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ABSTRACT

With the accumulation of protein and its related data
on the Internet, many domain-based computational
techniques to predict protein interactions have
been developed. However, most techniques still
have many limitations when used in real fields.
They usually suffer from low accuracy in prediction
and do not provide any interaction possibility ranking
method for multiple protein pairs. In this paper, we
propose a probabilistic framework to predict the
interaction probability of proteins and develop an
interaction possibility ranking method for multiple
protein pairs. Using the ranking method, one can dis-
cern the protein pairs that are more likely to interact
with each other in multiple protein pairs. The validity
of the prediction model was evaluated using an inter-
acting set of protein pairs in yeast and an artificially
generated non-interacting set of protein pairs. When
80% of the set of interacting protein pairs in the
DIP (Database of Interacting Proteins) was used as
a learning set of interacting protein pairs, high sensi-
tivity (77%) and specificity (95%) were achieved for
the test groups containing common domains with
the learning set of proteins within our framework.
The stability of the prediction model was also evident
when tested over DIP CORE, HMS-PCI and TAP data.
In the validation of the ranking method, we reveal
that some correlations exist between the interacting
probability and the accuracy of the prediction.

INTRODUCTION

The accumulation of protein data and the associated data on
the Internet (1–3), gives us the opportunity to computationally
find structures and functions of proteins based on the data.
More specifically, the accumulation of experimental protein–
protein interaction and domain data on the Internet allow us to
computationally predict protein–protein interactions.

The benefits of computational prediction of protein–protein
interactions are obvious. First and foremost, mass prediction
of protein–protein interactions at low cost is possible. This
method can also help in finding critical proteins out of numer-
ous candidate proteins without experimental validation. Based
on this information, biologists can assign priorities to the
proteins or domains to be tested, thereby allowing the con-
struction of a large-scale protein interaction network, and they
can also use the information to predict functions of unknown
proteins (4).

There are several approaches to the computational predic-
tion of protein–protein interactions (5–8). Finding and analyz-
ing subsequences affecting protein–protein interactions from
raw protein sequences is one approach (9). Another is to
predict protein interactions by analyzing the physicochemical
properties or tertiary structure of proteins (10). Domain-based
protein–protein interaction prediction is another approach, and
is recently being studied by several research groups
(5,8,11,12).

Most domain-based protein–protein interaction prediction
methods share the conjecture that such interactions are the
result of domain–domain interaction. Those methods infer
domain–domain interacting information from protein–protein
interaction and then try to predict protein interactions based on
the inferred domain–domain interacting information.

Previous domain-based research usually considered the
interactions of single domain pairs and assumed the interac-
tions of single domain pairs to be independent of one another,
for the convenience of computations. We suspect that such
assumptions may be the reason for the limitations of conven-
tional domain-based prediction methods. Protein–protein
interaction could be the result of interactions of multiple
domain pairs or of groups of domains. As a result, the pre-
diction accuracy of conventional domain-based predictions is
not high enough to be effectively used in research or industrial
fields. To overcome these limitations, we introduce the notion
of domain combination and domain combinations pair
(dc-pair) in this paper. The term domain combination is
used to denote a set of domains.

In this paper, we propose a domain combination based
protein–protein interaction prediction framework. In this
framework, protein–protein interaction is interpreted as the
result of interactions of multiple domain pairs or of groups

*To whom correspondence should be addressed. Tel: +82 42 866 6130; Fax: +82 42 866 6222; Email: dshan@icu.ac.kr

The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors

Nucleic Acids Research, Vol. 32 No. 21 ª Oxford University Press 2004; all rights reserved

6312–6320 Nucleic Acids Research, 2004, Vol. 32, No. 21
doi:10.1093/nar/gkh972

 Published online December 1, 2004



of domains, i.e. the prediction model in the framework con-
siders dc-pair as a basic unit of protein interactions (12). This
approach is more inclusive than previous domain-based
approaches because domain pair information is included in
the dc-pair information. Since the proposed framework
provides an interacting probability, it is much more natural
in predicting the possibility of interaction than conventional
methods.

In this paper, we also develop a domain combination based
protein–protein interaction possibility ranking method for
multiple protein pairs. An interacting probability equation
for a protein pair is developed and the ranks for multiple
protein pairs are decided by the interacting probabilities com-
puted through the interacting probability equation formulated
in this paper. Using the ranking method, biologists can discern
the protein pairs that are more likely to interact with each other
among multiple protein pairs.

The validity of the prediction model in the framework is
evaluated for the interacting set of protein pairs in yeast and
also in artificially generated non-interacting sets of protein
pairs. When 80% of the set of interacting protein pairs in
the DIP (Database of interacting proteins) (3,13) was used
as a learning set, on average, 77% sensitivity and 95%
specificity were achieved for the test groups containing
common domains with the learning set of proteins within
our framework.

The model is also proved to be stable as it achieved non-
fluctuating and high-prediction accuracy in the evaluations
over DIP CORE (14), HMS-PCI (15) and TAP data (16).

In the validity test of our interaction possibility ranking
method, the test groups with higher predicted interaction
probabilities showed higher sensitivities and specificities.
This indicates that the ranking method developed in this
paper is valid for assigning ranks to protein pairs.

RELATED WORK

Several attempts have been made to computationally predict
protein–protein interactions without domain information. A
technique using a support vector machine (SVM) based on
primary sequence and associated physicochemical properties
has been developed to predict protein–protein interactions
(10). A gene fusion method called ‘Rosetta stone’ (6,7) is
another computational approach used to identify the functional
relations of proteins rather than to predict physical interac-
tions. In another study (17), interacting pairs of yeast proteins
and domains in the SCOP (Structural Classification of Pro-
teins) (18) database were used to construct a protein family
interaction map. In this algorithm, interactions are predicted
based on structural information by parsing the Protein Data
Bank (PDB) (2) coordinates to determine if each domain pair
could make close contacts.

Recently, predictions of protein interactions have been per-
formed in the context of domain–domain interactions at the
primary sequence level rather than from the PDB coordinates
(4,11), using experimentally identified interacting protein
pairs in Helicobacter pylori or Saccharomyces cerevisiae.
Since domain or motif is a structural and/or functional unit,
specific signature sequences are conserved to represent the
protein’s structure or function through evolution. Therefore,

it is not surprising that many of the protein interactions can be
reduced to the problem of domain–domain interaction. In
addition, it is generally accepted that domain is an independent
unit within the protein structure and sequence, and this notion
is used in various classification systems such as SCOP, CATH
and FSSP (18–20).

Mering et al. (21) described the concept of groups of
interacting partners. Although the concept of domain combi-
nation is similar to that of groups of interacting partners, the
latter has protein granularity while the former has domain
granularity.

Deng et al. (5) proposed a probabilistic prediction model for
inferring domain interactions from protein interaction data.
The maximum-likelihood estimation technique is mainly
used in their method. The Pfam database is used to extract
domain information and the MIPS database is used to test their
model, but they also consider single domain pairs as a basic
unit of protein interactions. The approach taken by Kim et al.
(22) shares the same assumption with Deng et al. (5), but both
approaches suffer from low sensitivity and specificity of pre-
dictions. Ng et al. (8) collected data from three sources: (i) the
experimentally derived protein interaction data from DIP
(3,13); (ii) the intermolecular relationship data from protein
complexes; and (iii) the computationally predicted data from
Rosetta Stone sequences. They then inferred putative domain–
domain interactions based on the collected data through the
development of InterDom, a database of interacting domains
(http://interdom.lit.org.sg) (8). However, the accuracy of the
data inferred from domain–domain interaction is not apparent.

Goffard et al. (23) developed IPPRED, a web-based server
for the inference of proteins interactions. IPPRED infers the
possibility of the interaction of the two proteins A and B by
discovering if there is an interacting protein pair C and D
which are homologous to A and B (or B and A).

MATERIALS AND METHODS

Prediction framework

Domain combination and domain combination pair. Before
we explain our prediction model, we introduce the notion of
domain combination and domain combination pair. When a
protein p contains multiple domains, then the domain combi-
nation of protein p is all the possible groups of domains that
can be formed from the set of domains of protein p. Here, the
groups must contain at least one domain. As such the set of all
possible domain combinations of protein p can be defined
more formally by

dc pð Þ = Power Set domain pð Þð Þ � ff g, 1

where domain ( p) represents the set of domains in protein p.
The empty set is eliminated from the definition because the
power set operation generates the empty set also. Thus,
when a protein contains n domains, 2n � 1 different domain
combinations are obtained.

In our prediction model, the domain combination is con-
sidered as a basic element of protein interactions, and we
assume one or more domain combinations to be involved in
invoking protein interactions. In other words, when two pro-
teins interact with each other, their interaction is interpreted as
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the result of the interaction of the mutual domain combina-
tions. In order to represent this relationship, we introduce a
notation of domain combination pairs formed by two proteins.
The set of all possible domain combination pairs of two
proteins p and q is defined by

dc-pair p, qð Þ
¼ hdc1, dc2i j hdc1, dc2i 2 dc pð Þ · dc qð Þ or dc qð Þ · dc pð Þf g,

where dc1, dc2 2 dc pð Þ or dc qð Þ: 2

Thus, when two proteins p and q have n and m different
domains, respectively, we can construct (2n � 1) · (2m � 1)
different dc-pairs from the proteins. Figure 1b illustrates
potentially interacting dc-pairs when two proteins with
three and two domains interact with each other. Figure 1
also shows the comparison of our domain combination pair
based approach with the conventional domain pair based
approach. As depicted in Figure 1, the domain combination
pair based approach considers not only the interactions of
domains but also the interactions of domain combinations.
Meanwhile, as there are multiple possible choices for the
interaction of domains or domain combinations that can be
inferred from a protein interaction, with only the interaction
information of two proteins, we cannot figure out which
dc-pair plays a decisive role in invoking the interaction. In
order to make effective domain or domain combination based
models, we need to draw some clues from the role of the
domain or domain combination pairs involved in the interac-
tion. This problem is quite difficult to solve with a small
amount of interacting protein data. However, the accumulation
of the interacting protein pairs on the Internet has made this
approach feasible since the extraction of dc-pairs from a
number of interacting protein pairs helps to identify and
strengthen core dc-pairs in invoking protein interactions.
The appropriate weight assignment to strengthen the role of
dc-pairs is also important, and we explain this in the following
section.

AP matrix. The treatment of the appearance frequencies of
domain combinations in a set of protein pairs is simplified
by introducing a matrix. When there are n different proteins
fp1, p2, . . . , pn} in a given set of protein pairs and the union of
domain combinations of proteins contains m different domain

combinations, fdc1, dc2, . . . , dcm}, i.e. the union of dc( p1),
dc( p2), . . . , and dc( pn) is computed to fdc1, dc2, . . . , dcm},
and then the m · m AP matrix is constructed. The element
APij in the matrix represents the appearance probability
of domain combination <dci, dcj> in a given set of protein
pairs.

For the construction of the AP matrix, we first constructed
the WF (Weighted Frequency) matrix in which each row and
column represent a domain combination and each element of
the matrix represents a dc-pair. In the WF matrix, the appear-
ance frequencies of domain combinations in a given set of
protein pairs are registered. The element WFab in the matrix
holds the weighted appearance frequency of domain combina-
tion <a, b> in a given set of protein pairs and its value is
computed by

X
8ðpi ;qjÞsuch that

<a;b>2dc-pairðpi ;qjÞ

1

j dc pið Þ j · j dc qj

� �
j
: 3

The final result of the equation is computed by adding up the
expression 1/( j dc( pi) j · j dc(qj) j ) for the entire protein pairs
< pi, qj> which contain dc-pair <a, b>. By using Equation 3,
the weights of the potential contribution of dc-pair <a, b>
in the interactions of a given set of protein pairs holding
the dc-pair are computed and then added together.

The weight assignment is based on the conjecture that
the dcs or dc-pairs contained in the interaction of proteins
with fewer domains are considered more important than
those with more domains. Many other strategies could be
adopted to give weights in the appearance frequencies of
dc-pair and in the computing of WF matrix elements. This
is still an open issue and further details are not discussed in
this paper.

We use an example to illustrate how Equation 3 is used
to compute the elements of the WF matrix. Suppose there are
proteins A, B and C with domains domain(A) = fa1, a2},
domain(B) = fb1}, domain(C) = fa1, c1}, and let a set
of interaction protein pairs f<A, B>, <A, C>,<B, C>} be
given. In order to construct the WF matrix for proteins A,
B and C, the matrix elements for all possible dc-pairs of
the given set of protein pairs should be computed. As an
example, expression 1/( j dc(B) j · j dc(A) j ) is used to

Figure 1. (a) A conventional domain pair based prediction model versus (b) proposed domain combination pair based new prediction model.

6314 Nucleic Acids Research, 2004, Vol. 32, No. 21



compute the element WF b1f g a1f g because the domain
combination <fb1}, fa2}> appears only in dc-pair(A, B).
As dc(A) = ffa1}, fa2}, fa1, a2}} and dc(B) = ffb1}},
expression 1/( j dc(B) j · j dc(A) j ) is computed as 1/3. The
other elements of the WF matrix are computed in a similar
manner.

Once the WF matrix is constructed, the AP matrix construc-
tion is rather straightforward. Each element of the AP matrix is
computed by

APij =
WFijP
i; j WFij

: 4

Then, each element of the AP matrix represents its appearance
probability in the whole dc-pair space. Since there are sample
spaces on each set of interacting and non-interacting protein
pairs, we can generate two AP matrices. Large portions of the
two matrices may be shared or can overlap each other, but they
need not be similar in shape or share the components of the
matrices. We denote the matrices as APi and APr, respectively,
and the intersection APi \ APr as APc. The definitions are as
follows:

 APr: AP matrix constructed from a set of non-interacting
protein pairs.

 APi: AP matrix constructed from a set of interacting protein
pairs.

 APc: APi \ APr.

Once the AP matrices for interacting and non-interacting
protein pairs are constructed, we can categorize a dc-pair by
discerning to which matrix it belongs; we then name the
categories using the APi, APr and APc notations. All the dc-
pairs composing the APi matrix constitute APi dc-pair space.
In the same way, APr dc-pair and APc dc-pair spaces are
constituted.

Primary interaction probability. After the construction of
AP matrices, a probability equation to predict the probability
of interactions between unknown protein pairs <A, B> based
on the two AP matrices, is defined and an undefined constant
in the equation is determined. The first thing to be done in
this step is to compute all the possible dc-pairs that can be
formed from the protein pair <A, B> using Equation 2. Since
many dc-pairs can be formed, and there are several categories
in the dc-pair space, we classify the dc-pairs by the categories
of the dc-pair space, and denote them as follows:

 DCc(A, B) = fdc-pair j dc-pair2 dc-pair(A, B) and appears in
APc space}

 DCr�c(A, B) = fdc-pair j dc-pair2 dc-pair(A, B) and appears
in APr � APc space}

 DCi�c(A, B) = fdc-pair j dc-pair 2 dc-pair(A, B) and appears
in APi � APc space}

Figure 2 shows which element belongs to which category
when dc-pair(A, B) is formed on the spaces of APi, APr. The
elements of dc-pair(A, B) are denoted by special symbols (*,
D, ·). We now define the basic interaction probability Equa-
tion 5 when DCc(A, B) is detected in the APc dc-pair space.
The probability implies the likelihood of a protein pair <p, q>
to interact when DCc(A, B) appears in the APc dc-pair space.
We introduce a random variable X to denote the interacting

and non-interacting events. The value 1 is used to represent an
interacting event and 0 for a non-interacting event.

P X=1jDCc A,Bð Þð Þ

¼ P X=1ð ÞP DCc A,Bð ÞjX=1ð Þ
P X=1ð ÞP DCc A,Bð ÞjX=1ð Þ+P X=0ð ÞP DCc A,Bð ÞjX=0ð Þ, 5

where P(X = 1), P(X = 0), P(DCc(A, B) jX = 1),
P(DCc(A, B) jX = 0) are defined by

P X = 1ð Þ =
k�Itotal�

P
i;j APc

I

� �
ij

k�Itotal�
P

i;j APc
Ið Þij + 1 � kð Þ�Rtotal�

P
i;j APc

Rð Þij

,

P X = 0ð Þ =
1 � kð Þ�Rtotal�

P
i; j APc

R

� �
ij

k�Itotal�
P

i; j APc
Ið Þij + 1 � kð Þ�Rtotal�

P
i; j APc

Rð Þij

,

P DCc A, Bð Þ jX = 1ð Þ

= jDCc A, Bð Þ j !�
Y

i; j j i; jð Þ2DCc A;Bð Þf g

APc
I

� �
ijP

i; j APc
Ið Þij

,

P DCc A, Bð Þ jX = 0ð Þ

= jDCc A, Bð Þ j !�
Y

i; j j i; jð Þ2DCc A;Bð Þf g

APc
R

� �
ijP

i; j APc
Rð Þij

,

Figure 2. Domain combination categories on AP spaces.
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respectively.

P X = 1 jDCi�c A, Bð Þð Þ

¼ P X = 1ð ÞP DCi�c A, Bð ÞjX = 1ð Þ
P X = 1ð ÞP DCi�c A, Bð ÞjX = 1ð Þ +P X = 0ð ÞP DCi�c A, Bð ÞjX = 0ð Þ

6

In Equation 5, P(X = 1) represents the ratio of the set of
interacting dc-pairs to the total dc-pairs in APc, whereas
P(X = 0) represents the ratio of the set of non-interacting
dc-pairs to the total dc-pairs in APc. Itotal and Rtotal in the
above equations represent the total number of interacting
and non-interacting protein pairs, respectively. The constant
k is inserted into the equation because the exact ratio of Itotal

and Rtotal in nature is unknown, and the value of optimal k
is estimated by maximum-likelihood estimation. The set of dc-
pairs DCc(A, B) appears in APi space, and P(DCc(A, B) jX = 0)
denotes the probability of the set of dc-pairs DCc(A, B)
appearing in APr space. API

c and APR
c denote APc in interacting

dc-pair space and non-interacting dc-pair space, respectively.
Equivalently, the interaction probability equation when the

domain combinations DCi�c(A, B) are detected in APi�APc

space is defined as in Equation 6 where, P(X = 1) is computed
to 1 and P(X = 0) is computed to 0. Thus, the final probability is
computed to 1. Using the probability Equations 5 and 6, Pri-
mary Interaction Probability (PIP) of a protein pair (A, B) with
dc-pairs DCc(A, B) is defined by

PIP A, Bð Þ = 1 � kAPck
kAPik 1 � P X = 1 jDCc A, Bð Þð ÞÞ: 7ð

PIP distribution and interaction prediction. Once the final
equation of PIP is obtained in the second step, we can compute
the PIP values by applying Equation 7 to the interacting and
non-interacting sets of protein pairs. When all the PIP values
of each set are computed, we get PIP distributions, and then we
normalize the distributions to compare them. From this we can
interpret PIP function as one that maps a protein pair onto a
real number in the range of 0–1.

After the distributions are obtained, the interaction predic-
tion of a protein pair is reduced to a two-category classification
problem on the distributions. In short, to predict whether or not
the two proteins in a given protein pair interact, we have to
decide to which distribution the PIP value of the protein pair
belongs to.

Interaction possibility ranking method

One may consider using the PIP equation directly for assigning
an interaction probability to a protein pair. However, when we
observe the PIP value distributions of interacting and non-
interacting sets of protein pairs, some interacting protein
pairs show low-PIP values, whereas some non-interacting pro-
tein pairs show high-PIP values (see Figure 3). This indicates
that rather than using a PIP value directly as an interaction
probability of a protein pair, it is desirable to devise another
probability equation based on interacting and non-interacting
PIP value distributions. The method proposed in this section
involves using the probability of a PIP value to appear in a
specific distribution between interacting and non-interacting
PIP distributions. In other words, for a protein pair (A, B), its
PIP value is computed and its interacting probability is

determined by computing the probability of the PIP value
to appear in the interacting PIP distribution.

In this section,wedeviseprobabilityequations tocompute the
interaction probability.Since thePIP valueobtainedmayormay
not have a matching PIP value in the PIP distributions, we
considered the cases in terms of whether or not there exists a
PIP value that matches to the target PIP value of a protein pair
(A, B), between interacting or non-interacting PIP distributions.

Interaction probability for a protein pair with a matching PIP
value. If there exists a PIP value that matches to PIP(A, B) in
the interacting or non-interacting PIP value distributions, the
computation of the interacting probability is rather straight-
forward. The interaction probability of a protein pair (A, B)
with a PIP value, PIP(A, B), is computed by Equation 8.

In Equation 8, P(X = 1) is the ratio of interacting protein
pairs in the total protein pairs; P(X = 0) is the ratio of non-
interacting protein pairs in the total protein pairs; freqx

i is the
number of samples with value PIPx

i in the set of interacting
protein pairs; and freq

y
i is the number of samples with value

PIP
y
i in the non-interacting set of protein pairs. Also the

constant k is the same as the one used in Equation 5.
P( p=PIP(A, B) jX= 1) is the probability of the random variable
p to be PIP(A, B) in the interacting set of protein pairs.
P( p=PIP(A, B) jX= 0) is the probability of the random variable
p to be PIP(A, B) in the set of non-interacting protein pairs.
When there are enough samples with PIP value in the PIP
distributions, the interaction probability computed using the
above equation could be quite reliable. However, if the numbers
of the samples are not large enough, we should be more
conservative in using the computed interaction probability.
Further discussion on this matter is not in the scope of this paper.

P X = 1 jp= PIP A, Bð Þð Þ

¼ P X = 1ð ÞP p= PIP A, Bð ÞjX = 1ð Þ
P X = 1ð ÞP p =PIP A, Bð ÞjX = 1ð Þ+P X = 0ð ÞP p =PIP A,Bð ÞjX = 0ð Þ , 8

where P(X = 1), P(X = 0), P( p = PIP(A, B) jX = 1),
P( p = PIP(A, B) jX = 0) are defined by

P X = 1ð Þ = k�
Pm

i¼1freqx
i

k�
Pm

i¼1freqx
i + 1 � kð Þ�

Pn
i¼1freq

y
i

,

P X = 0ð Þ = 1 � kð Þ�
Pn

i¼1freq
y
i

k�
Pm

i¼1freqx
i + 1 � kð Þ�

Pn
i¼1freq

y
i

,

P = p = PIP A, Bð Þ jX = 1ð Þ =
freqx

PIP A;Bð ÞPm
i¼1freqx

i

,

P = p = PIP A, Bð Þ jX = 0ð Þ =
freq

y
PIP A;Bð ÞPn

i¼1freq
y
i

,

respectively.

P X=1jp�PIP A,Bð Þj<w

2

� �

¼
P X=1ð ÞP p�PIP A,Bð Þj<w

2
jX=1

� �

P X=1ð ÞP p�PIP A,Bð Þj<w
2
jX=1

� �
+P X=0ð ÞP p�PIP A,Bð Þj<w

2
jX=0

� �

9

P X = 1 j p � PIP A, Bð Þ j>w

2

� �
= PIP A, Bð Þ: 10
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Interaction probability for a protein pair with non-matching
PIP value. If there is no PIP value to match PIP(A, B) in
interacting or non-interacting PIP value distributions, the
PIP values for all possible domain combination pairs that
can be formed by proteins A and B are obtained. Among
these PIP values, a PIP value that has a matching PIP value
in the PIP distributions and is close to PIP(A, B) is selected,
and the selected PIP value is used instead in computing protein
pair (A, B)’s interaction probability. The PIP value must be
within the predefined distance from PIP(A, B). We assume that
the distance is decided by users, or the system may use a
default value instead. Once the PIP value is decided, the
interaction probability is computed using Equation 8.

The rationale behind this approach is based on the fact that
the domain or the domain combination pairs formed by protein
pair (A, B) will play a decisive role in invoking the interaction
of proteins A and B. Therefore, we expect that the PIP value of
a domain combination pair may be able to reflect the char-
acteristics of a protein pair containing the domain combination
pair. In addition, to reflect the characteristics of a protein
pair (A, B) to the fullest extent, we chose the PIP value that
was close to the original PIP value, PIP(A, B).

If any of the matching PIP values is not detected by the
above processing methods, we considered the two cases in
terms of their distance from the closest PIP value, PIPN(A, B),
to PIP(A, B) in the PIP distributions. We developed and used
different methods for the computation of the interacting prob-
ability for each case.

Case 1. j PIP(A, B) � PIPN(A, B) j < d: In this case, we use a
similar technique to the k-nearest-neighbor estimation tech-
nique. For the given PIP value of a protein pair (A, B), a
resizable window size w0 is set and examined if the number
of interacting protein pairs within the range exceedsthe num-
ber of k. If the number of interacting protein pairs is under k,
the window size w0 is increased to include more interacting
protein pairs within the range. This process is repeated until
the number of interacting protein pairs exceeds k and the
window size w used at that point becomes the final window
size. After the window size w is decided, the interaction prob-
ability of the protein pair (A, B) is computed by Equation 9.
Except for the range notations, the terms in the equation are
similarly defined as those of Equation 8. In Equation 9, P(X = 1)

is the ratio of interacting protein pairs in the total protein pairs
P(X = 0) is the ratio of non-interacting protein pairs in the total
protein pairs; freqx

i is the number of samples with value PIPx
i in

the set of interacting protein pairs; and freq
y
i is the number of

samples with value PIP
y
i in the non-interacting set of protein

pairs. P( j p � PIP(A, B) j < w/2 jX = 1) is the probability that
the random variable p is to be in the range of PIP(A, B)�w/2 and
PIP(A, B) + w/2 in the interacting set of protein pairs.
P( j p � PIP(A, B) j < w/2 jX = 0) is the probability of the
random variable p occurring in the range of PIP(A, B) � w/2
and PIP(A, B) + w/2 in the set of non-interacting protein pairs.

Case 2. j PIP(A, B)� PIPN(A, B) j > d: In this case, the inter-
action probability is decided by the value of PIP(A, B) and
the PIP value itself becomes the interaction probability. This is
represented by Equation 10.

RESULTS

In this section, the validation result of the proposed
prediction model and the interaction possibility ranking
method is illustrated. For the validation, two sets of protein
pairs were prepared. One is the interacting set of protein pairs
acquired from DIP database (http://dip.doe-mbi.ucla.edu)
(13), where 15 174 interacting protein pairs in yeast were
prepared for the validation. Since not all the proteins in the
protein pairs have domain information, only 7500 interacting
protein pairs could be used in the evaluation. The domain
information for the proteins is extracted from the PDB
(http://www.ebi.ac.uk/proteome/) (1,2).

On the other hand, the non-interacting set of protein pairs is
artificially generated by randomly pairing the reported pro-
teins with domain information in yeast. Note that there is no
publicly announced information of the non-interacting set of
protein pairs. Approximately 6000 proteins are known from
yeast. Among them, 2700 proteins have domain information
and they can be used in the creation of non-interacting sets of
protein pairs. Altogether, 127 700 protein pairs were generated
by randomly pairing the 2700 proteins. Then the negative sets
of protein pairs were created by randomly selecting required
numbers of protein pairs from the prepared set when neces-
sary. Since interacting protein pairs could be included as well

A B

Figure 3. PIP distribution (y-axis is log scaled).
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in the prepared set of protein pairs, we eliminated interacting
protein pairs when selecting protein pairs for the preparation
of non-interacting sets of protein pairs.

Figure 3 shows the distributions of PIP values from inter-
acting (A) and non-interacting (B) sets of protein pairs, respect-
ively. The same size of interacting and non-interacting sets of
protein pairs are used for generation of the distributions. The
PIP values of each set of protein pairs were mapped onto
almost all the ranges from 0 to 1, with some overlapping
between the two distributions. However, most PIP values
from the interacting set of protein pairs are detected near 1
while most PIP values from the non-interacting set of protein
pairs are detected near 0. Note that the scale of the y-axis in the
graphs is represented in log scale. This indicates that the PIP
equation could be a good classifier in discerning interacting
and non-interacting protein pairs.

For testing the prediction accuracy of our method, we
divided the interacting and non-interacting sets of protein
pairs into learning and testing sets of protein pairs, respect-
ively. Among the data, 80% are used for learning sets and 20%
are reserved for test. For the precise evaluation of our protein–
protein interaction prediction method, we increased the size of
the non-interacting set of protein pairs because it is more
natural to assume that there are more non-interacting protein
pairs than interacting protein pairs. For the measurement, the
protein pairs without overlapping domains in AP matrix are
not included in the test data. Note that when there is no com-
mon domain between the test protein pairs and the constructed
AP matrix, the application of the prediction method is mean-
ingless.

Table 1 shows the sensitivities and specificities of each
test group depending on the ratios of interacting and non-
interacting set of protein pairs. The data in each test group
are divided further into two subgroups; one group is the test set
of protein pairs which has a matching PIP value in PIP
distributions and the other group is the test set of protein
pairs without matching PIP value in PIP distribution. As
shown in Table 1, very high sensitivities and specificities
were achieved for the test groups with matching PIP values,
whereas moderate sensitivities and specificities were achieved
for the test groups without matching PIP values. In the test,
it was revealed that protein pairs with common domains in
AP matrix are amenable to having matching PIP values in the
PIP distributions. Only less than 5% of the protein pairs with
common domains in AP matrix had no matching PIP value in
the PIP distributions.

The overall prediction accuracy improved as the relative
size of non-interacting set of protein pairs in the training sets

increased. When the size of the non-interacting set of protein
pairs was 10 times bigger than that of the interacting set of
protein pairs, 77% sensitivity and 95% specificity were
achieved for the test protein pairs with common domains in
AP matrix within our framework.

In order to ascertain if the method has stable prediction
accuracies for other datasets, its prediction accuracy was
also measured using DIP CORE (14), HMS-PCI (15) and
TAP (16) data. Table 2 shows the sensitivities and specificities
of each test group. Only the case when there is matching PIP
values in the PIP distributions is considered. As shown in
Table 2, quite stable and high-prediction accuracies are
obtained irrespective of datasets. When the ratio is 10, the
accuracy of using DIP data is under those of other cases.
This indirectly indicates that DIP data contain more error
data than the other data sources. On the other hand, the pre-
diction accuracy of using TAP data was almost perfect. How-
ever, when we consider that the size of TAP data was relatively
small, this result should be interpreted with caution.

Besides, the accuracy should not be directly interpreted as
the prediction accuracy of protein–protein interactions. When
we take into account that the prediction accuracy of the
method is severely influenced by the error rate of input learn-
ing data (current protein–protein interaction data sources con-
tain substantial amount of error data), the accuracy result of
Tables 1 and 2 must be interpreted carefully. Specially, DIP
data are known to contain quite a number of such erroneous
data. Thus what the results showed, is the classification cap-
ability of our prediction method for two groups of protein
pairs, in terms of domain combination pairs. It is expected
that as the error rate of input learning data decreases, the
prediction accuracy of the method for real protein–protein
interaction will be improved gradually.

We also measured the proportion of protein pairs with
matching PIP values in PIP distributions. In this measurement,
protein pairs without common domains in AP matrix were
also included. Table 3 shows the results of Hit ratio, which

Table 1. The change of sensitivities and specificities by the ratios of

interacting to non-interacting sets of protein pairs in training sets

Ratio 1.0 2.0 5.0 10.0

I Sensitivity 96.77 92.96 85.98 78.73
Specificity 73.20 83.62 91.03 95.00

II Sensitivity 69.70 76.74 61.19 31.15
Specificity 62.16 64.58 76.36 81.67

Total Sensitivity 95.93 92.27 85.08 76.95
Specificity 73.07 83.32 90.73 94.65

I, protein pairs with matching PIP values.
II, protein pairs without matching PIP values.

Table 2. The sensitivities and specificities from the experiments

using DIP, DIP CORE, MHS-PCI and TAP data

Ratio 1.0 2.0 5.0 10.0

DIP Sensitivity 96.77 92.96 85.98 78.73
Specificity 73.20 83.62 91.02 95.00

DIP CORE Sensitivity 97.89 97.19 95.40 90.50
Specificity 70.23 90.77 89.76 95.21

HMS-PCI Sensitivity 94.64 96.98 95.71 93.08
Specificity 62.50 72.92 91.96 93.91

TAP Sensitivity 92.70 97.23 98.30 97.66
Specificity 86.67 97.43 97.70 98.60

Table 3. Hit ratios of testing protein pairs’ PIP values in PIP distributions

1.0 3.0 5.0 10.0 15.0 20.0

I 845 721 733 727 851 780
Hit ratio (%) 53.14 45.35 46.10 45.72 53.52 49.06
II 452 362 467 529 540 643
Hit ratio (%) 28.43 22.77 29.37 33.27 33.96 40.44
Total 1297 1083 1200 1256 1391 1423
Hit ratio (%) 44.53 37.79 39.59 40.48 45.93 45.16

I, number of interacting protein pairs with matching PIP values.
II, number of non-interacting protein pairs with matching PIP values.
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represent the proportion of protein pairs with matching PIP
values to the total number of testing protein pairs.

When the size of the non-interacting set of protein pairs was
20 times bigger than that of the interacting set of protein pairs,
�50% of the interacting test set of protein pairs were revealed
to have matching PIP values, and �45% of non-interacting test
set of protein pairs were revealed to have their matching PIP
values in the PIP distributions. The numerical precision for the
matching test was 1.0E�12.

In the non-interacting set of protein pairs, the proportion of
matching protein pairs increases as the size of the total learn-
ing set of protein pairs increases. On the other hand, the pro-
portion of matching protein pairs did not change greatly with
the increase in the size of the total learning set of protein pairs.
That is, PIP values added from non-interacting set of protein
pairs by increasing the size of the total learning set rarely
matches the PIP values of interacting set of protein pairs. This
is another indication that the interacting and non-interacting
sets of protein pairs can be divided by PIP values.

In order to validate the ranking method, we counted the
number of protein pairs detected in each range of interaction
probabilities determined by the ranking method. The size of
interacting and non-interacting test groups was 1590 and 1490,
respectively. Table 4 shows the result where we can observe
that large portions of the interacting test group were detected
in the range of high-interacting probabilities, and large por-
tions of the non-interacting test group were detected in the
range of low probabilities. Some protein pairs in the interact-
ing test group, however, have low-interacting probabilities and
vice versa. This indicates that the ranking method should be
applied carefully, and when the interaction probability is in the
middle (0.4–0.6), we should be more conservative in applying
the ranking method. Nevertheless, we can conclude that the
ranking method proposed in this paper is valid to a certain
extent.

DISCUSSION

In this paper, a domain combination based probabilistic frame-
work to predict protein–protein interaction and an interaction
probability ranking method for multiple protein pairs are pro-
posed. Evaluation of the techniques was conducted and the
validity of the techniques was evident for various data sources.
In the evaluation of the domain combination based protein–
protein interaction method, we ascertained that the prediction
accuracy is dependent on the accuracy of training data sources
and the ratios of the sizes of learning sets of interacting and

non-interacting protein pairs. As expected, our results con-
firmed that DIP data contain more noisy data than the other
data sources. Nevertheless, it is still valuable data source
because the domain coverage of DIP data is wide.

Although the proposed domain combination based predic-
tion method certainly improves the prediction accuracy of the
conventional domain based prediction method, it is not with-
out limitations. This is because domain cannot explain all the
details of complex protein–protein interactions, and the accu-
mulated data are insufficient and still erroneous. In addition,
there is no information on the sets of non-interacting pairs.
Hence, we artificially made random pairing of protein and
used it as a set of non-interacting protein pairs. This could
limit the accuracy of prediction, since it might contain some
interacting protein pairs that have not yet been discovered.
These limitations, however, will be mitigated if more inter-
acting protein pairs are discovered experimentally.

The contributions of the proposed technique and system can
be summarized as follows. First, using this prediction system,
biologists can get reliable preliminary information on
unknown protein interactions avoiding time-consuming and
high-cost experiments. More specifically, biologists can effect-
ively plan their experiments using the ranking information or
the services provided by the system. Second, PIP values and
distributions can provide useful information in identifying
incorrect protein–protein interaction data announced on the
Internet. Third, mass prediction on protein interactions
makes it possible to construct a large protein interaction net-
work (6), and thus, biologists may be able to easily identify
critical proteins from the network. Finally, the proposed
technique can be a base for other computational approaches
on protein identifications like predicting unknown protein
functions.

A service system, named PreSPI (Prediction System for
Protein Interaction) is developed using the techniques devel-
oped in this paper. The system is accessible on the Internet
(http://silver.icu.ac.kr:8080/torajim/index.html). In the future,
we are planning to extend the domain combination based
protein–protein interaction technique by combining it with
a homology search technique (7). Then the prediction for
other protein groups, like mouse and human, would be pos-
sible. We are also considering applying the technique to the
prediction of interactions between protein groups.
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