* A strand C domain 

32 N160D A-B loop C domain 

33 A175D* B-C loop C domain 

 



C

0.1 1 10 100

10

100

1000

10000

100000

DX147: hCD200R

DX147: mCD200R

DX147: rCD4

DX136: hCD200R

OX108: hCD200R

Protein Concentration (µµµµg/ml)

F
lu

o
re

s
c
e
n

c
e
 I
n

te
n

s
it

y
 (

5
3
2
 n

m
)

D

0.1 1 10 100

10

100

1000

10000

100000

hCD200R

mCD200R

rCD4

Protein concentration (µµµµg/ml)

F
lu

o
re

s
c
e
n

c
e
 I
n

te
n

s
it

y
 (

6
3
5
 n

m
)

B
DX147+OX68 DX136+OX68 OX108+OX68

hCD200R

mCD200R

rCD4

A

hCD200R-Alexa 555 mAbrCD4d3+4

OX68-Alexa 647 mAbCD200R ext.

Figure 1



C
Detection mAb: DX147

1 10 100

0

5000

10000

15000

20000

OX68

OX108

DX136

DX147

Capture mAb concentration (µµµµg/ml)

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y
 (

5
3

2
 n

m
)

Detection mAb: DX136

1 10 100

0

5000

10000

15000

20000
OX68

OX108

DX136

DX147

Capture mAb concentration (µµµµg/ml)

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y
 (

5
3

2
 n

m
)

Detection mAb: OX108

1 10 100

0

2500

5000

7500
OX68

OX108

DX136

DX147

Capture mAb concentration (µµµµg/ml)

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y
 (

5
3

2
 n

m
)

Detection mAb: OX68

1 10 100

0

1000

2000

3000
OX68

OX108

DX136

DX147

Capture mAb concentration (µµµµg/ml)

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y
 (

6
3

5
 n

m
)

OX68 OX108 DX136 DX147

OX68

OX108

DX136

DX147

Capture mAb

D
e
te

c
ti

o
n

 m
A

b

B

hCD200R ext

rCD4d3+4 DX136-Alexa 555

OX68 mAb

A

Figure 2



0

50

100

150

200

250

300

350

400

450

500

WT M53K P62F R67D I71K T73R E75K E97K Y129D R131E I133K

CD200R mutants

N
o

rm
a
li
s
e
d

 F
lu

o
re

s
c
e
n

c
e
 I
n

te
n

s
it

y
 R

a
ti

o
 (

%
)

DX147

DX136

OX108

Figure 3



A

M53K

R67D

I71K

T73R

E75K

E97K
R131E

Y129D

I133K

P62F 

B

C
C’ C’’D

F

G

E

B

A

M53K

R67D

I71K

T73R

E75K

E97K

D127R

R131E

Y129D

I133K

P62F 

E44K

D138K

B

C
C’ C’’D

E
F

G

A

Figure 4



hCD200R

mCD200R

rCD4

hCD200-beads

rCD200R

BA

rCD4d3+4

CD200R ext.

hCD200 ext.

FITC-bead

avidin

biotin

C

0.1 1 10 100

100

1000

10000

100000
hCD200R

mCD200R

rCD200R

rCD4

Protein Concentration (µµµµg/ml)

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y
 (

5
3

2
 n

m
)

Figure 5


	Header page
	Article
	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5


