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Abstract

Background

Determining the functions of uncharacterized proteins is one of the most pressing
problems in the post-genomic era. Large scale protein-protein interaction assays, global
mRNA expression analyses and systematic protein localization studies provide
experimental information that can be used for this purpose. The data from such
experiments contain many false positives and false negatives, but can be processed using
computational methods to provide reliable information about protein-protein relationships
and protein function. An outstanding and important goal is to predict detailed functional
annotation for all uncharacterized proteins that is reliable enough to effectively guide

experiments.

Results

We present AVID, a computational method that uses a multi-stage learning framework to
integrate experimental results with sequence information, generating networks reflecting
functional similarities among proteins. We illustrate use of the networks by making
predictions of detailed Gene Ontology (GO) annotations in three categories: molecular
function, biological process, and cellular component. Applied to the yeast Saccharomyces
cerevisiae, AVID provides 37,451 pair-wise functional linkages between 4,191 proteins.
These relationships are ~65-78% accurate, as assessed by cross-validation testing.
Assignments of highly detailed functional descriptors to proteins, based on the networks,
are estimated to be ~67% accurate for GO categories describing molecular function and

cellular component and ~52% accurate for terms describing biological process. The



predictions cover 1,490 proteins with no previous annotation in GO and also assign more
detailed functions to many proteins annotated only with less descriptive terms.
Predictions made by AVID are largely distinct from those made by other methods. Out of
37,451 predicted pair-wise relationships, the greatest number shared in common with

another method is 3,413.

Conclusions

AVID provides three networks reflecting functional associations among proteins. We use
these networks to generate new, highly detailed functional predictions for roughly half of
the yeast proteome that are reliable enough to drive targeted experimental investigations.
The predictions suggest many specific, testable hypotheses. All of the data are available
as downloadable files as well as through an interactive website at http://bmc-

140.mit.edu/avid. Thus, AVID will be a valuable resource for experimental biologists.

Background

High-throughput technologies, including genome sequencing, expression profiling, and
large-scale interaction and localization assays, have provided a wealth of data about
proteins and their properties, particularly for the model organism Saccharomyces
cerevisiae [1-5]. The process of inferring functional information from these data is not
straightforward. The data are not of uniformly high quality and must be weighted in an
appropriate way [6-8]. Computational methods such as machine learning hold promise
for this task, but they require a clear definition of “protein function”. Gene Ontology
(GO) has emerged as a unifying framework that makes it possible to carry out

computational function annotation [9].
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GO uses expert curation to systematically describe the role of proteins in the cell. Three
hierarchical ontologies are used: molecular function (MF) describes the specific
molecular task performed by a protein, biological process (BP) describes the broader
biological activity a protein participates in, and cellular component (CC) describes the
subcellular location or complex where a protein is found. The deeper an annotation is in
one of the GO hierarchies, the more informative and specific it is. For example, at a low
level the yeast protein Mcm?2 is annotated with ‘“catalytic activity” as a molecular
function, but at the most detailed level of the MF hierarchy its description is “ATP-
dependent DNA helicase activity”. Similarly, Mcm2’s biological process of “cell growth
and/or maintenance” is refined to “DNA unwinding”, and the general descriptor
“nucleus” is refined as “pre-replicative complex™ at the most descriptive level of the CC
classification. An important goal is to provide the most detailed possible annotations for
all proteins. Currently, however, only ~60% of the S. cerevisiae proteome has annotation
at the most descriptive level of at least one of the MF, BP or CC classifications.

Many groups have explored computational analysis as a way to expand functional
assignments. For example, the genomic context of a gene can reveal functional
relationships, especially in prokaryotes, as can patterns of co-evolution [10-12]. Several
methods have been proposed for using experimental protein-protein interaction networks
to assign functional descriptors to unknown proteins on the basis of their interaction
partners [13-17]. Other researchers have developed methods for combining multiple
sources of data [11, 12, 18, 19]. Troyanskaya et al. used a Bayesian approach to increase
the accuracy of functional predictions of GO BP terms [20], and Jansen et al. predicted

new members of protein complexes in this way [21, 22]. Tanay et al. (2004) integrated



several sources of experimental data to generate statistically significant protein
“modules” and used the modules to assign GO BP terms to 874 uncharacterized yeast
proteins [23]. Most recently, Lee et al. used a Bayesian framework to build networks
reflecting functional relationships between 4,677 yeast proteins [24].

We present a method called AVID (Annotation Via Integration of Data) for predicting
functional relationships among proteins. AVID integrates the results of high-throughput
experiments, and incorporates sequence data, to build unified, high-confidence networks
in which proteins are connected if they are likely to share a common annotation. We
illustrate one use of these networks by treating functional annotation as a classification
problem and assigning GO terms to individual proteins based on their neighbors in the
networks. AVID is distinct from previous computational function prediction methods in
several ways that will make it a useful tool for experimental biologists. First, AVID
predicts functional annotation in all three GO categories: MF, BP and CC. This provides
a more complete view of an uncharacterized protein’s possible role in the cell than any
single term alone. Second, the functional terms predicted by AVID are very detailed. We
adopted only the most specific terms in GO as a list of possible annotations and refer to
these as AVID GO terms. AVID GO terms have no functional subcategories. There are
841 AVID GO terms for MF, 602 for BP and 192 for CC that are used for yeast. Such
terms are considerably more useful than general ones, and they are also harder to predict.
Third, by considering five different types of input data, AVID achieves good coverage;
we report here predictions of new GO terms for about half of the yeast genome. Fourth,
AVID is reliable. The functional networks generated are 65-78% accurate and annotation

of proteins is 52-67% accurate. The trade-off obtained between coverage and accuracy is



superior to that obtained using a naive Bayesian framework. Finally, AVID predicts
relationships among proteins that are largely distinct from those that have been suggested
by other computational methods [12, 13, 20, 21, 24-26].

Here, we describe three stages used in AVID to construct functional correlation
networks and a fourth stage that is used to assign specific functions to individual proteins.
We report the estimated accuracy of AVID at different stages using known data. Then we
describe the results of applying AVID to the entire yeast proteome to generate new GO

annotations.

Results and discussion

Description and performance of the four stages of AVID

Figure 1 outlines the multi-stage method and its application to predicting the MF of
unannotated protein YOL137W. AVID can be regarded as a filtering process. Initially, all
proteins are considered as potentially functionally related. Stages 2 and 3 remove lower
confidence associations. The links remaining after stage 3 form networks that contain a
wealth of information about functional similarity. These networks are the primary output
of AVID, and in stage 4 they are used to assign specific functional terms to individual
proteins.

In stage 1, diverse features, such as the presence or absence of sequence similarity, or
the observation of a protein-protein interaction, are considered as potential indicators of
whether two proteins share an AVID GO term (Table 1 and additional file 1). For each
type of evidence, i, and each GO category, j = { MF, BP, CC}, we define a correlation

AVIDI

coefficient to describe how well the evidence predicts functional similarity. For



all three ontologies, MF, BP and CC, there is a weak positive correlation between the
experimental observation of an interaction (by yeast 2-hybrid or by co-purification) and
similarity of annotation. Sequence similarity is correlated with MF and BP, but less so
with CC, consistent with the expectation that evolutionarily related proteins frequently
have related functions but act in diverse parts of the cell. The cellular localization data of
Huh et al. [1] correlate positively but very weakly with CC. This is because GO cellular
components, at the most detailed level, are protein complexes that are much more
descriptive than this experimental localization data. AVID GO terms in the CC
classification should often, in fact, be regarded as descriptions of protein interaction
rather than cellular localization. Thus it is not surprising that, e.g., two proteins sharing
the location “nucleus” have a low probability of participating in the same complex (and
thus sharing an AVID GO CC term). Gene co-expression profiles correlate with all three
GO functional types; the higher the Pearson correlation between two expression profiles
is, the more likely the two proteins share a GO term of any kind. Most of the correlations
between data and function are very weak; none of the correlation coefficients are greater
than 35%. Nevertheless, differences between the (+) and (-) data sets (see Table 1) make
these sources valuable for inferring functional similarity.

Stage 2 is a filter that combines data sources and removes protein pairs that lack
sufficient evidence of functional relatedness. For each pair of proteins, a PjAVID2 value is
defined as the product of the normalized conditional probabilities PijAVIDl from all sources
of evidence in stage 1. Tests using known proteins show that pairs with a PjAVID2 value

greater than 12.8 have more than 66.8%, 45.8% or 69.3% probability of MF, BP or CC

relatedness (Figure 2A). Pairs with PjAVID2 < 12.8 are not considered further. Good



coverage is preserved using this cutoff: 60.8%, 74.0% or 79.0% of proteins in test sets
with existing MF, BP or CC annotation are retained by the filter.

To improve accuracy while still making predictions for a large number of proteins, a
machine learning scheme (a decision tree) is employed in stage 3 [27]. The tree takes the
stage 1 conditional probabilities as input, and returns a binary decision about whether two
proteins are likely to share a function. The entire process used to predict the similarity of
three pairs of proteins is illustrated in detail in additional file 2, which includes diagrams
of the decision trees for MF, BP and CC.

Stages 1, 2 and 3 result in the construction of a reliable protein correlation network for
each of the GO functional types. The three networks relate proteins likely to share a
similar function or be part of the same protein complex. Ten-fold cross-validation testing
using proteins with existing GO annotation showed that 77% of MF, 65% of BP and 78%
of CC pair-wise relations predicted in stage 3 were correct. Furthermore, 1,432 proteins
(55.4%), 1,122 proteins (48.6%) and 974 proteins (72.3%) for MF, BP and CC,
respectively, were retained in pairs judged to have functional similarity after stage 3.
Alternative machine-learning strategies were tested but did not show any improvement in
performance. All of the stages employed to construct the networks are important. In
particular, a decision tree applied to unfiltered data was not as effective, resulting in 4-
21% reduced coverage and 2-3% reduced accuracy for BP and CC, and ~10% reduced
accuracy for MF, compared to the full 3-stage process.

In stage 4, a “majority rule” algorithm is used to annotate uncharacterized proteins
based on the correlation networks. AVID often predicts several GO terms for a protein.

The average number of functions predicted (compared to the number of existing



annotations in GO, in parentheses) is 2.19 (1.45) for MF, 1.95 (1.07) for BP, and 1.87
(1.14) for CC. In testing, if any of the AVID predictions were identical to an existing GO
annotation the prediction was counted as correct. If one term was correctly predicted, all
terms were correctly predicted 85% of the time for MF, 74% of the time for BP and 83%
of the time for CC.

Figure 2B shows that the success rates for predicting AVID GO terms in stage 4 depend
on the fraction of proteins treated as unknown in the networks during testing. If only 10%
of proteins have known function, the success rate for the remaining 90% (the test set) is
only 30-50%. However, if functions are known for 90%, the remaining 10% of proteins
can be annotated with 65-75% accuracy. Whereas the assessment data in Figure 2B are
based on reference sets of annotated proteins, divided into training and testing sets, the
actual fraction of yeast proteins currently unannotated at the AVID GO level is 56.4%,
56.5% and 70.3% for MF, BP and CC, respectively. Thus we can use Figure 2B to
estimate that MF, BP and CC prediction success, when applied to the entire proteome,
will be ~67%, ~52% and ~66%, respectively. As more proteins are annotated, predictive
accuracy for unknown proteins will improve further.

As mentioned above, AVID predicts 1.5 to 1.8 times as many AVID GO terms per
protein as already exist in GO. This is expected, because current annotation is
incomplete. In tests on annotated proteins, the percentage of functional terms predicted
by AVID that are already included in GO is 46%, 33% and 47% for MF, BP and CC,
respectively. We recover 63% (MF), 44% (BP) and 60% (CC) of previously annotated

AVID GO terms.



New networks including unannotated S. cerevisiae proteins

We applied AVID to the entire yeast proteome, generating three new networks that
include proteins for which detailed AVID GO annotation is not yet available. These
predicted networks have similar connectivity to the networks generated from existing GO
data for testing. The average numbers of edges per node in the testing networks were
10.2, 8.2, and 17.2 for MF, BP and CC, respectively, whereas in the prediction networks
these averages were 13.4, 8.7 and 12.5. The distribution of connectivities in the different
networks are provided in additional file 3. Using the predicted networks, we made two

types of functional predictions. All predictions are available in additional files 4 and 5.

Refined predictions

First, we predicted a more detailed function or location for proteins previously
characterized only at less descriptive levels in GO, we refer to these as refined
predictions. We evaluated whether refined predictions are consistent with existing
coarser annotations at GO levels 2, 3 and 4 for MF, BP and CC, respectively. An AVID
GO prediction was judged consistent with a coarser one if the less descriptive term is its
ancestor in the GO hierarchy. There are 17 functional categories in MF level 2, 24
functional categories in BP level 3 and 40 functional categories in the CC level 4, so this
comparison is a non-trivial test. Because the definition of “level” can be ambiguous, the
categories used are listed in additional file 6.

Table 2 summarizes the results; refined predictions are 75 - 87% consistent with
existing coarser annotations. Note that these coarser annotations were not used by AVID

in any way when predicting specific terms. This indicates that new AVID GO terms,
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when traced back to MF level 2, BP level 3 or CC level 4, are 75-87% accurate. This
estimate is higher than the accuracy for predicting AVID GO terms themselves because it
is easier to assign more general functions correctly. For cases in which a refined AVID
prediction is not a subcategory of existing GO annotation, we identified many cases
where the prediction is, nevertheless, biologically relevant. In a trivial example, AVID
assigns YOR244W (Esal) a MF of “chromatin binding”. Our formal accounting treated
this as incorrect in testing because “chromatin binding” is not a sub-category of the
existing GO term for Esal, “histone acetyltransferase activity”. However, Esal catalyzes
acetylation of chromatin substrates [28], so the disagreement in this test is merely an
artefact of the structure of GO. This suggests that refined AVID GO predictions are more

consistent with existing biological knowledge than the estimate of 75-87%.

Novel predictions

In a second type of prediction, we assigned one or more AVID GO terms to proteins
without any existing annotation in GO at any level, we refer to these as novel predictions.
Note that these are novel in the sense that they annotate proteins not previously included
in GO. Other sources of evidence regarding function may exist, e.g. in the literature or at
the Saccharomyces Genome Database (SGD) [29]. We made novel MF predictions for
950 proteins, novel BP predictions for 504 proteins and novel CC predictions for 907
proteins (Table 2). The refined and novel predictions for MF, BP and CC together cover
51% of the yeast proteome and, when combined with existing annotations, provide AVID
GO descriptors for ~80% of yeast proteins. Cross-validation testing indicated that these

predictions are ~52-67% accurate (previous section). The accuracy of specific novel
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predictions is hard to evaluate systematically, but we assessed the plausibility of a subset
of both our refined and novel predictions using the experimental data of Hazbun et al.
[30], which were not included in the version of GO used to develop our method. In this
work, 100 uncharacterized open reading frames were labelled with a tandem affinity
purification tag. Mass spectrometry was used to identify proteins that form a complex
with the gene product of interest. Overlap with the high-throughput affinity purification
data used as input to AVID was very low (7%). For each novel annotation predicted by
AVID for a protein localized to a complex by Hazbun et al., we classified it as GO-
consistent if another member of the complex had the same annotation in GO, and as
AVID-consistent if another member of the complex had the same annotation predicted by
AVID. We found that ~46% of MF, ~16% of BP and ~27% of CC predictions were GO-
consistent; ~73% (43 out of 59) of MF, 63% (27 out of 44) of BP and 71% (45 out of 62)
of CC predictions were GO- or AVID-consistent. Among the annotations not formally
classified as GO- or AVID-consistent some are nevertheless clearly relevant. For
example, AVID assigns “mitotic chromosome segregation” to YNL313C. In the Hazbun
experiments, YNL313C co-purified with Tub3p, and Tub3p is annotated in GO with the
very similar term ‘“homologous chromosome segregation”. Thus, AVID predicted the
functional similarity of YNL313C and Tub3, and this was supported later by the co-
purification of these proteins. Notably, the AVID prediction of similarity of YNL313C
and Tub3 did not come directly from experimental evidence; there is no direct edge
between these two proteins in any of the AVID networks.

AVID predictions of MF, BP and CC were made using different weighting of the input

data, different functional categories and different stage 3 correlation networks. For 85
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proteins, AVID provided novel predictions in all three of these categories. In many
examples, the three novel predictions are related and consistent (additional file 7). Here
we list several examples from these 85 proteins where experimental data, or descriptions
in SGD, support our predictions. First, YOR179C (Sycl) was assigned by AVID a BP of
“mRNA polyadenylation”, a MF of “cleavage/polyadenylation specificity factor activity”
and CCs of “mRNA cleavage factor complex” and “cleavage and polyadenylation
specificity factor complex”. GO annotation added after our predictions were completed
assigned YOR179C “mRNA cleavage and polyadenylation specificity factor complex™ as
a cellular component, based on the experiments of Nedea et al. [31]. In another example,
AVID assigned “tRNA-intron endonuclease activity” (MF), “tRNA splicing” (BP), and
“tRNA-intron endonuclease complex” (CC), to YLR375W (see additional file 2). SGD
lists the description “involved in pre-tRNA splicing and in uptake of branched-chain
amino acids” for YLR375W, although this information is not included in GO or
supported by literature references at SGD [29]. In a third example, AVID assigned
YELO18W (Eaf5), YER092W (Ies5) and YDLO02C (NhplO) to “histone acetylation”
(BP), “chromatin binding” (MF), and “nucleosome remodelling complex” (CC); SGD
reports for Eaf5 the description “subunit of the NuA4 acetyltransferase complex”, and for
Ies5 “protein that associates with the INO80 chromatin remodelling complex under low-
salt conditions”. The involvement of Nhp10 in chromatin remodelling is also supported
by Shen et al. [32]. Similar consistency among MF, BP and CC predictions supports the
annotation of YBR043C, YIL121W (Qdr2) and YOL137W (Bsc6) as plasma membrane-
associated proteins involved in glucose transport and/or galactose metabolism and the

assignment of YER084W, YGRO17W, YLR154C (Rnh203) and YPLO14W as being
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related to (possibly regulating) protein kinase CK2 activity. Many other suggestive
examples are available in additional file 7.

We have constructed an interactive web server that allows users to individually trace
the data that contributed to any prediction [33]. For example, to understand the origins of
the MF prediction made for YOL137W, shown in Figure 1, a user can look up the
identities and functions of all neighbors of this protein in the stage 3 networks. For each
neighbor, we provide information about what experimental or sequence data was used to
establish the relationship, as well as the stage 1 weight assigned to that data source, and
an additional measure of confidence from the decision tree processing (see Methods). We
also give its status as “known”, “refined” or “novel”. This makes it possible to establish,
for example, that YOL137W was assigned GO term 0005355 (“glucose transporter
activity”’) because the majority rule vote by neighbors of known function was won by
YOL156W and YDL138W, which share GO term 0005355. The association of these
proteins with YOL137W was determined primarily from sequence similarity and mRNA
co-expression. Users can also see, however, that YOL137W is predicted to share
functional similarity with other proteins, e.g. YOL103W (GO:0005365, “myo-inositol
transporter activity”), also on the basis of sequence similarity and mRNA co-expression.
This demonstrates how examining AVID network relationships can provide a broader

picture than the stage 4-assigned terms alone.

Comparison to other methods

A variety of methods have been proposed in the literature for the computational
annotation of protein function, but these are difficult to compare given the lack of

adequate “gold standard” data sets for universal testing. There are further obstacles to
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rigorous comparison. First, groups formulate the function prediction problem differently.
For example, our use of highly specific GO terms is distinct from the generally broad
(and widely varying) functional classifications used by others. Second, methods use
different sources of evidence and training sets. Finally, various methods provide different
forms of output, ranging from sets of pair-wise relationships between proteins to
functional modules to specific functional annotations.

Bayesian frameworks are popular for data integration problems, and have been applied
to the prediction of protein functional similarity and protein-protein interactions [20, 21,
24]. To compare the AVID framework rigorously with a naive Bayesian net, we
implemented the method of Jansen et al. [21] and applied it to our set of reference
proteins. As shown in Figure 4, AVID stages 1 and 2 perform comparably to this
formalism for MF and BP, although they out-perform it for CC. With the addition of the
decision tree in stage 4, however, the trade-off between accuracy and coverage improves
significantly for AVID. Whereas both methods are good at making high-confidence
predictions at low coverage, the AVID framework maintains much better true positive to
false positive ratios than the naive Bayes net at higher coverage.

Although implementing and comparing a large number of other approaches for the
same data is beyond the scope of this work, we can compare overall results obtained by
different groups. This turns out to be interesting and surprising. For six published
methods that generate pair-wise relationships among yeast proteins, we compare the
coverage and overlap of the predicted associations in Table 3. We compare methods at
roughly comparable levels of accuracy to that of AVID (~70%), using estimates of the

original authors. AVID predicts 37,451 relationships among 4,191 proteins. Lee et al.
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([24], referred to here and in Table 3 as “MARCOTTE”) also obtain very high coverage:
33,919 high-confidence associations among 4,677 proteins. STRING further predicts
23,345 functionally related pairs. However, the largest overlap between any two methods
in Table 3 is only 9,873 pair-wise associations predicted by both MARCOTTE and
STRING [12, 26]. Both of these methods use genomic context as an important predictive
element. AVID does not consider genomic context and shares only 3,413 predictions with
STRING. These make up 9% of the total AVID predictions, and no other method shows
greater overlap. Out of 37,451 high-confidence associations predicted by AVID and
33,919 by MARCOTTE, only 3,020 of these are in common. In light of the fact that all
methods show incomplete coverage and imperfect accuracy, the distinct predictions made
by different methods are a significant advantage because they provide alternatives that

can profitably be considered by experimentalists.

Conclusions

Computational annotation of the proteome has a critical role to play in post-genomic
analysis. Although hypotheses about function can often be reached by carefully reading
the literature and critically examining high-throughput data, computation can speed and
assist this process. Further, computational methods can help discriminate reliable data
amidst false positives and negatives. As a tool for this purpose, AVID notably provides
functional descriptors at a high level of detail. The strategy of predicting MF, BP and CC
terms also provides a more comprehensive description of protein function than many
alternative approaches. Finally, AVID performs better than simple naive Bayesian
integration, and the predictions of AVID are largely distinct from those that have been

made by other methods.
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The stage 3 networks generated by AVID are very accurate (65-78%) and are useful in
the absence of stage 4. The specific predictions made in stage 4 are accurate enough to be
of practical utility, but they do have limitations. The imperfect majority rule algorithm
will sometimes select one function over others that may be equally relevant. Further,
because we consider only the most detailed GO categories in training and prediction,
some predictions will be incorrect because they are overly specific, even when they
correctly reflect the general cellular role of a protein. For these reasons, consideration of
the entire stage 3 functional networks is likely to be most useful to experimental
biologists. Other algorithms for assigning function based on the AVID networks may
give better performance. This is an active area of research [13-16].

AVID can be used to assign new proteins to existing GO functional categories. The
catalogue provided by GO is incomplete, however. Accurate descriptors have not yet
been defined for all possible functions, processes and compartments. Because of this,
proteins with new functions will not be successfully assigned by AVID. Within the
limitations imposed by GO, however, performance on novel proteins may be better than
estimated by our testing. When assessing the performance of stage 4, we treated known
proteins as unknown. This reduced the size of the training set for stage 3 to less than half
of that available when making new predictions; this decreases predictive accuracy.
Furthermore, most proteins have more than one function, and many are found in more
than one cellular compartment or complex. When assessing AVID stage 3, predicted
functional similarities among test proteins that are not yet annotated in GO are counted as
wrong and thus reduce the estimated success rate, even though many are likely to be

correct.
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Algorithmic function prediction can be approached from different perspectives, and it
will be important for computational biologists to explore various formulations of the
problem as well as solutions to it. Ultimately, the value of any approach will be justified
through the cumulative success of experiments that it inspires. Our functional networks
provide numerous candidate proteins for involvement in important biological processes.
Biologists who consult AVID as part of their work are likely to find new predictions of
function for their genes of interest that are accurate enough to guide experimental
characterization. Thus, AVID is sure to provide a useful resource for the yeast

community.

Methods

Data sources

To establish sequence similarity, 6,449 protein sequences from the yeast proteome
were downloaded from MIPS [34]. Each sequence in turn was used as a PSI-BLAST
query against the entire yeast proteome. Proteins with an E-value less than 0.001 after
three iterations of PSI-BLAST were defined as similar to the query sequence [35]. A total
of 66,833 similar pairs involving 3,631 proteins were identified in this manner.

A list of high-throughput yeast two-hybrid interactions was obtained from MIPS (file
PPI_120803.tab) that included 6,620 pairs among 3,579 proteins (not including 214 self
interactions) detected by the high-throughput yeast two-hybrid assays of Uetz and Ito [4,
5, 36]. Small-scale yeast two-hybrid experiments were not included.

Protein complex file complex052102.tab was downloaded from MIPS. Among these

proteins, 67,569 pair-wise relationships were defined between 2,696 proteins reported to
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occur in the same complex [2, 3]. Within a complex, every protein was assigned an
interaction with all others.

We used the cellular localization data of Huh ez al. [1, 37]. A link was assigned to two
proteins if they were reported in the same cellular compartment, without considering
~270 proteins with ambiguous localization. This led to the construction of 975,891 pairs
among 3,883 proteins. In Table 1 this data set is called “UCSF localization”.

The data GDS124 was downloaded from NCBI Gene Expression Omnibus [38]. We
used cdcl5 block-release time course mRNA expression from the yeast cell cycle. These
data consist of 24 time points taken during the course of almost three full cell cycles. We
computed the Pearson correlation for each of 19,734,903 pairs among 6,283 proteins.

Yeast protein annotations and hierarchical terms for biological processes, molecular
functions and cellular components were downloaded from GO [39]. We only considered
annotation categories that do not have any sub-categories. We call these AVID GO terms.
A pairing link is assigned to two proteins if they share an AVID GO term.

Data from small-scale experiments were not used. We found that small-scale
experiments are already largely captured by existing GO annotation. Furthermore, as
implemented, the results we obtain with AVID reflect what is likely to be possible in
other organisms, where high-throughput data sets will soon far outnumber small-scale

experiments.

Stages of AVID
The following stages were carried out separately for MF, BP and CC.
AVID stage 1 - correlation analysis. We considered five features, fj, that characterize

pairs of proteins. Four of these features are either present (f;") or absent (f;") for a protein
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pair: co-localization, two-hybrid interaction, co-occurrence in a complex and sequence
similarity. A fifth feature, mRNA expression profile correlation, was described by the
Pearson correlation coefficient R. R values were binned into 19 intervals. We considered
three GO categories, GO; (one of MF, BP, CC). Conditional probabilities were defined
using only the set of proteins, s;;, that had records for both f; and GO;. GOj;  is the set of
all protein pairs among s;; that share an AVID GO;j term. For each feature, i, and GO
category, j, we computed the conditional probability that a pair of proteins that share
feature f; also share some AVID GOj annotation term: PijAVID - P(common GO
termlcommon data feature) = (pairs in GOijJr with fj)/(pairs with f;). Because protein pairs
lacking a relationship (e.g. an interaction) are frequently not reported, the number of such
negative pairs was defined as {(possible pairs among p) — (pairs observed to have the
corresponding positive feature) }. The correlation coefficients PijAVIDl were normalized by
a factor [ = 0.01/[(pairs in s;; and in GOij+)/(pairs among s;j)] to account for the different
sizes and compositional biases of the sets s;;. The value 0.01 is a reference constant used
in place of PijAVID ! for protein pairs without records in fj; it is approximately the
probability that two randomly chosen proteins will share an AVID GO term. The analysis
is insensitive to the value chosen for this constant.

AVID stage 2 - combining data to build a network of correlations. Each pair of proteins

AVIDI
P; terms for

in the positive and negative reference sets was described by a set of five
each of MF, BP and CC; the reference value 0.01 was used when feature data was
missing (see above). In stage 2 we computed PjAVID % = I1;100e PijAVIDl. Pairs of proteins

with P*V"®2 < 12.8 for MF, BP and CC were not considered further. This cutoff was

chosen to achieve a good compromise between accuracy and coverage, which can not be

20



simultaneously optimized. Coincidentally, the 12.8 value was reasonable for all three GO
categories.

AVID stage 3 — decision tree. In stage 3, the PijAVIDl values from stage 1 for protein pairs

that passed the stage 2 filter were used as the input to a decision tree that retuned a binary
decision about the presence or absence of functional similarity [27]. Decision trees
provide a supervised machine learning scheme for classification and can analyze
hierarchical complex relationships. The idea is to recursively subdivide a training set of
examples into homogeneous groups, using discriminating attributes. The attribute
selection criteria are based on a measure of informational entropy. At each decision point,
an attribute is chosen so as to result in the best discrimination of the data into classes.
After training, a set of complex rules is represented as a tree structure where non-terminal
nodes represent tests on one or more attributes and terminal nodes reflect decision
outcomes. We adopted java source code from Weka [40] for the implementation of the
decision tree. J48 is an extension to the C4.5 algorithm by Quinlan [41]. It uses a
recursive “divide and conquer” strategy to generate a decision tree from the training data.
The input training data consist of a list of examples with attribute values and a class label
(in our case it is YES or NO to represent correlation or not). Following Zhang et al. [19],
we computed a measure of confidence in different paths through the final trees used for
making new predictions. This measure is the probability that the decisions made to reach
a particular terminal node correctly classified reference data; it is defined for each
terminal node and is assigned to each protein pair partitioned to that node. These values

are available at the AVID web site.
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AVID stage 4 — assigning functions based on correlations. Pairs predicted to be
functionally related by the decision tree in stage 3 comprise three correlation networks
(one each for MF, BP and CC). In stage 4 these networks are used to classify unknown
proteins based on their relationships to categorized neighbors. We assigned functions to
unclassified proteins on the basis of the most common function(s) present among their
annotated neighbors (the “majority rule” approach) [17]. Wherever possible, functions
were assigned based only on GO-annotated proteins. When this was impossible (e.g. no
neighbors had known functions), subsequent rounds of majority rule were used to assign
functions on the basis of predicted annotations for neighbors. We also tested several
iterative methods, such as those discussed by Vazquez et al. [14], but did not find any

improvement in performance.

Cross-validation testing

The performance of the AVID framework was evaluated using cross-validation testing by
splitting the data into training and test sets prior to the stage 1 correlation analysis. We
defined test sets in which increasing percentages (n) of the reference proteins were
treated as unknown. The remaining 100-n% of proteins constituted the training set and
were used in stages 1, 2 and 3 to generate a predictive model. This model was applied to
the entire reference set to generate functional correlation networks. In these networks, the
n% of proteins making up the test set remained unannotated. One or more functions were
assigned to them using majority rule, and these predictions were compared to original
terms assigned by GO. If at least one AVID GO term matched, the annotation of that
protein was counted as correct. Accuracy was defined as the number of proteins with > 1

correctly predicted AVID GO term divided by the number of proteins treated as
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unannotated. For each value of n, ranging from 10 to 90%, 100 random test sets were
analyzed (for each of MF, BP and CC). The results reported are the average of all trials,

with error bars in Figure 2b showing the standard deviations.

Comparison with other methods

We compared AVID with a naive Bayesian network approach used by Jansen et al.
[21], which is described in detail in the supplementary materials of that reference. In this
formalism, the probability of two proteins sharing functional annotation, given evidence
sources fi...f, is proportional to the likelihood ratio L: L(f;...f;) = P(f;...f,lfunctional
similarity)/P(f;...f,Ino functional similarity). Data features f;...f, are defined above in the
section describing AVID stage 1. L can be computed from contingency tables relating
these data features with pairs of reference proteins that are and are not functionally
related. These tables are given in additional file 8. Figure 4 compares the performance of
AVID stages 1 and 2, AVID stages 1-3 and the naive Bayes approach by plotting the
ratio of true positives to false positives (TP/FP) as a function of sensitivity (defined as
TP/P) for reference data. We generated data at various values of TP/FP and TP/P by

varying the values of L and the cutoff for PjAVIDz.

In Table 3 we compare data from other studies with the content of the AVID functional
correlation networks. The following datasets were downloaded from the indicated
sources. The cutoff applied (if any) was chosen based on the original reference to
generate “high-confidence” protein pairs. Where possible, as detailed below, the cutoff
was chosen to result in roughly 70-80% accuracy, to match the estimated accuracy of the
AVID pairs. The numbers reported for AVID include edges predicted for all three

networks (MF, BP and CC); no protein pair was counted more than once.
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1. MARCOTTE. “ConfidentNet”, file 1099511s1_5.zip, from the supplementary
materials of Lee et al. [24]; the top 34,000 pairs were used. These data are estimated by
the authors to be as accurate as small-scale experiments; possibly greater than 70%
accurate.

3. STRING. From the STRING database at [42], the file links_high_confidence_v5_1.txt
[12, 26]. This data set is reported to be > 75% accurate.

6. PIP_600. From the work of Jansen et al. [21], file L_cut_PIP_600.tar from [43]. These
predictions are theoretically estimated to be ~50% accurate.

4. LIANG. From the work of Samanta and Liang [13], all pairs with p < 10°® from [44].
These data are reported as ~70-75% accurate for predicting similarity in broad categories.
2. MAGIC From the data of Troyanskaya et al. [20], predictions.txt from [45]. We used
two data sets, one with a probability of being functionally related of >50%, the other with
>70%.

5. SCHLITT. File Schlitt-11114_supp_3.txt, with p <0.01, from the supplementary
material of [25]. This p-value cutoff was used in the paper, but what accuracy it

corresponds to isn’t established.
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Figure legends

Figure 1. Overview of AVID, using prediction of the molecular function of

YOL137W as an example.

Initially, YOL137W is treated as potentially functionally related to 6,448 other yeast

proteins (not shown). Stage 2 prunes this to 30 putatively similar proteins, and the stage 3

decision tree further reduces this list to eight high-confidence neighbors. See additional

file 2 for a description of the decision tree. In stage 4, five of the eight neighbors of

YOLI137W have existing AVID GO annotation (boxed) and “vote” to assign the GO term
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GO:0005355. After stage 4, proteins with known annotation in the figure are boxed, those
with novel predictions are shown in diamonds and the function of YGR224W, in a
hexagon, is a refined prediction. The estimated accuracy of predicted functional
similarities (in stages 2 and 3) and annotations (in stage 4) are given in italics (see
Methods). MF: molecular function; BP: biological process; CC: cellular component.

Rosette figures generated using Graphviz [46].

Figure 2. Evaluation of stages 2 and 4 using known proteins.

(A) To evaluate the performance of a simple product model in stage 2, PjAVlD ? was
calculated for each pair of proteins in an annotated reference set. The plot shows the
fraction of protein pairs at different PjAVID ? cutoffs that share an AVID GO term. Pairs
with PjAVID % < 12.8 were not considered in stages 3 or 4. (B) A varying percentage of
reference proteins was omitted from the entire training procedure and used as a test set.
Functions for these proteins were predicted in stage 4, and the plot shows the success rate
for correctly predicting at least one existing GO term at the highest level of annotation.
The arrows indicate the expected performance for predicting new functions based on the
current status of annotation of the yeast genome. Error bars show the standard deviation

from 100 random cross-validation trials. MF (diamonds), BP (squares) and CC

(triangles).

Figure 3. GO and AVID annotations of proteins localized to an experimentally

identified complex.

The complex shown at left was identified using co-purification/mass spectrometry by

Hazbun et al. [30]. On the right, proteins with known AVID GO terms are shown as
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circles; proteins with refined AVID predictions are shown as triangles, proteins with
novel AVID predictions are shown as squares. Colors represent AVID GO terms as
follows: light blue — small nucleolar ribonucleoprotein complex; grey — processing of 20S
pre-TRNA; dark blue — 35S primary transcript processing; dark green — ER to Golgi
transport; light green — snoRNA binding; red — ATP dependent RNA helicase activity.
This complex is predicted to have a role in RNA transcript processing. The refined and
novel functional predictions agree with previous annotations and with each other,

increasing confidence that these are meaningful assignments.

Figure 4. Comparison of AVID with a naive Bayesian network.

The performance of a naive Bayesian net, as described by Jansen et al. [21], is compared
to that of AVID, using the same input data and same measures of performance. The plots
show the ratio of true positives to false positives (TP/FP) vs. coverage (TP/P). The
Bayesian net results are in open triangles, AVID stages 1 and 2 in open circles and AVID
stages 1, 2 and 3 in closed circles. The performance of AVID is notably superior at higher

coverage. At low coverage, all methods can achieve high accuracy.
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Tables

Table 1. Correlation between experimental or sequence-based measures of

protein relatedness and GO annotation similarity.

Data® MF" BP’ cc’
UCSF localization (+) 0.031 0.029 0.058
UCSF localization (-) 0.007 0.007 0.004
yeast 2-hybrid (+) 0.120 0.167 0.254
yeast 2-hybrid (-) 0.010 0.010 0.010
MIPS complex (+) 0.122 0.116 0.263
MIPS complex (-) 0.007 0.008 0.002
sequence similarity (+) 0.187 0.344 0.078
sequence similarity (-) 0.009 0.007 0.010
Microarray®
-1<R<-09 0.008 0.003 0.006
09<R<1.0 0.086 0.118 0.125

*Except for the microarray data, each data source is divided into two sets: one contains
protein pairs observed to share the feature described by the data (+), the other contains
protein pairs that lack the feature or are not reported (-). ®The normalized conditional

probabilities P;*V'™!

are defined in the Methods; they are the probability of sharing a
common GO term given observation of a particular data feature. A perfect correlation
would give a value of 1.0. °R is the Pearson correlation coefficient for pairs of mRNA

expression profiles, which were binned into 19 intervals. Only two intervals are shown

here. See additional file 1 for further details.
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Table 2. Summary of AVID prediction performance.

MF BP CC
total predicted proteins 1852 1458 2304
proteins with novel predictions (no existing GO annotation) 950 540 907
proteins with refined predictions (existing GO annotation is less detailed) 902 918 1397
accuracy of stage 3 pair-wise similarities, from 10-fold cross validation T77% 65% 78%
frequency of unannotated proteins in the correlation networks 56.4% 56.5% 70.3%
estimated success rate for AVID GO term assignment ~67% ~52% ~66%
consistency of refined predictions with existing annotation 74.7% 80.3% 86.9%
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Table 3. Overlap of pair-wise predictions of functional (or localization) similarity

by different methods.

METHODS | AVID [MARCOTTE|STRING |PIP_600°| LIANG |MAGIC"| MAGIC | SCHLITT
AVID 37451 3020 3413 785 2570 2740 49 9

MARCOTTE 33919 9873 3528 2454 1971 66 26
STRING 23245 | 3614 1740 1819 32 21
PIP_600" 9897 425 260 8 1
LIANG 7963 1647 41 6
MAGIC® 7922 397 7
MAGIC® 397 1
SCHLITT 526

a.

b.

C.

MAGIC pairs with p > 0.5

MAGIC pairs with p > 0.7
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Additional files

Additional file 1. Correlation coefficients and supporting data in detail (xls).
Additional file 2. Detailed description of the AVID process (pdf).

The first three stages of AVID are illustrated by tracing the prediction of functional
relationships between (1) YOL137W and YDL138W, (2) YLR375W and YDR463W,
and (3) YIROO3W and YILO34C. The structures of the MF, BP and CC decision trees are
included.

Additional file 3. Connectivity plots comparing the testing and prediction networks
(pdf).

Additional file 4. AVID MF, BP and CC predictions — refined and novel (xls).
Additional file 5. Number of proteins with each AVID GO term - original and
predicted (xls).

Additional file 6. MF level 2, BP level 3, CC level 4 categories (xIs).

Additional file 7. Proteins with novel predictions in all three categories: MF, BP and
CC (xls).

Additional file 8. Contingency tables for the naive Bayesian analysis (xIs).
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GENOMIC DATA FEATURES, fi GOj, ANNOTATIONS FOR {MF, BP, CC}

27 YQ STAGE 3
IDENTIFY HIGH-CONFIDENCE PAIRS USING DECISION TREE
STAGE 1 accuracy MF 77% BP 65% CC 78%

COMPUTE CORRELATIONS BETWEEN fi and GOj -
'YMRO88C

STAGE 2
FILTER LOW CONFIDENCE PAIRS WITH PRODUCT MODEL
accuracy MF 67% BP 46% CC 69%

@ @ STAGE 4

ASSIGN FUNCTIONS USING MAJORITY RULE
@ accuracy MF67% BP52% CC66%
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Additional files provided with this submission:

Additional file 8 : Jiang_additional_file_8.xls : 21Kb
http://www.biomedcentral.com/imedia/5956653536718378/sup8.XLS
Additional file 7 : Jiang_additional_file_7.xls : 42Kb
http://www.biomedcentral.com/imedia/8646859556717707/sup7.XLS
Additional file 6 : Jiang_additional_file_6.xIs : 20Kb
http://www.biomedcentral.com/imedia/6167129967177027/sup6.XLS
Additional file 5 : Jiang_additional_file_5.xIs : 196Kb
http://www.biomedcentral.com/imedia/1679349551671762/sup5.XLS
Additional file 4 : Jiang_additional_file_4.xls : 666Kb
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