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Network motif identification in stochastic networks
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Network motifs have been identified in a wide range of networks
across many scientific disciplines and are suggested to be the basic
building blocks of most complex networks. Nonetheless, many
networks come with intrinsic and/or experimental uncertainties
and should be treated as stochastic networks. The building blocks
in these networks thus may also have stochastic properties. In this
article, we study stochastic network motifs derived from families
of mutually similar but not necessarily identical patterns of inter-
connections. We establish a finite mixture model for stochastic
networks and develop an expectation-maximization algorithm for
identifying stochastic network motifs. We apply this approach
to the transcriptional regulatory networks of Escherichia coli
and Saccharomyces cerevisiae, as well as the protein-protein
interaction networks of seven species, and identify several sto-
chastic network motifs that are consistent with current biological
knowledge.

expectation-maximization algorithm | mixture model | transcriptional
regulatory network | protein-protein interaction network

etworks are ubiquitous and abundant in many scientific fields.

Examples include the World Wide Web, electronic circuits,
social networks, biological interaction networks, etc. Many net-
works have been shown to share global statistical features (1, 2),
such as the “small world” property of short paths between any two
nodes and highly clustered connections (3, 4). It has also been
shown that many networks are “scale-free” networks, in which the
node degrees follow a power-law distribution (5, 6). Recent studies
have shown that many networks contain a small set of “network
motifs,” that is, patterns of interconnections occurring in networks
at numbers that are significantly higher than those in randomized
networks that are uniformly drawn from the networks with the
same degree distributions as the original networks (7, 8). These
network motifs may define universal classes of networks in that
similar motifs have been found in a wide variety of networks,
ranging from the World Wide Web to the electronic circuits, from
the transcriptional regulatory networks of Escherichia coli to the
neural network of Caenorhabditis elegans. The research on network
motifs is therefore promising in uncovering the basic building blocks
of most complex networks.

In most studies (7-10), both the networks and the motifs are
deterministic in that connections between nodes are represented by
the presence/absence of edges. Nevertheless, many natural net-
works have intrinsic uncertainties. For example, in a living cell,
DNA binding proteins are believed to be in an equilibrium between
the bound and unbound states, thus introducing uncertainties in
protein—-DNA interactions. Similar circumstance holds for protein—
protein interactions, which are crucial to cellular functions both in
assembling protein machinery and in signaling cascades. Conse-
quently, both transcriptional regulatory networks and protein—
protein interaction networks have intrinsic uncertainties. Addition-
ally, incomplete and/or incorrect observations due to experimental
resolutions, systematic errors, and random noises also introduce
considerable uncertainties into the observed networks. This situa-
tion prevails in biological interaction networks constructed by using
data collected by high-throughput techniques such as the yeast
two-hybrid assays (11, 12) and the chromatin immunoprecipitation
(ChIP) method (13, 14). With the intrinsic and experimental
uncertainties, it is more suitable to associate connections between
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nodes with probabilities. Consequently, a network with N nodes can
be described by a probability matrix P = (mj)nxn, 0 = m; = 1.
is the probability that two nodes i and; are connected. In this article,
we refer to networks in which connections are described by prob-
abilities as stochastic networks, and networks in which connections
are described by the presence/absence of edges as deterministic
networks. A stochastic network can be thought of as a family of
similar deterministic networks.

Network motifs also have uncertainties. For example, the evo-
lution of regulatory pathways in cells is itself a stochastic process,
and some protein—-DNA interactions can change without affecting
the functionality of the pathways. Functionally related network
motifs are therefore not necessarily topologically identical. Topo-
logical variations in network motifs may also arise because of
incomplete and/or incorrect observations resulting from experi-
mental noises. Hence, it is more appropriate to model network
motifs as stochastic patterns and discuss the network motif identi-
fication problem in the circumstance of stochastic networks.

A stochastic network can be thought of as coming into being by
embedding a family of mutually similar interconnection patterns
(subgraphs) in a background random ensemble with a probability
A. The set of patterns defines a foreground stochastic network motif
and is described by a probability matrix ©1 = (6)uxs, 0 = 65 = 1.
0 is the probability that node i and node j are connected. The
background ensemble is characterized by the degree distributions of
the given stochastic network (0y). With such a mixture model, the
network motif can be recovered by fitting the stochastic network
with a foreground motif and a suitable background ensemble. This
process requires estimating the occurrence probability of the motif
(), the parameters associated with the motif (0;), and the statis-
tical properties associated with the background ensemble. In this
article, we develop a pseudo-maximum likelihood framework and
an expectation-maximization (EM) algorithm to estimate these
parameters. The statistical significance of the identified motif is
quantified by a p value estimated by a pseudo-likelihood ratio test
approach.

Results

Data Sources. We studied a wide range of available biological
networks, including transcriptional regulatory networks and pro-
tein—protein interaction networks. In regulatory networks, nodes
are genes or corresponding proteins, and directed interactions are
the regulatory relationship between the proteins (transcription
factors) and the genes. In protein—protein interaction networks,
nodes are proteins, and undirected connections are physical inter-
actions between the proteins. We downloaded the data sets of E.
coli and Saccharomyces cerevisiae regulatory networks from Uri
Alon’s laboratory (7, 8) and the data sets of protein—protein
interaction networks for seven species [E. coli, S. cerevisiae (core),
C. elegans, Helicobacter pylori, Mus musculus, Drosophila melano-
gaster, and Homo sapiens] from the Database of Interacting Proteins
(15, 16). These data sets come from human curated databases and
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Table 1. Stochastic motifs in highly reliable regulatory networks

Species LR Y o, Motif
[0.00 1.00 1.00
E. coli 6.92 X 10" 275 X 10-6 0.00 0.00 1.00

S. cerevisiae 1.10 X 102 1.06 X 1076
E. coli 2.07 X 102 1.30 X 1077
S. cerevisiae 3.23 X 103 1.80 X 1077

L 0.00 0.00 0.00

[ 0.00 1.00 1.00:|

L 0.00 0.00 0.00

LR, log pseudo-likelihood ratio.

are supposed to be reliable. We also downloaded the ChIP-chip
data sets for the S. cerevisiae regulatory network from Young’s
laboratory (13, 14). This data set is less reliable, and each protein—
DNA interaction pair is assigned a p value, indicating the confi-
dence of the interaction. The details of these data sets are presented
in the supporting information, which is published on the PNAS web
site.

Results on Simulated Networks. We use a simulation method to
verify that our approach can recover motifs embedded in stochastic
networks. The results show that the EM algorithm can accurately
estimate the parameters (A and 0,), while the pseudo-likelihood
test can successfully reject the null hypothesis even for small A values
(=107°). The details of the method and the results are presented
in the supporting information.

Results on Transcriptional Regulatory Networks. We apply our
method to find 3- and 4-node network motifs in the regulatory
networks of E. coli and S. cerevisiae (7, 8). Because these networks
are highly reliable, we assign m; = 1 for any interaction pair (i, j) in
the data set and m; = 0, otherwise.

In the 3-node case, we identify feed forward loop motifs (a
transcription factor regulates another, while they both regulate a
third target gene) for both species (Table 1, upper). For E. coli, the
motif exists with A = 2.75 X 107 and is significant with a p value
of <104 for S. cerevisiae, the motif exists with A = 1.06 X 10~® and
is significant with a p value of <10~*. Recent studies have shown
that the feed forward loop serves as a sensitive delay element in
regulatory networks (7, 17). It can speed up the response time of the
target gene’s expression following stimulus steps in one direction
(e.g., off to on) but not in the other direction (on to off).

In the 4-node case, we identify stochastic bi-fan motifs for both
species (Table 1, lower). For E. coli, the motif exists with A = 1.30 X

1077 and is significant with a p value of <1073; for S. cerevisiae, the
motif exists with A = 1.80 X 10~7 and is significant with a p value
of <10~*. The deterministic bi-fan motif (two transcription factors
regulate two target genes in parallel; no interaction between the two
transcription factors) has been identified previously (7, 8). The
newly identified stochastic bi-fan motif has a novel feature (one
transcription factor could also regulate the other) and provides us
a more general presentation of the combinatorial transcriptional
regulation in living cells.

We also apply our approach to the S. cerevisiae regulatory
network constructed by using the ChIP-chip data (13, 14). The data
set contains genome-wide protein-DNA interaction analysis of 113
transcription factors and 6,270 target genes. Each probed interac-
tion is assigned a p value, indicating the confidence of the interac-
tion. At the recommended p value threshold (0.001), the observed
network contains 2,416 nodes and 4,344 edges with a false positive
rate of 10% and a false negative rate of 18% (13). We therefore
infer that ~434 (4,344 X 0.1) observed interactions are false
positives, while ~858 (4,344 X 0.9 X 0.18/0.82) interactions are
actually missing. We use two methods as presented in the support-
ing information to assign interaction probabilities for protein-DNA
pairs and apply our approach to identify network motifs in the
constructed stochastic networks. The results are shown in Table 2.
In the 3-node case (upper portion of Table 2), a motif similar to the
feed forward loop is identified (A = 7.49 X 1078, p value <107%).
In the 4-node case, a stochastic bi-fan is identified (A = 1.15 X 1078,
pvalue <10~%). We notice that the identified motifs in Table 2 show
more uncertainties than those in Table 1, in that the estimated
nonzero probabilities (see @) in the former is less close to either
1 (always having interaction) or 0 (never having interaction). On the
one hand, the identification of similar motifs in both the highly
reliable and noisy networks further validates that our approach can
overcome the effects of experimental noises to identify the intrinsic

Table 2. Stochastic motifs in less reliable regulatory networks (based on ChIP-chip data)

Species LR A

@1 Motif

S. cerevisiae 1.67 X 102 7.49 x 1078

S. cerevisiae 3.27 x 104 1.15 X 1078

0.00 0.98 0.98
0.00 0.00 0.96

0.00 0.00 0.00

0.00 0.13 097 0.97
0.00 0.00 0.98 0.98
0.00  0.00 0.00 0.00
0.00  0.00 0.00 0.00
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Fig. 1. The stochastic bi-fan motif and two types of related subgraphs. (A) The stochastic bi-fan motif identified in the S. cerevisiae regulatory network. (B and
C) Two types of subgraphs that can match the stochastic bi-fan motif with nonzero probabilities.

building blocks of the networks. On the other hand, the observation
of more uncertainties involved in the motifs in the less reliable
network reveals that building blocks in stochastic networks do share
stochastic properties of the networks.

Biological Evidences of the Stochastic Bi-Fan Motif. Given an iden-
tified stochastic motif, the expected number of instances for the
motif can be calculated as the product of the estimated A and the
total number of sampled subgraphs. For a particular subgraph,
the probability that it matches the motif can be calculated by using
the method presented in Stochastic Network Motifs. Multiplying the
above two quantities, we obtain the expected number of motif
instances for the specific type of subgraph (). On the other hand,
the expected number of observing the same type of subgraph in the
sampled subgraphs (N,) can be obtained before the running of the
EM algorithm (see Estimation of Background Probabilities). With
these two expected numbers, the probability that the particular
subgraph is a motif instance can be estimated as p,, = N,,,/N,, and
the probability that the subgraph is observed by chance can be
estimated as p. = 1 — N,,,/N,. For example, given the stochastic
bi-fan motif identified in the S. cerevisiae regulatory network (7)
(see Table 1 and Fig. 14), we expect to see 1.8 X 1077 x (§*) ~
1,666 instances, with 1,599 (1,666 X 0.96) being the subgraph B in
Fig. 1 and the rest 67 (1,666 X 0.04) being the subgraph C.
Meanwhile, 1,843 instances for the former and 157 for the later are
expected to be observed in the original network. Therefore, we
estimate that for instances of the subgraph B, 1,599 out of 1,843
(86.8%) are true motifs and the rest, 244 (13.2%), are possibly
observed by chance. Similarly, for the instances of the subgraph C,
67 out of 157 (42.7%) are true motifs and the rest, 90 (57.3%), are
likely observed by chance.

The stochastic bi-fan motifs (see Tables 1 and 2) reveal the
existence of combinatorial transcriptional regulation in S. cerevisiae.
For example, in the highly reliable network (7), in 496 out of the
1,843 instances of the subgraph B in Fig. 1, the two transcription
factors are MSN1 and MSN2 (Fig. 24), and these instances are
suggested to relate to the high-osmolarity glycerol (HOG) response
pathway (18, 19). In the high external osmolarity conditions, the
transcription factor MSN2 (together with a redundant transcription
factor MSN4) can activate many osmolarity stress responsive genes
(such as CTT1, HSP12, etc.). However, the HOG pathway-
mediated transcriptional activation can still be found in the absence
of MSN2, suggesting that MSNZ2 is not the only one responsible for
the expression of high-osmolarity stress responsive (HOSR) genes
(18). Recent studies show that the transcription factor MSN1 can

also activate the HOSR genes when MSN2 is not present (19). In
other words, MSN1 acts as a “backup” of MSN2 in the activation
of HOSR genes. This mechanism, as illustrated in Fig. 2C, keeps the
HOSR genes being activated even when MSN2 is not functional. As
for other instances of the subgraph B in Fig. 1, we discover that in
703 instances, the two transcription factors are STA2 and TDHI,
in 171 instances, the two transcription factors are SKI§ and XBP1,
and in the other 473 instances, the two transcription factors show
variations from instances to instances. The combinatorial transcrip-
tional regulatory mechanisms for these groups of instances are still
not clear.

In 105 of the 157 instances of the subgraph C in Fig. 1, the first
transcription factor is GLN3 and the second is GALS0 (see Fig. 2B),
and these instances are suggested to relate to the nitrogen regula-
tion process in poor nitrogen medium (20). The transcription factor
GLN3 is the major regulator in this process, and its expression is
induced in the presence of poor nitrogen sources. GLN3 can
activate another transcription factor DALS0O and other nitrogen-
sensitive (NS) genes (such as DALI1-5). DALS0, however, can
repress the expression of NS genes. Therefore, when the cell is
experiencing poor nitrogen conditions, GLN3 is induced and
GALSO is up-regulated. The expression of other NS genes, how-
ever, is determined by the competitive binding of GLN3 and
DALSO. This suggests a “balancing” mechanism in which the NS
gene’s expression level would be modulated by a balance between
the GLN3 activator and the DALSO repressor (20). This mecha-
nism, as illustrated in Fig. 2D, helps to keep the expression of the
NS genes from varying too much, even in the presence of poor
nitrogen sources. In the other 52 instances of the subgraph C in Fig.
1, the two transcription factors vary from instances to instances, and
their regulatory mechanisms are still not clear.

In summary, the stochastic bi-fan motif reveals two kinds of
combinatorial transcriptional regulation in S. cerevisiae. In the
instances with literature support, the two transcription factors work
together either in a complementary way or in a competitive way to
regulate the target genes, which in general share similar properties
(e.g., responsive to the same stress or sensitive to the same
condition).

Results on Protein-Protein Interaction Networks. We also apply our
method to the protein—protein interaction networks for the seven
species listed above in Data Sources. For every interaction pair in
these networks, we assign either 1 (interaction) or 0 (no interaction)
to the corresponding probability, because these data sets come from
human curated database and are supposed to be reliable. The
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Table 3. Stochastic motifs in protein—protein interaction networks

Species LR A 0, Motif
E. coli 2.17 X 102 4.58 X 1076
S. cerevisiae 2.36 X 104 1.26 X 1076
C. elegans 1.51 X 103 1.06 X 1077 _
H. pylori 3.24 x 102 1.26 X 10°¢ (1)88 (1]88 igg
M. musculus 8.23 X 103 2.38 X107 [ 1.00 1.00 0.00 2 3
D. melanogaster 6.06 X 103 2.72 X 1078
H. sapiens 1.80 X 10° 1.52 X 1076
0.00 0.24 1.00 1.00
. " s 0.24 0.00 1.00 1.00 o e
E. coli 2.43 X 10 4.48 X 10 1.00 1.00 0.00 1.00 .
1.00 1.00 1.00 0.00 6 9
[0.00 0.18 1.00 1.00]
B . N 0.18 0.00 1.00 1.00 O—3
S. cerevisiae 1.92 X 10 4.96 X 10 1.00 1.00 0.00 1.00 .

identified motifs are shown in Table 3. In the 3-node case (upper
portion of Table 3), the motifs identified for all species are the full
connected friangle. The log pseudo-likelihood ratios (>10?) and the
p values (<10~%) support the statistical significance of these motifs.
As for the 4-node case (lower portion of Table 3), we apply our
method to the E. coli and S. cerevisiae networks and identify motifs
that are similar to fully connected rectangles with both diagonals
(one of them having low probability) for both species. The log
pseudo-likelihood ratios (>10*) and the p values (<10~#) support
the statistical significance of these motifs.

Comparison with Existing Methods. The widely used method for
finding deterministic network motifs in deterministic networks (7,
8) counts the occurrence number of subgraphs in the observed
network, estimates the corresponding mean and standard deviation
in the background ensemble, and calculates statistics to indicate the
significance of the subgraphs. The statistics are Z = (Nyca —
(Ntand))/std(Nrana) for regulatory networks and A = (Nyea —
(Ntand))/(Nreat + (Nrang) + €) for protein—protein interaction net-
works, where N, is the occurrence number of a certain subgraph
in the observed network, (Nrana) and std(Nyunq) are the correspond-
ing mean and standard deviation in the random ensemble, and ¢ is
a predefined positive number (8).

According to this method, the feed forward loop and the
deterministic bi-fan are overabundant in the deterministic regula-
tory networks; the triangle and the rectangle with one or two
diagonals are overabundant in the protein—protein interaction
networks. By comparison, both the feed forward loop and the bi-fan
are identified by our approach, but all show uncertainties (Table 1).
The triangle and the rectangle with both diagonals are identified in
the protein—protein interaction networks, both showing uncertain-
ties (Table 3). Furthermore, our method is capable of identifying
network motifs in stochastic networks, and the identified network
motifs show more uncertainties (Table 2).

Conclusions and Discussion

We propose a mixture model and an EM algorithm for identi-
fying network motifs in stochastic networks and identify several
stochastic network motifs with supporting biological evidences in
a wide range of biological interaction networks. Our approach
has several advantages.

First, our approach is based on a probabilistic network motif
model, which takes the intrinsic uncertainties of the network
building blocks into consideration. Consequently, our approach can
capture the stochastic properties of network motifs (e.g., the
stochastic bi-fan motif).

Second, we model networks using probability matrices. There-
fore, the intrinsic uncertainties and/or experimental noises can be

Jiang et al.

quantified by the probabilities of connections in the networks. As
a result, our approach is capable of finding stochastic network
motifs in stochastic networks (e.g., the stochastic network motifs in
the yeast regulatory network constructed by using the ChIP-chip
data).

Third, we use a unified probabilistic model and a single statistic
() for different types of networks and network motifs (directed and
undirected). Unlike other methods which use different statistics for
different types of networks (8), in our approach, different types of
networks share the same model, which enable us to estimate and
test the same statistic ().

The EM algorithm converges very fast but might be trapped into
some local optima instead of the true maximum likelihood config-
uration. Currently, we run the EM algorithm several times with
different starting points and choose the solution with the maximum
pseudo-likelihood. We find that our approach is quite robust. A
majority of repeats, although starting from different initial values,
eventually converge to the same motif (see the supporting infor-
mation for more details).

Another limitation of our approach is that stochastic network
motifs in our approach have fixed number of nodes. How to
generalize our model to deal with motifs with variable number of
nodes is one of our major considerations. Also, our approach is
currently limited to identify small motifs (n < 5), as are existing
methods (7, 8). The main difficulty is how to correctly and effi-
ciently estimate the statistical properties for the background en-
semble. Although approximation methods (21) are available, they
are not general enough (e.g., networks should be very sparse; the
constraint of fixing the occurrence of a certain kind of subgraph is
not considered). As for the simulation methods, the quality of the
estimation depends on the number of randomized networks sim-
ulated and the method to uniformly draw randomized networks
from the background ensemble. To obtain high-confidence esti-
mation, it is preferred to increase the number of simulated networks
and the randomization steps for the simulation, and this would be
very time consuming. In our current study, we resort to the parallel
computation technique to partially overcome this difficulty. Re-
cently, a highly efficient sequential importance sampling method
(22) became available and is promising to be extended to efficiently
and accurately estimate the background statistical properties for
networks with various constraints. The application of sequential
importance sampling to the network motif identification problem
would be another consideration.

Our stochastic network notion assumes that the presence and
absence of connections are independent events. Although this
assumption works well in our current research with the pseudo-
maximum likelihood framework, theoretical studies regarding the
application scope of this assumption are necessary. Our stochastic
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A subgraph and its isomorphic structures. (Left) A 3-node subgraph labeled by (100, 200, 300) in a certain graph. The adjacency matrix is obtained by

relabeling nodes as (1, 2, 3), respectively. (Right) Isomorphic structures of the subgraph. The isomorphic structures (top) have the same connectivity as the
subgraph but different adjacency matrices (middle), which is generated by permuting the node labels (indices of the matrices), as shown at the bottom.

motif model assumes that edges exist in subgraphs independently.
Although the presence/absence of an edge does not affect the
existence of other edges in the same subgraph, it does affect those
in other subgraphs. Therefore, our approach determines the prob-
ability of observing a subgraph without a bias, but there are
correlations between the probabilities of observing a set of sub-
graphs. How to make corrections to this correlation is another
consideration.

Methods

Graphs and Subgraphs. Without considering uncertainties, a net-
work (also interchangeably referred to as a graph) is a collection of
nodes and edges. In this article, nodes are labeled by numbers
starting from 1; edges can be directed or undirected. A graph with
N nodes is described by using an adjacency matrix A = (a;;)nxn. For
directed graphs, a; = 1 if there is a directed edge pointing from
node i to node j, and 0 otherwise. For undirected graphs, a; = 1 if
an undirected edge connects node i and node j, and 0 otherwise.
Adjacency matrices are symmetric for undirected graphs but not
necessarily so for directed graphs. For a node k, we define the in
degree I as the number of directed edges linking to it, the out
degree Oy as the number of directed edges starting from it, and the
mutual degree My, as the number of undirected edges connecting it.

A subgraph consists of a subset of nodes and corresponding edges
in a graph. Intuitively, we can relabel nodes in the subgraph by
numbers starting from 1 while keeping the order of the labels as in
the original graph. With this “canonical” relabeling, a subgraph S
with 7 nodes can be described by using an adjacency matrix X5 =
(X)nxn, where x;; is either 0 or 1 and is equal to the corresponding
element in the adjacency matrix of the graph. Relabeling methods
other than the canonical one may result in isomorphic structures for
the same subgraph. These isomorphic structures have identical
connectivity, describe the same subgraph by using different adja-
cency matrices, and can be mapped to each other by permuting their
node labels. Given the adjacency matrix corresponding to the
canonical labeling and a permutation of the canonical labels
represented by an n-tuple m = (my, .. m,,) a new adjacency
matrix X;, = (x,/ Vnxn correspondlng toa certam 1som0rph1c struc-
ture can be obtained by setting x;' = = Xpm, for i, j =1, ..., n.
Adjacency matrices for 1som0rph1c structures of a subgraph can
then be obtained by applying the above method on all permutations
of the canonical labels (enumerating the permutations is possible
when 7 is small). For an n-node subgraph, there are a total of n!
different permutations of the canonical labels and correspondingly
n! isomorphic structures. Note that some of the isomorphic struc-
tures may be identical. The relationship of a subgraph and its
isomorphic structures is illustrated in Fig. 3.

When considering the intrinsic and experimental uncertainties
associated with the networks, each pair of nodes in the network can
be assigned a probability, indicating the chance of having a con-
nection between the pair of nodes. In this case, a network with N
nodes is described by a probability matrix P = (m;)yxn, 0 = m5 =
1. 7 is the probability that two nodesi and; are connected. We refer
to networks in which connections are described by probabilities as
stochastic networks and to networks in which connections are

9408 | www.pnas.org/cgi/doi/10.1073/pnas.0507841103

described by the presence/absence of edges as deterministic net-
works. A stochastic network can be intuitively thought of as a family
of mutually similar deterministic networks, in each of which edges
exist independently with probabilities Pr(a; = 1) = ;. For this
reason, when talking about subgraphs in a stochastic network, we
actually refer to subgraphs in the family of deterministic networks.

Stochastic Network Motifs. A set of subgraph isomorphic structures
with similar adjacency matrices defines a network motif pattern Q,
which is described by a probability matrix @1 = (6;)uxn, 0 = 6 =
1. 6; means the probability that node i and j are connected. Motif
patterns are stochastic in that connections between nodes are
represented by probabilities.

Given an n-node subgraph isomorphic structure P described by
an adjacency matrix Xo = (X;),x» and an n-node motif pattern Q
described by a probability matrix ©,, the probability that the
subgraph isomorphic structure matches the motif pattern is calcu-
lated by

Pr(?|Q) = Pr(X,0,) = H He*'f 1- 6,9,

i=1 j=1

with the assumption that the presence and absence of edges are
independent events. The probability that a subgraph matches a
motif pattern is calculated by summing up all of the probabilities for
different isomorphic structures of the subgraph.

Given a set of subgraph 1somorph1c structures { P, }p | with P,
represented by adjacency matrix X, the motif pattern which can
maximize the probablhty of observmg the set of subgraph isomor-
phic structures is calculated as @, = DY 1X /P. For a set of
subgraphs, the motif pattern is derived by first determining for each
subgraph an appropriate isomorphic structure and then averaging
over the adjacency matrices corresponding to the determined
isomorphic structures.

A Mixture Model for Stochastic Networks. With the above concepts,
the network motif identification problem is described as searching
for statistically significant motif patterns in stochastic networks. For
a stochastic network, we first sample over the network to obtain a
set of subgraphs, and then identify significant motif patterns from
the sampled subgraphs. A stochastic network can be regarded as a
mixture of a foreground motif pattern embedded in a background
random ensemble with a probability A. In such a mixture network,
each subgraph can be thought of as either coming from the
foreground with probability A or from the background with prob-
ability 1 — A. The foreground model represents the motif pattern
and is described by a probability matrix ®,. The background model
represents the suitable random ensemble and is characterized by a
three-tuple ®y = {I, O, M}, where I, O, and M are the distributions
of the in, out, and mutual degrees for the stochastic network,
respectively. Given ®, we can simulate a number of randomized
networks with the degree distributions of ®,. Statistical properties
related to the background ensemble are then estimated by averag-

Jiang et al.
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ing over the ensemble of networks generated this way (23). With
background statistics ready, A and the foreground motif pattern are
estimated by using the following EM algorithm, and the significance
of the motif pattern is evaluated by testing the hypothesis A > 0.

The EM Algorithm for Parameter Estimation. For a set of W subgraphs
{8} sampled from the given stochastic network, each may come
from the foreground model % with probability Ay = A or from the
background model %, with probability Ay = 1 — A. For an
individual subgraph §,, let P, be the number of different isomor-
phicstructures and X, = (x;”),n (p = 1,. . ., P,;) the corresponding
adjacency matrices. We use random variables Zj; to indicate the
model from which &, comes. Z; = 1 if S, comes from the model
M, and 0, otherwise. Zy + Z} = 1 and Pr(Z;, = 1) = A, (h = 0,
1). We use another set of random variables Y}, to indicate which
isomorphic structure (with adjacency matrix X“@ should be used to
derive the motif pattern. Y}, = 1if the pth 1som0rphlc structure is
used for subgraph &, in the ~th model and 0, otherwise. = 71YW

1. Let X = {X}’} be all of the adjacency matrices for the sampled
subgraphs, Z = {Z}} and Y = {th} all of the indicators, and @ =
{7, O, O} all of the parameters. X is the observation and known.
Y and Z are unknown and should be treated as missing data. The
pseudo-likelihood function for the complete data {X, Y, Z} is
given as

W
w1 Py Zj

LOX Y, z) =[] [T|nIIPexii@nvie] . 1

w=1 h=0 p=1

We use an EM algorithm to iteratively estimate the parame-
ters that can maximize the pseudo-likelihood. In the E-step, we
calculate the expectation of the log pseudo-likelihood, condi-
tional on the observation X and the current estimation ©. In the
M-step, we maximize the expectation of the log pseudo-
likelihood to update ®. Repeating the E-step and M-step many
times, the algorithm will converge to an (possibly local) optimum
estimation of parameters ©®*. The detailed derivations of the
pseudo-likelihood function and the EM algorithm are presented
in the supporting information.

Estimation of Background Probabilities. Given an N-node stochastic
network represented by a probability matrix P = (m;)nxn, n-node
subgraphs (with canonical labeling) are sampled by generating a
number of K adjacency matrices {AF}5_, [with Pr(a 1) = mjand
Pr(a 0) = 1 — ] and then enumerating nX n submatrices in
each of them. Isomorphic structures corresponding to a certain
subgraph are obtained by permuting the canonical node labels of
the subgraph.

Pr(X3|0y) is the probability of observing a class of subgraph
1somorphlc structures with the adjacency matrix X)) in the back-
ground ensemble and is estimated as follows. For each generated
Ak, we randomly shuffle it many times while fixing the summation
of each row and each column to obtain an adjacency matrix
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corresponding to a randomized network that is uniformly drawn
from the background ensemble. When we repeat the random
shuffling process many times, we obtain a number of L adjacency
matrices {A}}/—, from A¥, with each of them corresponding to a
randomized network that has the same degree distributions as the
stochastlc network. Subgraphs are then sampled from the ensemble
of {AK} k=1,....,Kl= ,L), and their isomorphic structures
are enumerated Let N, be the number of subgraph isomorphic
structures with ad]acency matrix X and N the total number of
subgraph isomorphic structures enumerated Pr(X;|0p) is esti-
mated as N,/N. We generally use K =1,L =1 000 for highly
reliable networks (; is either 0 or 1), and K = 50, L = 100 for
networks with noises (0 = m; = 1).

In the case of n = 4, the number of subgraph isomorphic
structures in every n’ < n node isomorphic structure class should
be fixed while shuffling each A, to avoid assigning high significance
to an n-node motif pattern only because of the fact that it includes
a highly significant smaller motif (with n’ < n node). Besides the
existing simulated annealing strategy (7), we propose a newly
designed and more practical Monte Carlo simulation method for
this purpose, as presented in the supporting information.

Pseudo-Likelihood Ratio Tests for Statistical Significance Assessment.
We need to test the hypothesis Hy : A = 0 versus H; : A > 0. That
is, whether the mixture model can explain the sampled subgraphs
significantly better than the null model of the random ensemble.
An intuitive test statistic is the likelihood ratio —2log(Lo/L1),
where L; and L are the pseudo-likelihoods of the observed
subgraphs under the alternative and null models, respectively. L;
can be calculated by using the EM algorithm described above,
and L, can be easily calculated by using A = 0. Distribution of
this statistic is not clear, though, because the subgraphs are not
independent, making the likelihood defined in Eq. 1 a pseudo
one, and the parameter spaces for the alternative and the null
hypothesis are not open sets, making the x? approximation
invalid. Therefore, we use a simulation method as described
below to evaluate the significance. This approach does not
depend on any of the two limitations.

1. Run the EM algorithm over the given stochastic network to
obtain the best estimation of parameters @* and the expected
maximum log pseudo-likelihood ratio LR*.

2. Generate a number of K networks with the same degree
distributions as the given network. Run the EM algorithm over
each of them to obtain the maximum log pseudo-likelihood ratio

LRy, ..., LRk

3. Count the number of times L/}?k = LR* for k=1,...
p value is then approximated by p = K/K.
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