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Abstract 

Background: The availability of interaction databases provides an opportunity for 

researchers to utilize immense amounts of data exclusively in silico. Recently there has 

been an emphasis on studying the global properties of biological interactions using 

network analysis. While this type of analysis offers a wide variety of global insights it has 

surprisingly not been used to examine more localized interactions based on mechanism. 

In as such we have particular interest in the role of key topological components in signal 

transduction cascades as they are vital regulators of healthy and diseased cell states.  

Results: We have used publicly available databases and a novel software tool termed 

Hubview to model the interactions of a subset of the yeast interactome, specifically 

protein kinases and their interaction partners. Analysis of the connectivity distribution has 

inferred a fat-tailed degree distribution with parameters consistent with those found in 

other biological networks.  In addition, Hubview identified a functional clustering of a 

large group of kinases, distributed between three separate groupings. The complexity and 

average degree for each of these clusters is indicative of a specialized function (cell cycle 

propagation, DNA repair and pheromone response) and relative age for each cluster.  

Conclusions: Using connectivity analysis on a functional subset of proteins we have 

evidence that reinforces the scale free topology as a model for protein network evolution. 

We have identified the hub components of the kinase network and observed a tendency 

for these kinases to cluster together on a functional basis. As such, these results suggest 

an inherent trend to preserve scale free characteristics at a domain based modular level 

within large evolvable networks. 
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1. Background 

The Barabási and Albert scale free network model is a mathematical precept that 

describes the innate connectivity and distribution within complex networks.  These scale 

free networks defy the traditional random graph model of Erdös and Renyi and display a 

connectivity distribution where the occurrence of highly interacting components of the 

network, defined as nodes decay as a power law, P(k) ~ k
-γ
. [1-3].   In turn, growth of a 

scale free network is characterized by a preferential attachment scheme in which new 

nodes attach to older more connected nodes with a higher probability [2, 4, 5].  This 

model facilitates a rich-get-richer schema and allows for the existence of a very important 

class of highly connected hubs [1, 6]. These hubs are largely responsible for the non-

Gaussian connectivity distribution of scale free networks and are commonly orders of 

magnitude more connected than the average node. The existence of the hubs also provide 

a robust environment that is tolerant of random attack and failure but is very sensitive to 

hub perturbation [3, 7-10]. 

 

This scale free topology has been demonstrated in a variety of man-made 

networks such as the World Wide Web and the actor collaboration network [1, 2].   Scale 

free principles have also been noted in biologic systems such as the yeast protein-protein 

interaction dataset and the metabolic protein network [3, 6]. Nevertheless, the suitability 

of the static scale free construct across diverse biologic systems has been challenged as a 

universal principle.  For example, the yeast protein interaction network has been 

described as a date and party hub scale free network, in which these hubs are defined by 

variable or consistent interactions, respectively [10].   More critically, mathematical 
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models of network growth have shown that preferential attachment may follow a random 

geometric topology rather than a scale free distribution [11].  Another study uses a 

learning algorithm to infer duplication-mutation-complementation as the central topology 

mechanism in the Drosophila melanogaster protein interaction network [12]. Indeed, it 

has been reported that the essential proteins within the larger yeast protein interaction 

network form an exponential connectivity distribution rather than a scale free distribution 

[13]. These observations raise intriguing possibilities, one of which suggests that broader 

scale free systems may evolve from a compilation of sub networks of different topology.   

Alternatively, this non-scale free structure may be an anomaly that originates from 

examining essential hubs versus non-essential hubs in the framework of an already 

established network. 

    

Within this context, phosphorylation dependent signal transduction pathways 

provide an interesting venue to examine network behavior.   In eukaryotic organisms, 

kinase directed phosphorylation is one of the most common forms of post-translational 

modification and as such this protein class is noted as a vital regulator of cellular function 

[14-16].  In addition, kinase families are well conserved across diverse phyla, suggesting 

that network organization may be similarly conserved.   However, phosphorylation 

pathways are commonly studied as linear events connecting stimulus to response through 

a simple ladder of molecular interactions, a concept that is based largely on experimental 

perturbation and observation of directly connected proteins.   
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As such, identification of the select kinase hubs and interaction profiling should 

offer an insight into the functional complexities of cellular signaling in yeast and higher 

eukaryotes. Here, we examined the subset of the S. cerevisiae interaction data, which 

include protein kinases and their direct protein interactions. In all cases, analysis was 

performed on filtered datasets available in public databases to identify likely hub kinases 

and their interactivity.  We confirmed scale free behaviour of this dataset using 

connectivity analysis and observed parameters as applied to a novel computer 

program/visualization tool we termed Hubview [17].   Interactions between the 19 most 

connected kinases, which we identified as super-hubs, were mapped along with less 

connected hub kinases. From this map we were able to discern three distinct clusters of 

kinase proteins, with each cluster retaining a common biologic function, i.e. cell cycle 

control, DNA repair/recombination and the pheromone/mating response.  Together these 

observations suggest that scale free topology of the yeast kinome co-evolved with the 

emergence of distinct biologic domains.   
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2. Results and Discussion 

 To study the topological properties of kinase mediated phosphorylation it was 

necessary to isolate the signaling component of the S. Cerevisiae proteome which we 

refer to as the Kinase–Partner Interaction set (KPI). The KPI node set was assembled 

from the concatenation of kinases from the database of interacting proteins (DIP) kinase 

search, the yeast kinases identified by Hunter and Plowman [18] and their non-kinase 

interaction partners. The interactions of the KPI nodes were considered bidirectional, as 

no directionality can be consistently inferred in most experimental conditions, and 

consisted of kinase-kinase and kinase-non-kinase interactions only (i.e. any potential 

interactions between non-kinases have been filtered). The core and complete KPI 

consisted of 607 nodes with 834 interactions and 1085 nodes and 1481 interactions 

respectively. Analysis using maximum likelihood estimation (MLE) of the degree 

distributions (Figure 1) resulted in derived γ values of γ = 2.32 in the core KPI and γ = 

2.38 in the complete KPI which is in the biologically robust range of 2 < γ < 3 [19]. The 

Kolmogorov-Smirnov test for Power Law Distribution [20] of both MLEs (Core: N = 

500, K = 0.021; Complete: N = 1000, K = 0.015) support the hypothesis that the KPI 

networks are indeed both power-law distributions and hence scale free in topology.  The 

γ-values found for the KPIs are very consistent with reports from complete protein 

interaction data analysis and the deterministic scale free model [21, 22] which confirms 

that the selection criteria for the KPI is not biased to any connectivity class. A study of 

metabolic networks has shown that the largest most connected part of a network (in the 

case of metabolic networks the largest component is less than 33% the size of the full 

network) tends to dominate the parameters found through topological analysis [23]. Here 



 7

the degree distribution is challenged as a global property and treated as a local property 

of the network. It is worth noting that while the KPI does contain a limited number of 

segregated modules, the size of the largest component accounts for roughly 95% of the 

network and the degree distribution does represent a global property of the network. 

 

 The KPI interaction data was analyzed by our visualization tool, Hubview. The 

hub-star-satellite view separates nodes with degrees higher than a user defined cut-off 

and their substrates of unary degree, groups the rest of the nodes within a sphere, and 

places the hub-stars around the sphere as satellites. The core and complete KPI were 

viewed with a cut-off of 10 and 15 respectively (Figure 2) and in both cases resulted in 

28 satellites responsible for about 69% and 71% of the interactions respectively. The 

average node degree for both the core and complete KPI was found to be <k> ≈ 1.3.  

 

 The putative hubs identified by Hubview were compiled into a list of 33 distinct 

nodes and ranked by average degree where the degree found in the core KPI was given 

twice the weight (Table 1). Defining the actual cut-off degree for a hub is a subjective 

task, here we defined 13 (10*<k>) as the cut-off for high confidence in super-hub status. 

This cut-off retains 19 proteins as high confidence hubs that still maintain ~ 64% of KPI 

interactions which suggests that less understood signaling systems in higher eukaryotes 

may be studied with higher efficiency by identifying likely hub kinases (using expression 

and activity profiling) and mapping the complete set of their immediate interaction 

partners. 

 



 8

 The 124 members of the protein kinase superfamily list [18] were cross 

referenced with the list of essential yeast proteins [24] to identify the yeast kinases with 

known knockout lethal phenotypes. Of the 124 kinases only 16 were deemed to be lethal 

deleterious mutants yielding a 13% chance of lethality in an instance of random single 

kinase deletion. In contrast, 6 of the 19 hubs named as high confidence in table 1 are 

listed as essential resulting in a 32% chance of lethality attributed to random deletion of 

one of the 19 high confidence hubs. This marked increase in lethality associated with 

directed hub attack is consistent with existing studies of scale free networks [3] and 

indicates a likely tendency for hub kinases to be preserved in an evolutionary perspective.  

 

 24 of the 33 hubs listed in table 1 were found to interact with one another. The 

interplay between these 24 connected hubs forms a kinase signaling backbone (figure 3 

a.) through which 3 distinct groups of interacting hubs (forthwith these interacting hubs 

are referred to as hub clusters) can be identified. Presumably, the hub clusters would 

provide vital functions as whole as in most cases the constituent hubs are not directly 

essential themselves. The structure of this backbone may offer some insight in identifying 

synthetic lethality strategies, i.e. CKA1 and CKA2 knockouts are both viable but double 

deletion mutant has a lethal phenotype [25]. Backbone hubs have been ordered by degree 

to illustrate a possible correlation between degree and phylogenetic age where, by direct 

consequence of the growth and preferential attachment conditions in scale free systems, 

more connected hubs are likely to be older than less connected hubs [26]. A cross 

genome study of four organisms from different regions of the phylogenetic tree has been 

used to identify connectivity and emergence time of yeast proteins [5]. The results of this 
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study support the preferential attachment and growth criteria as outlined by the scale free 

theory. Older proteins appear to be more connected than younger proteins. Another 

explanation of the degree arrangement is that the average size or degree of a cluster is 

associated with the evolutionary age of the clusters functional class [27]. This perspective 

is based on a similar study using a more rigorous phylogenetic profiling technique. The 

results suggest a modified form of scale free preferential attachment whereby proteins 

bind preferentially within their own functional class and not globally or promiscuously. 

By this model a younger protein may be more connected than an older one simply 

because it is part of an older and more connected functional grouping which emerged 

during an earlier phylogenetic period. Here the average connectivity of the functional 

group is proportional to the age of that group i.e. older eukaryotic proteins are shown to 

be more connected than yeast specific proteins. This perspective is very plausible as it 

suggests that proteins of similar function will interact within the same pool.  

 

In response to the latter interpretation we examined the basic purpose of the 

individual hubs and observed a common functional theme concomitant with each cluster. 

The largest cluster, containing cdc28, is functionally associated with cell cycle 

propagation through the various phases. The second cluster, with CKA1 as a peak, is 

generally associated with kinase proteins that manipulate response to DNA damage and 

the final KSS/MAPK cluster is involved with the regulation of the pheromone response. 

These results seem to offer a reasonable order to the emergence of specialized functions 

central to all eukaryotes i.e., the cell division cycle predates the DNA verification 
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mechanisms, which in turn predates the youngest reproductive module, the mating 

response. 

 

The entire core and complete kinomes were clustered using the probabilistic 

method described by Samanta and Liang [28]. This method identifies functional 

relationships between proteins through redundancy of interaction partners. A number of 

the associations in the backbone clusters were confirmed using this algorithm (figure 3 

b.). Interestingly the proteins in the cell cycle propagation cluster did not appear as 

functionally redundant in the clustering. Presumably the three clusters converge 

downstream to some extent but at the hub level this indicates that these components offer 

highly specialized non redundant services to the cell cycle cluster likely due to the 

ancient nature of their function. This method can also be used to identify likely synthetic 

lethality as many viable knockouts are rescued through redundant interactions. The full 

results of the clustering is available as supporting information (see additional file 1) or 

can be generated using Hubview. 

 

In addition to the scale free topology, modeling of the yeast kinome using the 

Hubview cascade crawler function revealed other notable characteristics.  Specifically, 

individual clusters containing hub kinases also include kinases that interact both inside 

and outside the scope of the immediate functional cluster. This characteristic was 

generally not observed with non-hub clusters.   For example, the cluster of kinases 

involved in the MAPK cascade (a functional cluster with hub kinases) retain interactions 

with a number of non-MAPK kinases i.e. single points that interact both within and 
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outside of the MAPK class. This is a feature we refer to as an open loop signal (Figure 4). 

Identifying open points within a cluster provides the user with probable targets for 

regulation of that functional cluster or even likely paths for signaling crosstalk.  Open 

loop kinase cascades appear to reflect robust cellular responses that require multiple 

alterations and as such would require direct communication and signal propagation 

between numerous key regulatory factors/kinases themselves.  However, non hub kinase 

clusters such as the TOR kinase cascade do not retain direct interactions between 

unclustered kinases and as such conform to a closed loop structure (Figure 4).     Closed 

loop structures are likely to be kinase directed cascades that perform a very discrete 

cellular function in response to a limited or very specific initiating event. 

 

The network of essential yeast proteins has been compiled and identified as an 

exponential distribution [13]. This distribution is normally associated with more 

stochastic evolutionary mechanisms. It has been argued that this network may represent 

an ancestral core about which the rest of the yeast interactome has formed [13]. The 

existence of an exponential core does not directly contradict the scale free topology 

observed in the protein interaction network but may simply exist as a scaffold for scale 

free mechanisms to adhere to. This possibility is interesting as it may also suggest that 

different parts of the interactome may have evolved by different evolutionary pressures 

causing unequal distribution of topological properties within the same interactome.    

 

A recent investigation concerning the effects of sampling on topology adds a 

small shard of doubt to studies of protein network topology. In this study the effects of 
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various large scale experiments were simulated by first generating different networks of 

known topology and then sampling interactions in a scale mimicking yeast two hybrid 

and co-affinity purification [29]. They found that under some conditions that non-scale 

free topologies (i.e. Erdös and Renyi network with <K> = 10), when sampled, can 

generate sub-networks with scale free properties. Here the kinome benefits from the fact 

that it is a widely studied mechanistic class and many of the interactions, especially in the 

core kinome, have been identified in smaller scale experiments and not exclusively large 

scale experiments. This suggests that the much smaller kinome network may not suffer as 

much as networks derived solely from large scale experiments. The results of this study 

certainly insist on the caveat that the results of our KPI network cannot be extrapolated to 

the complete yeast protein interaction network with any amount of confidence.   

 

3. Conclusions 

Our analysis suggests that the yeast kinome is an evolved scale free system.  

Moreover, these observations suggest the intriguing possibility that the scale free 

topology of the global protein-protein interaction network or any larger biologic network 

may be the composite of smaller evolving topologies (such as the kinome), all of which 

are subject to their own selective pressures. 
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4. Methods: 

Interaction Database: 

 Both the core and complete yeast interaction data of the manually curated DIP 

[30] were used as interaction data sets. The complete dataset consists largely of high 

throughput interaction data [19, 31-33]. The core DIP dataset consists of interactions 

found in small scale experiments, two or more independent larger scale experiments and, 

when paralogous interaction data exist, the Paralogous Verification Method PVM [31, 

32]. The core dataset is believed to correctly identify the core of interacting proteins in 

yeast and provides a minimal interaction view of the yeast interactome. For our purposes 

the complete yeast interaction set is viewed as a hypothetical maximal interaction set. 

The many false positives, negatives and unlikely biologic interactions [19] available in 

the complete dataset are still valuable as they may be representative of interactions in a 

diseased state based on possible spatial and temporal protein delocalization. The DIP is 

available online at www.dip.doe-mbi.ucla.edu. 

 

Interaction Filter:  

Both datasets were filtered to include only kinases and direct interaction partners 

with kinases as found in the DIP node search in conjunction with kinases listed in the 

protein kinase superfamily found by Hunter and Plowman [18]. The resulting Kinase-

Partner Interaction dataset (KPI) consisted of 607 nodes with 834 interactions in the case 

of the core dataset and 1085 nodes with 1481 interactions in the case of the complete 

dataset.  
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Hubview Description:  

We developed a program called Hubview to help us analyze the KPI network and 

visualize the hubs and hub interactions found in the datasets. The degree distribution of 

the loaded network can be obtained by pressing the probability distribution button. The 

main program and OpenGL network interface utilize an undirected binary adjacency 

matrix which is then interpreted in real-time 3D. Yeast specific information such as the 

naming convention (DIP number, ORF and common name) and protein type (kinase or 

non-kinase) is hard coded into Hubview minimizing the amount of data required to 

generate an interaction network. The 3D representation is geared towards identifying 

nodes with degrees higher than a user-defined cut-off and displaying them in either a 

hub-star-satellite view whereby hub degree and inter-hub interactions are plainly visible 

or a Fruchterman-Rheingold (FR) force-directed placement arrangement [34] which 

offers a less tangled, more visually appealing interpretation. 

 

Briefly, the FR algorithm causes the system to untangle itself through iterative 

simulation of mechanical and electrostatic forces. A connection between a pair of nodes 

is treated as though a spring were connecting those nodes creating attractive forces 

between all connected pairs. Repulsive electrostatic forces are also generated by 

considering each node as a negative point charge. The nodes in the analogous system 

move in 3 dimensional space according to the attractive and repulsive forces. The final 

arrangement is displayed once the system has evolved through a set number of iterations 

resulting in an intelligible and appealing graph.  
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 The hub-star-satellite view is generated by placing all nodes randomly within a 

sphere of radius ri. All nodes with connectivity higher than the user defined cutoff are 

identified as hubs and projected outside of the sphere to a radial position, rf , outside the 

confines of the initial sphere (rf > ri). Any substrates of the new hub with unary degree 

are also moved to positions spherically centered near the newly placed hub generating a 

hub-star-satellite. The algorithm ends once all hubs are processed similarly. The 

advantage of this view type is that it allows interactions between hubs to be quickly and 

easily identified as all visually interfering substrates remain pooled within the initial 

sphere.  

 

Another useful visualization method included in Hubview is the cascade crawler 

function. This view type is geared towards depiction of smaller cascades (the immediate 

and remote neighbors of a chosen protein) within the complete network. The cascade 

crawler function is controlled by a point and click interface whereby the user can define a 

specific protein(s) as a starting point and display all of its substrates by clicking on it. 

Clicking subsequent nodes will display their interaction partners in turn. Using this 

function along with the FR algorithm one can develop appealing visual interpretations of 

specific cascades and interactions (figure 4). 

 

Hubview also utilizes the clustering method proposed by Samanta & Liang [28]. 

The main suggestion of this algorithm is that if two proteins in a network share a 

significantly larger number of common interaction partners than what is expected from a 

similar random network then the pair of proteins likely share a close functional 
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relationship. This process assigns a P value between every pair of proteins in the network 

representing the probability that an association between proteins is random i.e. a higher P 

score means that the pair is not functionally associated. The algorithm then merges the 

pair sharing the lowest P value into a cluster and recalculates P values for all possible 

pairs again treating the newly formed cluster as though it were a single protein. This 

process repeats until all P values are higher than a user defined cutoff. Once a network is 

loaded one can access this method by clicking the cluster button. Here a cutoff value can 

be defined which represents the probability that a particular association is random and a 

dendrogram is produced (which can be saved as a .BMP file), Samanta & Liang reported 

successful clustering of a large portion of the yeast interactome (N = 4692) using a cutoff 

value of up to 2 × 10
-4

 [28] indicating that this cutoff can be considered sharp and 

biologically relevant in our much smaller KPI networks (Ncore = 607 and Ncomplete = 1085). 

 

Topology Analysis: 

To counter the distortion associated with log-log data transformation the γ-value 

associated with the degree distribution of the KPI was analyzed using maximum 

likelihood estimation of the zeta function (MLE) and goodness of fit confirmed by the 

Kolmogorov-Smirnov test for power law distributions [20]. Briefly, the γ parameter 

associated with the pure power law,  

)(
)(

γζ

γ−

=
k

kP                                                          [1] 

is best approximated by the solution of:  
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- ki is the i
th

 non-zero observed degree of the P(k) vs. k distribution. 

-  γ is the power law exponent [20] 

 

Protein essentiality:  

Phenotypic profiles of gene-deletion mutants (nearly 96% of known ORFs ) have 

been systematically constructed and analyzed by a PCR-based gene deletion strategy 

[35]. A list of essential ORFs has been generated [24] and can be used to predict a lethal 

protein knockout or disruption phenotype. 
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Figures: 

Figure 1: Degree distributions giving the probability that a given protein will interact 

with exactly k other proteins for:  a. the core KPI with γ core = 2.32 b. the complete KPI 

with γ complete= 2.37. In both cases γ determined by maximum likeliness estimation (MLE) 

and goodness of fit determined by Kolomogorov-Smirnov (KS) test. The self 

organization of scale free topology is normally associated with much larger datasets yet 

we still find the scale free characteristics. 

 

Figure 2: a. Hubview Fruchterman-Rheingold visualization of Core KPI (607 nodes, 834 

interactions) b. Hub-Star-Satellite output of Hubview of complete KPI (1085 nodes with 

1481 interactions) with hub degree cut-off of 15 yields 28 hubs.  

 

Figure 3: a. Interplay between 24 of the hubs identified by HubView constituting the 

signaling backbone. Red hubs are deemed as lethal knockout phenotypes as described in 

the systematic deletion project [35]. The nodes are separated by degree along the ordinate 

to illustrate a possible relationship between the degree of a hub and its phylogenetic age 

while the arrangement along the abscissa is purely aesthetic. The proposed function of the 

3 clusters from left to right are: DNA damage/repair, cell cycle propagation and 

pheromone response. b. The dendrogram to the right confirms functional interactions for 

a number of the backbone hubs using redundancy clustering of the entire KPI as 

described by Samanta & Liang [28]. Only clusters containing a hub kinase are depicted in 

the dendrogram. 
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Figure 4: Cascade crawler output of Hubview. Gray spheres represent non-kinases while 

all other colored spheres represent kinases of varying degree. a) Depiction of closed loop 

TOR signaling: neither TOR protein is directly connected to another kinase indicating 

highly specified reaction. b) Depiction of open loop MAPK signaling: white spheres 

denote non-MAPK kinases that interact within and outside of the MAPK clusters 

representing possible regulatory and cross-talk channels associated with more 

complicated cellular behaviour. 
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Tables: 

 

Table 1: Summary of hub kinases as identified by Hubview: Weighted mean calculated 

by giving double weight to degrees listed in the core KPI dataset. Hubs with knockout 

lethal phenotype listed as identified by Giaver et al [35]. 
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Table 1: Hub kinases identified by HubView 

Name DIP Node Number Knockout 

Lethal 

Weighted 

Degree 

Confidence as a 

super-hub 

CDC28 DIP:1039N yes 150 ± 40 High 

CKA1 DIP:48N no 50 ± 10 High 

HRR25 DIP:157N yes 40 ± 10 High 

SLT2 DIP:1448N no 37 ± 5 High 

YCK1 DIP:719N no 34 ± 7 High 

KSS1 DIP:60N no 33 ± 5 High 

SNF1 DIP:18N no 24 ± 1 High 

PHO85 DIP:1493N no 22 ± 2 High 

RAD53 DIP:2322N yes 22 ± 2 High 

CKB2 DIP:262N no 19 ± 5 High 

CDC7 DIP:1235N yes 19 ± 6 High 

RIM11 DIP:1566N no 19 ± 3 High 

SSN3 DIP:2574N no 17  High 

DBF2 DIP:2319N no 17 ± 2 High 

DUN1 DIP:1772N no 16 ± 6 Uncertain 

MKK2 DIP:1447N no 16 ± 2 High 

CDC5 DIP:2321N yes 14 ± 1 High 

STE11 DIP:861N no 14 ± 1 High 

PKC1 DIP:1516N yes 14 ± 1 High 

TPK3 DIP:550N no 14 ± 1 High 

CKA2 DIP:1038N no 13 ± 5 Uncertain 

SPS1 DIP:6598N no 13 ± 2 Uncertain 

CLA4 DIP:2276N no 13  Uncertain 

YAK1 DIP:1374N no 12 ± 4 Uncertain 

STE20 DIP:712N no 12 ± 1 Uncertain 

FUS3 DIP:714N no 12 ± 1 Uncertain 

CHK1 DIP:1253N no 12 ± 2 Uncertain 

KIN2 DIP:6276N no 12 ± 2 Uncertain 

BUD32 DIP:5008N no 11 ± 9 Uncertain 

SWE1 DIP:2410N no 11  Low 

CKB1 DIP:282N no 11 ± 7 Uncertain 

GIN4 DIP:2260N no 11 ± 1 Low 

BCY1 DIP:551N no 10 ± 3 Low 
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Additional files: 

The software Hubview has been successfully tested and used on a number of recent 

generation PCs with the Windows XP operating system. Suggested systems should have 

more than 256 Megs of ram and an OpenGL compliant video card with onboard ram. The 

software requires the windows operating system.  

Installation: Simply unzip all files into the same folder.   

Supplementary Material.doc: Microsoft Word Document, Complete results of 

redundancy clustering 

Hubview.zip: Winzip archive, Reviewer copy of Hubview program used to develop data 

for this manuscript. 
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Additional files provided with this submission: 

Additional file 2 : Hubview.zip : 705Kb 
http://www.biomedcentral.com/imedia/7024721777054572/sup2.ZIP 

Additional file 1 : Supplementary Material.doc : 33Kb 
http://www.biomedcentral.com/imedia/1935763457054313/sup1.DOC 
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