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Abstract

Background: The elucidation of whole-cell regulatory, metabolic, interaction and other biological networks

generates the need for a meaningful ranking of network elements. Centrality analysis ranks network elements

according to their importance within the network structure and different centrality measures focus on different

importance concepts. Central elements of biological networks have been found to be, for example, essential for

viability.

Results: CentiBiN (Centralities in Biological Networks) is a tool for the computation and exploration of

centralities in biological networks such as protein-protein interaction networks. It computes 17 different

centralities for directed or undirected networks, ranging from local measures, that is, measures that only

consider the direct neighbourhood of a network element, to global measures. CentiBiN supports the exploration

of the centrality distribution by visualising central elements within the network and provides several layout

mechanisms for the automatic generation of graphical representations of a network. It supports different input

formats, especially for biological networks, and the export of the computed centralities to other tools.

Conclusions: CentiBiN helps systems biology researchers to identify crucial elements of biological networks.

CentiBiN including a user guide and example data sets is available free of charge at

http://centibin.ipk-gatersleben.de/. CentiBiN is available in two different versions: a Java Web Start

application and an installable Windows application.
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Background

The shift of biological research towards massively parallel techniques opens new opportunities but at the

same time raises problems in deriving meaningful information out of the wealth of generated data. Such

data might be represented as networks, in which the vertices (e.g. transcripts, proteins or metabolites) are

linked by edges (correlations, interactions or reactions, respectively). Structural analysis of networks can

lead to new insights into biological systems and is a helpful method for proposing new hypotheses. Several

techniques for such structural analysis exist, such as the analysis of the global network structure

(e.g. scale-free networks [1]), network motifs (i.e. small subnetworks which occur significantly more often in

the biological network than in random networks [2]), network clustering (modularisation of the network

into parts [3]) and network centralities [4]. Network centralities are used to rank elements of a network

according to a given importance concept.

Ranking of network elements has been used to analyse biological networks in several cases. For example, it

has been shown for metabolic networks that the most central metabolites are evolutionarily conserved [5].

Moreover, in the protein-protein interaction network of baker’s yeast (Saccharomyces cerevisiae) it has

been found that the centrality of a protein correlates with the essentiality of its gene, which was

characterised by a high probability of a lethal effect observed upon knockout of this gene [6]. Recently, it

has been observed that in transcript co-expression networks genes with high degree-centrality, that is,

highly connected genes, tend to be essential and conserved [7].

The determination of central elements in biological networks will create new hypotheses that lead to more

rational approaches in experimental design. If the important elements of a network are known, further

experimental investigations cen be limited to them. Depending on the biological question, a vertex of a

network might be of importance, for example, if it is connected to many other vertices or if the sum of the

shortest path distances to all the other vertices is small, see Figure 1. For these different ranking concepts,

a broad variety of centrality measures are available (see Table 1) which have been described in a recent

review [8].

However, the use of centralities as a structural analysis method for biological networks is controversial and

several centrality measures should be considered within an exploratory process [9]. To support such

analysis and due to the complexity of both biological networks and centrality calculations, a tool is needed

to facilitate these investigations. Here we present CentiBiN, an application for the calculation and

visualisation of centralities for biological networks.
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Implementation

The core of CentiBiN are newly implemented algorithms for centrality analysis and visualisation (e.g. most

of the centrality measures, the graphical user interface, cleanup methods and some imports/exports such as

DOT, Pajek .vec and TSV). It is based on JUNG, the Java Universal Network/Graph Framework, an open

source library which can be downloaded from [10]. JUNG provides standard graph library functionality

(e.g. data structures, imports/exports, layouts, graph generators and a few centrality algorithms).

CentiBiN is written in Java. It requires an installation of the Java Runtime Environment Version 1.4.2 or

later which is available from the Java download page [11]. It is available free of charge as a Java Web Start

application and an installable Windows application including a user guide and example data sets.

Depending on available main memory and the centrality algorithm used networks up to several tens of

thousands vertices can be analysed. Large networks with several thousand vertices are not readable on a

computer screen anymore and the drawing routine significantly slows down for such networks. Thus they

are not displayed, but can nevertheless be analysed and exported. A corresponding threshold is

configurable by the user.

Results and discussion

CentiBiN’s major features are:

Computation of centralities CentiBiN supports a wide range of different centrality measures ranging

from local measures (which only consider the direct neighbourhood of a vertex) to global measures.

In total 17 centralities for undirected networks and 15 centralities for directed networks are available,

see Table 2.

Plotting the distribution of centrality values The distribution of centrality values and a histogram

of centrality values can be displayed, see Figure 2. Several of these diagrams can be opened

simultaneously and allow the easy comparison of the centrality distributions.

Visualisation and navigation within the network From the list of centrality values several vertices

can be selected. These are highlighted in the network and can therefore be easily located.

Additionally CentiBiN supports zoom and pan functionalities to navigate within a displayed network.

The underlying graph library offers five different layout algorithms for networks, reaching from simple
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circular to more advanced force directed layouts [12,13]. Depending on the network, one or the other

layout method results in a better visualisation.

Cleaning up a network Depending on the centrality measure to be applied, the network has to fulfil

certain preconditions. These can be simplicity, connectedness, and loop-freeness. Therefore, several

algorithms are implemented for transforming a network into the required form. These are the

removal of all loops (edges from one vertex to itself), the removal of all vertices that are not part of

the largest connected component (giant strong component), the removal of all parallel edges, and the

transformation of the network into an undirected or directed form.

Reading and writing networks and centralities Networks can be loaded out of four different file

formats: the Pajek .net file format [14], a text file containing an adjacency matrix representation of

a network, the GraphML file format [15] and the TSV-files provided by the Database of Interacting

Proteins (DIP) [16]. It is possible to store networks in the Pajek .net file format, in a text file

containing a representation of the adjacency matrix, and in the DOT file format used by

Graphviz [17]. To support further analysis of computed centralities they can be saved either in the

Pajek .vec file format or in a TSV format. These files can be imported in other applications, such as

R [18].

Generation of random networks The generation of random networks based on five different algorithms

(provided by JUNG), such as Kleinberg’s small-world generator [19] and the Barabási-Albert

scale-free generator [20], is available. These networks can be analysed and visualised and may be

used as reference models.

A typical example for networks which can be analysed are protein-protein interaction networks. All

interactions between proteins of an organism can be represented as a network. Several databases contain

information about such protein-protein interactions. We chose the Database of Interacting Proteins

(DIP) [16] from which interaction data can be imported into CentiBiN. Figure 3 shows screen-shots of the

tool with interaction data from Escherichia coli and Mus musculus (mouse). The most import proteins

according to the Current-Flow betweenness [21] are highlighted.

Besides CentiBiN, several other software tools support the analysis of networks with centralities. Many of

them are described in detail in the work of Huisman and van Duijn [22]. The focus of their comparison lies

on software for social network analysis, an area where interactions between individuals are analysed. As
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the original concept of centralities can be traced back into this field of science, software packages for social

network analysis often provide methods for centrality analysis. Some of the tools evaluated by Huisman

and van Duijn are commercial (UCINET, NetMiner), have a text based front end (STRUCTURE) or are

software systems for advanced statistical modelling of social networks (StOCNet). Furthermore, only some

of them have more than a few centralities implemented (e.g. MultiNet, Visone, Pajek). Most of the tools

specifically designed for the analysis of biological networks (e.g. Cytoscape [23], Osprey [24]) do not

support centrality analysis so far. The distribution plot (see Figure 2) is similar to the plot available in

VisANT [25]. Compared to CentiBiN none of the available systems covers this extensive number of different

centrality measures. Moreover, CentiBiN supports direct access to biological data, allows the visualisation

of the network and the centralities together, has a simple input file format, and is available free of charge.

For the next release we plan to integrate several methods for comparison of centralities with biological

information. For that it is foreseen to integrate mechanisms to mark vertices according to given

information or to correlate centralities with experimental results. Additionally we plan to support more

input formats, for example PSI’s Molecular Interaction XML Format [26] and to implement advanced

visualisation methods.

Conclusions

CentiBiN is a tool for the computation and exploration of centralities in biological networks. With

CentiBiN it is possible to infer information about the “importance” of an element in a biological network

based on different importance concepts. We have applied this for protein-protein interaction networks. We

are convinced that CentiBiN provides valuable help to systems biologists in the generation of hypotheses

from large-scale data sets.

Availability and requirements

• Project name: CentiBiN

• Project home page: http://centibin.ipk-gatersleben.de/

• Operating system(s): Platform independent

• Programming language: Java
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• Other requirements: Java 1.4.2 or higher, 256MB RAM recommended

• License: The CentiBiN application is available free of charge.

• Any restrictions to use by non-academics: none
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Figures

Figure 1 - Different centrality measures rank vertices differently

The most important vertices according to the degree-centrality (red), that is, where a vertex of a network

is central if it is highly connected, and the Closeness centrality (blue), that is, where a vertex is central if

the sum of the shortest path distances to all the other vertices is small.

Figure 2 - Plots generated with CentiBiN

The distribution of the degree centrality and a histogram of the closeness centrality for a random network.

Figure 3 - Two screen-shots showing centrality analysis with CentiBiN

The networks represent protein-protein interactions in Escherichia coli (top) and Mus musculus (bottom)

according to the Database of Interacting Proteins (DIP), release 2005-01-26. The top ranking proteins

according to the Current-Flow Betweenness centrality [21] are highlighted.
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Tables

Table 1 - Definitions for the centrality measures

Let G = (V,E) be an undirected or directed, (strong) connected graph with n = |V | vertices; deg(v)

denotes the degree of the vertex v in an undirected graph; dist(v, w) denotes the length of a shortest path

between the vertices s and t; σst denotes the number of shortest paths from s to t and σst(v) the number of

shortest path from s to t that use the vertex v. Let A be the adjacency matrix of the graph G. For a more

detailed description and further references please see [8, 27]. Abbreviations used: S.-P.: shortest path,

C.-F.: current flow.
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Name Definition Remarks Ref

Degree Cdeg(v) := deg(v) For directed graphs in- and out-

degree is used.

Eccentricity Cecc(v) := 1
max{dist(v,w) : w∈V } [28]

Closeness Cclo(v) := 1P
w∈V

dist(v,w) [29]

Radiality Crad(v) :=
P

w∈V
(∆G+1−dist(v,w))

n−1 ∆G is the diameter of the graph G,

defined as the maximum distance

between any two vertices of G.

[30]

Centroid Value Ccen(v) := min{f(v, w) : w ∈ V \ {v}} Where f(v, w) := γv(w)−γw(v) and

γv(w) denotes the number of ver-

tices that are closer to v than to w.

[31]

Stress Cstr(v) :=
∑

s 6=v∈V

∑
t6=v∈V σst(v) [32]

S.-P. Betweenness Cspb(v) :=
∑

s 6=v∈V

∑
t6=v∈V δst(v) δst(v) := σst(v)

σst
[33]

C.-F. Closeness Ccfc(v) := n−1P
t6=v

pvt(v)−pvt(t)
Where pvt(t) equals the potential

difference in an electrical network.

[21]

C.-F. Betweenness Ccfb(v) := 1
(n−1)(n−2)

∑
s,t∈V τst(v) Where τst(v) equals the fraction of

electrical current running over ver-

tex v in an electrical network.

[21]

Katz Status Ckatz :=
∑∞

k=1 αk(AT )k~1 Where α is a positive constant. [34]

Eigenvector λCeiv = ACeiv The eigenvector to the dominant

eigenvalue of A is used.

[35]

Hubbell index Chbl = ~E + WChbl Where ~E is some exogenous input

and W is a weight matrix derived

from the adjacency matrix A.

[36]

Bargaining Cbrg := α(I − βA)−1A~1 Where α is a scaling factor and β is

the influence parameter.

[37]

PageRank Cpr = dPCpr + (1 − d)~1 Where P is the transition matrix

and d is the damping factor.

[38]

HITS-Hubs Chubs = ACauths Assuming Cauths is known. [39]

HITS-Authorities Cauths = ATChubs Assuming Chubs is known. [39]

Closeness-vitality ( ) := WI( ) WI( ) Where WI( ) is the Wiener index [8]
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Table 2 - Centrality measures implemented in CentiBiN

Definitions for these measures can be found in Table 1.

Centrality Type Directed graphs Undirected graphs

Degree Neighbourhood based Yes1 Yes

Eccentricity Distance based Yes Yes

Closeness Distance based Yes Yes

Radiality Distance based Yes Yes

Centroid Distance based Yes Yes

Stress Shortest-Path based Yes Yes

S.-P. Betweenness Shortest-Path based Yes Yes

C.-F. Betweenness Current-Flow based No2 Yes

C.-F. Closeness Current-Flow based No2 Yes

Katz Status Feedback based Yes Yes

Eigenvector Feedback based Yes Yes

Hubbell index Feedback based Yes Yes

Bargaining Feedback based Yes Yes

PageRank Feedback based Yes Yes

HITS-Hubs Feedback based Yes Yes3

HITS-Auths Feedback based Yes Yes3

Closeness-vitality Vitality based Yes Yes

1 both in- and out-degree

2 not defined for directed graphs

3 HITS-Hubs and HITS-Auths give identical results for undirected graphs
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