
Whole-genome annotation by using evidence
integration in functional-linkage networks
Ulas Karaoz*†, T. M. Murali*†‡, Stan Letovsky*, Yu Zheng*, Chunming Ding*§, Charles R. Cantor*§¶�,
and Simon Kasif*¶**

*Bioinformatics Program, ¶Department of Biomedical Engineering, and §Center for Advanced Biotechnology, Boston University, 48 Cummington Street,
Boston, MA 02215; and �Sequenom, Inc., 3595 John Hopkins Court, San Diego, CA 92121

Contributed by Charles R. Cantor, December 29, 2003

The advent of high-throughput biology has catalyzed a remarkable
improvement in our ability to identify new genes. A large fraction
of newly discovered genes have an unknown functional role,
particularly when they are specific to a particular lineage or
organism. These genes, currently labeled ‘‘hypothetical,’’ might
support important biological cell functions and could potentially
serve as targets for medical, diagnostic, or pharmacogenomic
studies. An important challenge to the scientific community is to
associate these newly predicted genes with a biological function
that can be validated by experimental screens. In the absence of
sequence or structural homology to known genes, we must rely on
advanced biotechnological methods, such as DNA chips and pro-
tein–protein interaction screens as well as computational tech-
niques to assign putative functions to these genes. In this article,
we propose an effective methodology for combining biological
evidence obtained in several high-throughput experimental
screens and integrating this evidence in a way that provides
consistent functional assignments to hypothetical genes. We use
the visualization method of propagation diagrams to illustrate the
flow of functional evidence that supports the functional assign-
ments produced by the algorithm. Our results contain a number of
predictions and furnish strong evidence that integration of func-
tional information is indeed a promising direction for improving
the accuracy and robustness of functional genomics.

Recent advances in genomic sequencing have generated an
astounding number of new genes whose biological functions

remain a mystery. Although sequence homology (1) provides
clues that suggest a functional assignment for many newly
sequenced genes, �35% of genes in prokaryotic organisms are
annotated as ‘‘function unknown.’’ In eukaryotes, functional
annotation is an even more daunting challenge, especially as we
expand sequencing beyond model organisms and their close
relatives. For example, �60% of the genes in Plasmodium
falciparum are ‘‘hypothetical’’ proteins (2).

Several research groups (3, 4) have popularized the framework
of a ‘‘functional-linkage graph’’ as a promising step toward
obtaining a detailed understanding of the functional relation-
ships between proteins. In a typical functional-linkage graph,
each node corresponds to a protein, and an edge connects two
proteins if some experimental or computational procedure
suggests that these proteins might share the same function. For
instance, two proteins might be linked if they test positive in a
yeast two-hybrid screen (5) or if their gene-expression patterns
are correlated in several experimental conditions. Such a link
usually does not provide information on which specific func-
tional annotation the proteins share.

Many authors have explored the idea of ‘‘integrative func-
tional genomics,’’ which combines information from multiple
sources to facilitate functional annotation of newly discovered
genes. In the context of functional-linkage graphs, the working
hypothesis underlying integrative functional genomics is that if
we can establish a putative functional linkage between two
proteins in two different and independently conducted experi-
ments, then the probability of genuine functional linkage be-

tween these proteins increases. Indeed, this article and prior
work provide a confirmation of this intuitive hypothesis (4, 6).

For instance, Marcotte et al. (4) describe a purely local
integration of functional links. This simple ‘‘conjunctive inte-
gration’’ method generates a new functional-linkage graph by
including exactly the edges that can be confirmed in each source
graph. This conservative approach is likely to generate a high
false-negative rate. An alternative ‘‘disjunctive integration’’ ap-
proach inserts an edge in the integrated graph if it is supported
by an edge in any source graph. This overly permissive approach
tends to increase the false-positive rate. A compromise can be
achieved by regarding each source of evidence as an expert and
by combining these experts by using probabilistic evidence-
integration schemes that take into account (6, 7) the correlations
between the predictions of different experts.

Integrated databases, such as BIND (9), PREDICTOME (10), and
STRING (11), have assembled a large collection of putative
functional links between proteins by including information pro-
vided by diverse computational and experimental screens. Al-
though these functional-linkage databases are a valuable source
of information, they do not provide a comprehensive mechanism
for making accurate functional predictions by fully exploiting the
evidence encoded in the graph. Many edges in these databases
are based on large-scale experimental screens, such as the yeast
two-hybrid method (12, 13) and mass spectrometry-based tech-
niques (14, 15), for determining protein–protein interactions
(PPI). However, these experimental screens have inherently high
false-positive rates and significant false-negative rates (16). It is
tempting to use functional links to transfer a functional anno-
tation from a labeled to a newly discovered protein. However,
transferring a functional annotation from an annotated protein
to its hypothetical neighbor across every link in a graph is likely
to result in a very high error rate.

To increase the robustness of transferring annotation to
neighboring nodes in a functional-linkage graph, researchers
have proposed a simple local-threshold rule (17, 18) for func-
tional assignment (often referred to as ‘‘guilt by association’’).
This rule is based on the hypothesis that if some fraction of the
neighbors of a given protein p are annotated with function f, this
functional annotation can be transferred to p. Fig. 1 illustrates
this idea. The gray nodes in Fig. 1 represent hypothetical
proteins. Red nodes correspond to proteins annotated with the
function ‘‘ribosome biogenesis,’’ whereas the blue nodes corre-
spond to proteins with a different functional role. In Fig. 1, we
can use the guilt-by-association rule to label node YMR049C
with the function ‘‘ribosome biogenesis’’ because 6 of its 11
neighbors have that function. Although this threshold rule is easy
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to apply, it has fundamental limitations. For instance, node
YER006W has two blue neighbors and two red neighbors. What
should its functional assignment be? This issue is just one of
many subtle problems that arise in automated annotation when
functional-linkage graphs are used. In many currently available
functional-linkage graphs based on PPI screens, a large fraction
of proteins do not have any annotated neighbors. Some research-
ers have suggested generalizing the neighborhood rule to include
nodes at a distance that is greater than one link (19). However,
it is not clear what the appropriate distance is and whether
neighborhoods of different sizes should be selected for different
nodes or for different functions. A more fundamental question
is whether functional assignments that are based on local infor-
mation should be trusted, given the high degree of noise in PPI
data. Zhou et al. (8) describe a nonlocal approach that propa-
gates of functional labels to nonneighboring nodes. Their
method determines function based on the shortest path in the
functional-linkage graph defined by correlation between gene-
expression profiles. Their work provides additional motivation
for obtaining functional evidence from nonneighboring nodes in
functional-linkage graphs. It would be advantageous to develop
a method that provides the capability to propagate evidence
systematically across the entire graph by taking into account the
global constraints and structure of the graph and to integrate
diverse sources of information, such as microarray data and
interactions reported in the literature.

The main contribution of this article is a framework for
achieving both objectives: the integration and propagation of
evidence. We apply this framework to propagate evidence in
functional-linkage graphs formed by integrating information
from PPI and gene-expression data. Our method can be under-
stood as repeated application of the local-threshold rule until the
network reaches a state that is ideally maximally consistent with
the integrated evidence.

In addition to providing an effective methodology for evi-
dence integration and propagation in functional-linkage net-
works, we also propose a method for visualizing the flow of
information in the functional-linkage graph. We present a
visualization paradigm called a ‘‘propagation diagram’’ that

allows us to track the sequence of interactions by which a
particular protein receives an annotation. We believe these
diagrams may provide useful insights to biologists who are
interested in assessing the reasoning behind the putative func-
tional predictions produced by the algorithm.

We have applied our method to a collection of PPI data and
gene-expression data for S. cerevisiae and produced new func-
tional predictions for �200 proteins of unknown function.
Functional categories were based on Gene Ontology (GO). We
restricted our predictions to GO functions that we have cross-
validated as having at least 75% precision and recall on average
(see Performance Evaluation for definitions). These predictions
span functions from all three GO hierarchies and include
functions related to DNA repair, cell cycle, rRNA processing,
and RNA transport. We perform leave-one-out cross-validation
and demonstrate that integrating gene expression and PPI yields
both improved precision and recall. Finally, we provide a list of
hypothetical genes whose predicted annotation appears to be
consistent with other evidence (e.g., with information in pub-
lished literature) but have been difficult to annotate unambig-
uously by using the simple local neighborhood rule.

Methods
We map the functional-linkage graph into a variant of a discrete-
state Hopfield network. Hopfield networks are a class of neural
architectures, inspired originally by statistical physics and used
subsequently in computational neuroscience (20). There is a
one-to-one correspondence between the nodes and edges of the
functional-linkage graph and the network we use.

In this study, we constructed a distinct network for each
function in GO. Each node in the network can be in one of three
discrete states. Given a particular GO function f, the state of a
node is �1 if the protein is annotated with f and �1 if the protein
is annotated with a different function (in the same GO hierar-
chy). The state of annotated nodes does not change during the
execution of the algorithm. We set the initial state of all
hypothetical proteins at 0, corresponding to an uncertain state.
(An alternate and more typical approach sets the initial state of
a hypothetical protein randomly to �1 or �1. Our approach

Fig. 1. A subgraph of the functional-linkage graph in S. cerevisiae showing proteins annotated with the function ‘‘ribosome biogenesis’’ (GO:0007046). To
improve readability, we display only interactions in which hypothetical proteins are involved.
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avoids creating a bias in the initial state of a hypothetical
protein.) Each edge in the network has a real-valued weight. The
weighted edge between two nodes represents a noisy putative
functional relationship between the corresponding proteins. The
larger the weight, the more evidence we have that the two
proteins share the same function. If there is no evidence that two
proteins share the same function, we set the weight of the edge
connecting them at 0. Our approach readily supports negative
edge weights, although we do not use them in this article.

The goal of our procedure is to assign a state of �1 or �1 to
the nodes whose initial state is equal to 0. We assign the putative
functional annotation f to all hypothetical proteins to which the
procedure assigns a state of �1. Intuitively, we would like to
assign states to these nodes in such a way that the two nodes
connected by an edge receive the same functional assignment; we
say that such an edge is ‘‘consistent.’’ Because it is not always
possible to ensure that every edge is consistent, it is desirable to
compute a maximally consistent state assignment (one in which
the weighted sum of consistent edges is as large as possible). This
approach formalizes and generalizes the simpler local neighbor-
hood rule used in prior studies. We can achieve such a maximally
consistent assignment by minimizing the following ‘‘energy’’
function:

E � �
1
2�

i�1

n �
j�1, j�i

n

wijsisj,

where n is the number of nodes in the network; wij is the weight
of the edge connecting proteins i and j; and si is the state assigned
to protein i. In this equation, a consistent edge makes a positive
contribution to E, and an inconsistent edge makes a negative
contribution to E. Therefore, minimizing E maximizes the
weighted sum of consistent edges. In the case where all of the
edges have unit weight, we maximize the number of consistent
edges. The problem of computing maximally consistent assign-
ments is computationally intractable by reduction from comput-
ing maximal cuts in graphs (21).

Given the computational intractability of identifying maxi-
mally consistent assignments, we must rely on heuristics. We
employ a local search procedure, which is an instance of iterative
gradient descent. Our algorithm applies the following activation
rule, which defines the dynamic behavior of the network, iter-
atively to each node of the network until convergence (i.e., when
further application of this rule does not change the state of any
node).

si � sgn� �
1�j�ni

wijsj � ��
Here, ni is the number of neighbors of protein i and � is an
‘‘activation threshold’’. The right side of this equation computes
the weighted sum of the states of the neighbors of node i and
compares this sum with �: if the sum is ��, then the state of node
i is set to �1, otherwise it is set to �1. This rule is a variant of
the local guilt-by-association rule used in earlier studies. Itera-
tive application of this rule achieves a more globally consistent
functional annotation to all of the proteins in the network than
a single application of this rule.

Our algorithm applies the rule serially to each node in the
network. A single iteration of the algorithm updates (if neces-
sary) all of the nodes in the network. The algorithm repeats these
iterations until convergence. It can be shown easily that the
update rule changes the value of the energy function monoton-
ically and is, therefore, guaranteed to reach a local minimum (21,
22). Moreover, this solution is guaranteed to be a half-
approximation to the best solution (21). For networks with unit

cost edge weights, the maximum number of updates is bounded
by 2n2. When the edge weights are real-valued, in the worst case,
the network might need an exponential number of applications
of the local update rule to reach convergence. In practice, we
have noted that our networks converge within two or three
iterations over all of the nodes.

As an illustration of the algorithm, consider the network
shown in Fig. 1. We set the activation threshold to 0. Initially,
ORF YER006W has an ambiguous vote from its neighbors (two
in state �1, two in state �1, and one in state 0). When the
algorithm first processes ORF YMR049C, it uses the update rule
to assign a state of �1 to YMR049C (because YMR049C has six
neighbors in state �1 and at most five neighbors in state �1).
This change modifies the neighborhood of YER006W. The next
time the algorithm processes YER006W, it can assign a state of
�1 to YER006W. We see a similar effect for ORF YMR290C.

In this article, we compare two types of schemes for assigning
edge weights. The first variant attempts to capture only quali-
tative functional links between proteins. In our case, these are
PPI links. Therefore, we assign a weight of 1 to each edge of the
network. In the second scheme, we integrate gene-expression
measurements from a set of 300 yeast knockout experiments
performed by Hughes et al. (23). The weight of an edge in the
integrated network is the absolute value of the correlation
coefficient of the gene-expression profiles of the pair of inter-
acting proteins. Weighting edges in this manner improves the
probability that the network will assign consistent functions to
pairs of proteins for which both the PPI and the gene-expression
data sets contain evidence of shared function; in the rest of this
article, we refer to these variants as the ‘‘PPI-only’’ and ‘‘inte-
grated’’ networks, respectively.

We use leave-one-out cross-validation to evaluate our meth-
odology. For each function f and for each protein annotated with
this function, we change the initial state of the protein to 0 and
apply the procedure to check whether the network assigns a final
state of �1 to that protein. To measure the false-positive rate,
we perform a similar operation for an equal number of proteins
with the initial state �1. We iterate this procedure over all
functions. If TP is the total number of proteins for which we
correctly predict a final state of �1, FP is the total number of
proteins for which we incorrectly predict a final state of �1, and
FN is the total number of proteins for which we incorrectly
predict a final state of �1 (we compute these numbers by
summing over all of the functions), then the ‘‘precision’’ of our
procedure is TP�(TP � FP), and the ‘‘recall,’’ or sensitivity, of
our approach is TP�(TP � FN). Note that we do not report the
specificity of the procedure. The majority of functions induce a
network with a large number of proteins in initial state �1. Thus,
even a trivial algorithm that assigns all proteins to state �1 will
achieve high specificity. To compare different versions of our
algorithm, we use the ‘‘F-measure,’’ which is the harmonic mean
of the precision and the recall; the harmonic mean of two
numbers x and y is 2xy�(x� y). This measure is commonly used
in information retrieval (24). Typically, improving the precision
of an algorithm decreases its recall and vice versa. The F-
measure aims to combine both criteria, so that a higher F-
measure corresponds to a better performance of the algorithm.

Software Availability. The software implementing our technique
is available at http:��genomics10.bu.edu�gain and http:��
bioinformatics.cs.vt.edu�gain.

Results and Discussion
In this study, we used a PPI network derived from the interac-
tions in the S. cerevisiae GRID data set. We used only those
interactions that were confirmed by at least two publications.
The resulting network contains 997 distinct interactions among
1,004 proteins. We used GO for functional annotations. The
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hierarchical structure of GO enabled us to modify the functional
annotations as follows: if a protein p was annotated with a
function f, then we annotated p with every function f� that was
an ancestor of f in GO. This process resulted in a total of 1,395
functions annotating the 1,004 proteins.

We found the following interesting results. (i) Leave-one-out
cross-validation demonstrates that the integrated network cre-
ated from the PPI graph augmented with gene-expression
correlations has superior predictive ability in comparison with
the PPI-only network. (ii) A detailed examination of the im-
proved predictions provides numerous examples of proteins that
are annotated correctly (in cross-validation trials) only in the
integrated network. (iii) Many of the putative functional anno-
tations made by our technique have support in the literature. (iv)
By deploying the methodology of propagation diagrams intro-
duced in this article, we demonstrate that our technique is indeed
capable of annotating hypothetical proteins whose only neigh-
bors are hypothetical proteins. These proteins cannot be anno-
tated by the purely local guilt-by-association rules. All results in
this section use an activation threshold of 0.

Results of Cross-Validation. The PPI-only network achieves 93.6%
precision and 63.7% recall over the 828 GO functions that have
an F-measure �0. The functions with the highest F-measure
include those related to DNA-dependent transcription and
regulation of transcription from the biological-process hierarchy.
To compare the two versions of our algorithm, we restricted our
attention to the 440 functions for which our method makes at
least one prediction for a hypothetical protein. For many of these
440 functions, we observe that the F-measure of the integrated
network is significantly higher than the F-measure of the PPI-
only network. More specifically, the F-measure for 168 functions
increased in the integrated network. The F-measure did not
change for 227 functions and decreased only for 45 functions.
Fig. 3, which is published as supporting information on the PNAS
web site, demonstrates this improvement visually by showing a
plot the F-measures of these functions for the PPI-only and
integrated networks.

The functions with the highest improved F-measure include
‘‘cytoskeleton regulatory protein-binding activity’’ from the mo-
lecular function hierarchy and ‘‘mitotic checkpoint,’’ ‘‘ribosome
assembly,’’ and ‘‘actin filament organization’’ from the biologi-
cal-process hierarchy. The proteins annotated with these func-
tions are parts of protein complexes in S. cerevisiae (9). Although
complexes are relatively easy to annotate by using only PPI data,
it is possible that interactions in some complexes (highly con-
nected subgraphs in the PPI-only network) correspond to false-
positives in yeast 2-hybrid screens. In these cases, the integrated
network weeds out false interactions, enabling us to achieve a
higher F-measure.

Improved Functional Predictions in Cross-Validation in the Integrated
Network. To illustrate the improved cross-validation perfor-
mance of the integrated network, we tracked the predictions for
individual genes. Considering only GO functions that have good
performance in the cross-validation study (F-measure �0.75),
we searched for genes that changed from false negatives in the
PPI-only network to true positives in the integrated network.
These genes confirm the usefulness of integrating multiple
information sources.

Examples of such genes include SEC31, a gene whose product
in known to be involved in protein transport from the endoplas-
mic reticulum (ER) to the Golgi body. When we performed the
cross-validation study, the PPI-only network did not predict the
following functions for gene SEC31: ‘‘ER to Golgi transport’’
(GO:0006888), ‘‘protein secretion’’ (GO:0009306), ‘‘protein
transport’’ (GO:0015031), and ‘‘protein metabolism’’

(GO:0019538). The integrated network made all of these pre-
dictions correctly.

Another example is the CDC42 gene, whose protein product
is known to be a member of the Rho subfamily of Ras-like
proteins. Some annotations of CDC42 that are ‘‘corrected’’ by
the integrated network include ‘‘establishment and�or mainte-
nance of cell polarity’’ (GO:0030012), ‘‘budding’’ (GO:0007114),
and ‘‘shmoo tip’’ (GO:0005937). A list of genes whose predic-
tions change from ‘‘wrong’’ in the PPI-only network to ‘‘correct’’
in the integrated network is available in Data Set 1, which is
published as supporting information on the PNAS web site.

Evaluating the Plausibility of New Functional Annotations. We ap-
plied the technique to the GRID interactions network, limiting
ourselves to interactions that were confirmed by at least two
publications. Recall that we built a separate network for each
function in GO and assigned the function as a putative anno-
tation to a hypothetical protein if the network computed a final
state of �1 for that protein. We assessed the plausibility of our
predictions by using various means. Many proteins are annotated
in at most two GO hierarchies. In such cases, the plausibility of
a new functional prediction in one GO hierarchy can be assessed
by looking at the already existing annotations for those proteins.
We also looked for related information in a search of the
PubMed database. The Saccharomyces Genome Database de-
scriptions for the protein of interest were sometimes useful. A list
of all putative functional predictions made by our algorithm
using the integrated network is provided in Table 1, which is
published as supporting information on the PNAS web site.

Our technique assigns the protein PKC1 to the GO cellular
component ‘‘1,3-beta-glucan synthase complex’’ (GO:0000148),
a multienzyme complex that catalyzes the synthesis of glucan, a
major structural component of the yeast cell wall. PKC1 is known
to be involved in the monitoring of the state of the cell wall
during growth and morphogenesis; it has been assigned the GO
molecular function ‘‘protein kinase C activity’’ (GO:0004697),
the GO biological processes ‘‘cell wall organization and biogen-
esis’’ (GO:0007047) and ‘‘protein amino acid phosphorylation’’
(GO:0006468), and the cellular component category ‘‘intracel-
lular’’ (GO:0005622). Our technique refines the cellular-
component assignment from ‘‘intracellular’’ to ‘‘1,3-beta-glucan
synthase complex,’’ which is consistent with the annotations of
PKC1 in the other GO hierarchies.

The NHP10 gene is an ‘‘HMG1-box containing protein.’’ It has
been hypothesized that HMG1 proteins are potent architectural
elements of chromatin that are able to induce strong bends and
untwist DNA structure (25). Assigning NHP10 the biological
process ‘‘chromatin modeling’’ (GO:0006338) and the cellular
component ‘‘chromatin remodeling complex’’ (GO:0016585) is
in accordance with this hypothesis. Ref. 26 obtains the same
prediction by using a probabilistic annotation technique.

The UFO1 protein is described as an F-box protein in the
Saccharomyces Genome Database. The cellular component ‘‘nu-
clear ubiquitin ligase complex,’’ assigned to UFO1, is consistent
with its GO molecular function ‘‘ubiquitin–protein ligase activ-
ity’’ (GO:0004842), as well as the biological processes ‘‘ubiquitin-
dependent protein catabolism’’ (GO:0006511) and ‘‘response to
DNA damage’’ (GO:0006974).

ORF YKL067W has known ‘‘nucleoside-diphosphate kinase
(NDK) activity’’ (GO:0004550). Experimental studies have sug-
gested that nucleoside-diphosphate kinase functions not only as
a simple enzyme but is also likely to interfere with the mating
pheromone signal transduction in Schizosaccharomyces pombe
(27). Our prediction of ‘‘signal transduction’’ (GO:0007165)
from the biological-process hierarchy confirms this suggestion,
whereas the second prediction ‘‘spindle pole body’’
(GO:0005816) from the cellular-component hierarchy suggests
its involvement in a specific component in the yeast mating cycle.
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Our method also makes consistent predictions in different
hierarchies for proteins that have no known functions in any of
the three hierarchies. One example of such a prediction is ORF
YML053C, for which we predict the molecular function ‘‘glyc-
eraldehyde 3-phosphate dehydrogenase (phosphorylating) ac-
tivity,’’ the biological process ‘‘glycolysis,’’ and the cellular
component ‘‘lipid particle.’’ Two other examples are the ORFs
YCR099C and YBL059W, which are predicted to have the
biological process ER to Golgi transport and the cellular com-
ponent ‘‘COPII vesicle coat’’; vesicles with COPII coats are
associated with ER membranes at steady state (28).

Propagation Diagrams. We monitor and trace the flow of functional
information in the network by using a graphical representation that
we call ‘‘propagation diagram.’’ In Fig. 2, we display an example of
such a diagram for the function ‘‘ribosome biogenesis.’’ In this
diagram, red nodes correspond to proteins annotated with ‘‘ribo-
some biogenesis,’’ blue nodes to proteins annotated with some
other function, and gray nodes to hypothetical proteins. Our
technique annotates hypothetical proteins with the function either
as a result of direct evidence from its neighbors (black arrows) or
by means of propagation (green arrows). These arrows mark edges
along which functional evidence travels in the network. A black
arrow signifies propagation of evidence from an already-annotated
protein. A green arrow denotes the propagation of information
from one hypothetical node to another. In Fig. 4, which is published
as supporting information on the PNAS web site, YER006W has
two blue and two red neighbors causing an ambiguity in its
functional annotation. The six red neighbors of YMR049C let us
annotate YMR049C with the function. This annotation then prop-
agates to YER006W, resolving the ambiguity in its neighborhood.
YMR290C becomes annotated in a similar way. This example
demonstrates that our approach provides new putative annotations
for hypothetical proteins that cannot be annotated by simple local
calculations. Fig. 4 displays other propagation diagrams.

Conclusion
In this article, we have demonstrated an effective method to
interpret functional-linkage networks as a medium for inferring
gene function by integrating the evidence captured by protein–
protein interactions and gene-expression data. This framework

provides two important capabilities. It provides (i) a promising
methodology for propagating functional information across
functional-linkage graphs to genes that cannot be annotated with
certainty solely by examining their neighbors in the graph and (ii)
the integration of diverse types of experimental evidence about
functional similarity with the propagation procedures.

The approach described in this article suggests possible ave-
nues for research. In many cases, a confidence level can be
associated with a given link. In such cases, statistically robust
schemes are needed for incorporating this measure of certainty
into the network. Our current networks support one functional
assignment at a time. It is relatively easy to generalize this
approach to a more general constraint network in which nodes
can receive multiple functional labels. The more general frame-
work will provide a general language for expressing probabilistic
dependencies, integrity constraints, and inconsistencies that we
would like to impose on the process of assigning functional labels
to a node and its neighbors. Our current implementation is
guaranteed only to attain a local minimum, although it usually
converges almost instantly to such a solution. This problem can
be addressed by developing a stochastic variant of the algorithm.
However, these variants do not allow us to use propagation
diagrams to illustrate the transfer of functional assignments and
help us obtain an intuitive interpretation of the result.

An important aspect of functional annotation is the assess-
ment of the statistical significance of putative functional assign-
ments. Currently, the precision and�or recall values obtained
from cross-validation provide an indirect measure of confidence
in our predictions. These values are implicitly Bonferroni-
corrected for the testing of multiple hypotheses. In the future, we
plan to compute a P value for each putative functional annota-
tion by using the following procedure. For each function f, we
create multiple randomized instances of the Hopfield network by
shuffling the initial states (�1 or �1) of the annotated proteins
and apply our technique to each such network. The P value for
assigning f to a hypothetical protein h is calculated as the fraction
of networks in which h is annotated with f. This confidence is
then normalized by using a Bonferroni correction. Because this
procedure is computationally intensive, we have chosen to rely
on the cross-validation results as an estimate of the statistical
significance of our predictions.

Fig. 2. Example of a propagation diagram, demonstrating the flow of functional evidence in the network.
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In this article, we have focused on the integration and prop-
agation of experimental data. In the context of annotation of
microbial genomes, additional evidence for functional linkage
may be obtained by using computational methods, such as gene
fusion, chromosomal proximity or phylogenetic profiles (29–33).
Naturally, information-extraction methods, such as the cooccur-
rence of protein names in scientific abstracts (34, 35) may be
applicable also as a source of evidence to be integrated by using
our methodology.

Note. We have learned recently that Vazquez et al. (36) have indepen-
dently developed an approach similar to ours. However, by integrating

various sources of data such as protein–protein interaction and gene-
expression correlation, our analysis improves the coverage and the
accuracy of functional annotation. Furthermore, the optimization
scheme presented in this article is computationally efficient and facili-
tates the visualization of the flow of evidence in the network by using
propagation diagrams, as illustrated in Fig. 2.
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