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Abstract
Background: With microarray technology the expression of thousands of genes can be measured
simultaneously. It is well known that the expression levels of genes of interacting proteins are
correlated significantly more strongly in Saccharomyces cerevisiae than those of proteins that are not
interacting. The objective of this work is to investigate whether this observation extends to the
human genome.

Results: We investigated the quantitative relationship between expression levels of genes
encoding interacting proteins and genes encoding random protein pairs. Therefore we studied
1369 interacting human protein pairs and human gene expression levels of 155 arrays. We were
able to establish a statistically significantly higher correlation between the expression levels of genes
whose proteins interact compared to random protein pairs. Additionally we were able to provide
evidence that genes encoding proteins belonging to the same GO-class show correlated expression
levels.

Conclusion: This finding is concurrent with the naive hypothesis that the scales of production of
interacting proteins are linked because an efficient interaction demands that involved proteins are
available to some degree. The goal of further research in this field will be to understand the
biological mechanisms behind this observation.

Background
Gene expression data [1-3] and protein interaction data
[4] are two types of data produced in the bioinformatics
field. We investigated whether human gene expression
levels of interacting protein pairs show a higher degree of
dependence than those of random protein pairs. To date,
such studies have only been performed in lower organ-
isms like S. cerevisiae [5,6], in a comparative study using
bacteriophage T7 and S. cerevisiae [7], and in C. elegans
[8].

The first global evidence that genes with similar expres-
sion profiles are likely to encode interacting proteins has
been provided in a study on S. cerevisiae by Ge et al. [5].
They compared the probability of interaction between
proteins encoded by genes that belong to common
expression profiling clusters with the probability of inter-
action between proteins encoded by genes that belong to
different clusters. They found that proteins from the intra-
group genes are more than five times as likely to interact
with each other as proteins from the inter-group genes.
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Tornow et al. [6] used superparamagnetic clustering to
integrate protein interaction and expression data from
independent experiments in S. cerevisiae and revealed
hypothetical functional protein modules. Grigoriev [7]
demonstrated the similarity of expression patterns for a
pair of genes and interaction of the proteins they encode
for both the bacteriophage T7 and in S. cerevisiae. He
found the mean correlation coefficients of gene expres-
sion profiles between interacting proteins to be signifi-
cantly higher than those between random protein pairs.

Recently Li et al. [8] analysed the transcriptome and inter-
actome data of C. elegans and discovered that the correla-
tion is lower than expected from observations in yeast.

A study by Jansen et al. [9] links gene expression on a
genomic scale with protein-protein interaction in S. cere-
visiae. They showed that while the subunits of the perma-
nent protein complexes do indeed share significant
correlation in their RNA expression, the correlated expres-
sion is relatively poor in detecting transient interactions.
In a comprehensive study about S. cerevisiae conducted by
Kemmeren et al. [10], up to 71% of the biologically veri-
fied interactions could be validated with the gene co-
expression approach. Integration of expression and inter-
action data is thus a way to improve the confidence of pro-
tein-protein interaction data generated by high-
throughput technologies. Kemmeren et al. [11] see enor-
mous challenges in large genomes (orders of magnitude
larger than S. cerevisiae) because of poor annotation, non-
standardised gene names, and more complex interactions
with the environment.

Results
Expression levels of genes encoding interacting proteins 
are correlated more strongly
Using five publicly available human expression datasets
(Table 1) and 1369 human interacting protein pairs we
compared the correlation of expression of genes encoding
interacting proteins (empirical distribution) with the cor-
relation of random protein pairs (background distribu-
tion). Figure 1 shows that the distribution of empirical
correlations is slightly shifted to the right compared to the

distribution of correlations in the case of random protein
pairs. This result implies that in our data interacting pro-
teins are preferentially encoded by coregulated genes.

Using mutual information as a measure of dependence
the shift observed in figure 1 has almost vanished (figure
2). The difference between empirical and background dis-
tribution of the medians is 0.04 in the correlation case
and <0.01 in the mutual information case. This observa-
tion suggests that correlation as a measure of dependence
is more suitable than mutual information when analyzing
dependencies between expression levels of interacting
proteins. In the Methods section we give a possible inter-
pretation of this observation.

Using each dataset separately we tested the hypothesis
that correlation between expression of genes encoding
interacting protein pairs is not higher than correlation
between expression of genes encoding random protein
pairs. The detailed algorithms are given in the Methods
section. For four out of five analysed datasets this hypoth-
esis is rejected at a significance level α = 0.05. This means
that in these four datasets the correlation of expression
levels of genes which encode interacting proteins is statis-
tically significantly higher than the correlation of expres-
sion levels in genes which encode random pairs of
proteins.

Increased p-values by use of mutual information instead of 
correlation
Using mutual information instead of correlation as a
measure of dependence between gene expression levels
leads to increased p-values for each of the five datasets.
Thus the significance results of the analysis with correla-
tion as dependence measure do not hold when using
mutual information as dependence measure. This may be
caused by the fact that most dependencies between
expression levels are linear or close to linear and not
parabolic which would preferentially be discovered by the
mutual information measure. Because the correlation
coefficient seems to be the more appropriate measure of
dependence for this analysis we do not discuss mutual
information in the following.

Table 1: Information on expression datasets. The study includes a total of 155 arrays from five datasets. Each dataset has been 
published not earlier than 2003 and includes at least 20 arrays and 30 000 spots.

Number of dataset Dataset Year Number of arrays Number of spots

1 Chi [12] 2003 27 43 196
2 Higgins [13] 2004 34 43 196
3 Pathan [15] 2004 42 37 632
4 Zhang [16] 2003 21 31 736
5 Zhao [17] 2004 31 43 196
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Expression of genes involved in different biological 
processes
Assigning GO-classes to the 1369 protein interactions as

described in the Methods section below, for each dataset
we analysed the expression levels of genes encoding inter-
acting protein pairs both belonging to the same GO-class.

Empirical and background distribution of correlation valuesFigure 1
Empirical and background distribution of correlation values. For each interaction pair and for each dataset we calcu-
lated the correlation of expression levels of genes encoding interacting protein pairs. The graph shows slightly higher correla-
tion values in the datasets (empirical distribution) than the correlation in the case of random protein pairs (background 
distribution).
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Each of the figures 3, 4, 5, 6, 7 contains the box-and-
whisker plots and the p-values of the twenty GO-classes
that yield the most significant results for the respective
dataset and of the GO-class biological process. Our method

is different from the methods used by the authors that
generated the datasets that we analysed. Thus our results
cannot be compared directly with theirs. However, we feel

Distribution of mutual informationFigure 2
Distribution of mutual information. For each interaction pair and for each dataset we calculated the mutual information of 
expression levels of genes encoding interacting protein pairs. The graph shows empirical and background distribution to be 
very similar.
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that it is still useful to point out the similarity of some of
our findings with the observations of these authors.

In the following we refer to the different datasets by the
number they have received in table 1.

Figure 3 shows that in dataset 1 mainly genes included in
the GO-classes cell cycle, cell growth, and cell proliferation are
highly correlated. All in all only few GO-classes show low
p-values which, in principle, agrees with the observations
of Chi et al. [12] that siRNA-mediated gene silencing leads
to only small variations in the gene expression pattern.

In figure 4, describing our results of the second expression
dataset of Higgins et al. [13], many genes included in
immune response and inflammatory response like inter-
leukins, chemokine receptors, and chemokine ligands are
highly correlated. This is an indication that the expression
of chemokines and chemokine receptors is spatially and
temporally restricted not only in the developing human

kidney as reported in Gröne et al. [14] but also in the fully
developed kidney.

Figure 5 shows our results of the GO-expression analysis
of the third dataset. In this dataset Pathan et al. [15] found
genes that are involved in bacterial infection to be signifi-
cantly upregulated in blood after exposure to meningo-
cocci. We found the expression of genes that are involved
in the response to (pathogenic) bacteria to be highly corre-
lated which is in concurrence with the findings of Pathan
et al. [15].

Zhang et al. [16] analysed the changes in transcript abun-
dance occurring during senescence in human fibroblasts,
as compared with early passage proliferating cells or qui-
escent cells. Figure 6 shows the results of our analysis of
their expression dataset. In agreement with their findings
we observed a strong correlation of genes that relate to
apoptosis and genes that relate to transcription, but in
contrast to them, we could not find significant correlation
of genes that are involved in the cell cycle regulation.

Correlations and p-values of the expression dataset from ChiFigure 3
Correlations and p-values of the expression dataset from Chi. The diagram contains the contains the box-and-whisker 
plots and the p-values of the twenty GO-classes that yield the most significant results for the respective dataset and of the GO-
class biological process. It shows for different GO-classes, how strongly the expression levels of genes that encode interacting 
proteins from this common GO-class are correlated. The GO-classes along the x-axis are ordered by the corresponding p-
value. This p-value gives the probability to get the depicted correlation results using random interacting protein pairs from the 
respective GO-class. For comparison the GO-class 'biological process', which comprises all interaction pairs (except the self-
interactions), has been added.
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Zhao et al. [17] analysed the effects of methylseleninic
acid on the transcriptional program of human prostate
cancer cells. Corresponding to their observation of
decreased expression of genes involved in all phases of the
cell cycle lines that do not express androgen receptor pro-
tein we found significant correlation of genes involved in
M phase, nuclear division, and mitosis. Figure 7 displays the
correlations and p-values of the top twenty GO-classes we
calculated for the fifth dataset. In consensus with the
expectations genes encoding proteins that are involved in
the cell cycle show the lowest p-values in our analysis.

Discussion
This study investigates the relationship between two bio-
logical phenomena – gene expression and protein-protein
interaction in H. sapiens – based on experimental data
available in public databases. The study was prompted by
the fact that in yeast and other lower non-mammalian
organisms correlation is observed between expression lev-
els of genes encoding interacting proteins. We were able to

obtain convincing evidence of correlation using the Pear-
son's correlation coefficient but could not confirm these
results when taking the mutual information as a measure
of dependence. Using information on the GO-class to
which both proteins of an interacting protein pair belong,
we were able to find significant correlations of expression
levels mostly in accordance to existing knowledge.

The results of our investigation lend additional credibility
to the protein-protein interaction data used.

Once more interaction data are available, an analysis of
the type presented here should be repeated including
information on domains and phenotypes. For instance,
one of the remaining open questions is whether the
correlation of expression vectors of genes encoding inter-
acting proteins with certain compared to random combi-
nations of domains is statistically significantly different.

Correlations and p-values of the expression dataset from HigginsFigure 4
Correlations and p-values of the expression dataset from Higgins. Analogous to figure 3
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Correlations and p-values of the expression dataset from PathanFigure 5
Correlations and p-values of the expression dataset from Pathan. Analogous to figure 3

Correlations and p-values of the expression dataset from ZhangFigure 6
Correlations and p-values of the expression dataset from Zhang. Analogous to figure 3
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Larger interaction datasets will also provide the opportu-
nity to analyse the question if genes encoding interacting
proteins are located on the same chromosome or even in
close neighbourhood to each other more often than
expected when assuming a random order. This problem
has been addressed recently by Hurst et al. [18].

Conclusion
In this study we observed a statistically significant correla-
tion between expression of genes encoding interacting
proteins in H. sapiens. This finding points towards a bio-
logical mechanism which coregulates the expression of
such genes. Additionally it confirms the relevance of using
gene expression data and interaction data in human
genome analysis.

Methods
Gene expression data
For our study we used public datasets from the Stanford
Microarray Database (SMD) [19]. This database includes
much actual expression data from the same (cDNA micro-
array) platform, which is an important prerequisite for a
well-founded analysis [20]. Datasets were selected by the
following criteria:

• At least 20 000 clones per array

• At least 20 arrays per dataset

• Equal sets of measured clones per dataset

• Publication not earlier than 2003.

The following datasets were included in our study: Chi et
al. [12] (human kidney cells), Higgins et al. [13] (normal
tissue of kidney), Pathan et al. [15] (infection of blood
cells), Zhang et al. [16] (gene transcription occurring dur-
ing replicative senescence in human fibroblasts and mam-
mary epithelial cells), and Zhao et al. [17] (effects of
methylseleninic acid on the transcriptional program of
prostate cancer LNCaP (Lymph Node Carcinoma of the
Prostate) cells). The number of arrays ranges from 21 to
42 and the number of measured clones from 31 736 to 43
196. As expression level we used the binary logarithm of
the normalised ratio of gene signal (channel 2) and refer-
ence signal (channel 1).

Protein-protein interaction data
As protein interaction database we used DIP [21] listing
protein pairs that are known to interact with each other,

Correlations and p-values of the expression dataset from ZhaoFigure 7
Correlations and p-values of the expression dataset from Zhao. Analogous to figure 3
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because DIP allows the user to select interactions based on
their species of origin (e.g. human). Interaction here
means that two amino acid chains were experimentally
identified to bind to each other. In September 2004 the
database comprised 1369 human protein-protein interac-
tion pairs including 51 self-interactions. These self-inter-
actions were excluded from the analysis because the
corresponding gene expression levels (which are two
identical vectors) always have correlation 1.

Matching gene and protein identifiers
In order to determine the expression levels of genes
encoding proteins that interact we have to know which
proteins are encoded by which genes. Thus we have to
match gene identifiers with protein identifiers. Specifi-
cally, we matched UniGene cluster IDs [22] from the
expression files of the SMD [19] with Swiss-Prot accession
numbers [23] (e.g. sp:Q07812), with PIR accession num-
bers [24] (e.g. pir:A47538), and with NCBI sequence iden-
tification numbers [25] (e.g. gi:539664) of the DIP files.
As 'translator' we used a file called 'Hs.data' from the
NCBI website [26] which contains the mentioned identi-
fiers and the corresponding UniGene cluster IDs. In order
to limit runtime, we refrained from applying sophisti-
cated selection methods [27] where multiple matching
occurred, but considered the first hit at all times. By using
this approach, for 87% of the interacting protein pairs the
genes encoding these proteins can be determined. In cases
where this procedure was not successful, we used informa-
tion from the Harvester website [28]. By this combination
of methods the proportion increases from 87% to 94%.
For many of these protein interactions no expression data
of the encoding genes are available. Depending on the
number of genes measured in the five expression data sets
for at least 43% (dataset 4) and for up to 72% (dataset 3)
of the proteins the corresponding gene expression levels
can be determined. For evaluating the amount of depend-
ence between the expression levels of two genes encoding
interacting proteins, the expression of both genes has to
be measured. Disregarding self-interactions this is the case
in at least 10% (dataset 4) and up to 47% (dataset 3) out
of 1369 interactions.

Pearson's correlation coefficient
Let (X1, Y1), (X2, Y2),..., (Xn, Yn) be the n pairs of expres-
sion levels of two random variables X (expression of first
protein) and Y (expression of second protein). We wish to
measure the degree to which X and Y are linearly depend-
ent as opposed to being independent. The correlation
then is defined by

Mutual information
Mutual information measures the mutual dependence of
two variables based on information theory.

Two random variables, X and Y, with probability distribu-
tions pX(x) and pY(y) and the joint distribution pXY(x, y) are
statistically independent if

pXY(x, y) = pX(x)·pY(y).  (2)

The mutual information

quantifies the degree of dependence of X and Y using the
distance between the joint distribution and the distribu-
tion in case of total independence. The mutual informa-
tion becomes large if X and Y contain the same
information.

Calculating the degree of dependence between expression 
levels of genes encoding interacting proteins for all 
datasets
In our analysis we used expression vectors each contain-
ing the expression levels of one gene from all arrays of a
dataset extracted from the SMD [19]. For each dataset we
determined the correlation of vectors each containing the
expression levels of genes encoding two interacting
proteins. For each interaction the median of the resulting
set of five (one for each dataset) correlation coefficients
was calculated. We used a permutation approach (with 10
000 permutations) to compare the empirical correlation
and mutual information with the corresponding back-
ground distributions. In each permutation step we held
the expression levels X of one protein fixed and permuted
the interaction partners encoded by genes with expression
levels Y. Thus for each permutation we got a new interac-
tion dataset with random protein pairs. For each of these
datasets we calculated the correlation values and their
median as before for the original dataset.

We repeated this procedure using mutual information as
measure of dependence. The distributions of correlation
and mutual information are shown in figure 1 and in fig-
ure 2, respectively.

Calculating p-values for each dataset
As before we determined the correlation of vectors for

each dataset, each vector containing the expression levels
of genes encoding two interacting proteins. We also calcu-
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lated these values for the permuted datasets (1000 permu-
tations). To get more specific results, we did not use the
median of the correlations or mutual information values
here but performed the permutation approach for each
dataset separately.

Denote with nperm the number of permutations and with
nhigh the number of correlation and mutual information
values higher than those in the original dataset. Then the
estimated p-values are given by

p = nhigh/nperm.  (5)

The corresponding p-values are shown in table 2.

GO analysis in each dataset
To further elucidate dependencies between expression lev-
els in the five datasets we analysed for each dataset if genes
encoding proteins within different GO-classes represent-
ing biological processes have correlated expression levels.
Therefore, using QuickGO [29] we determined for each
GO-class describing a biological process which of the
1369 interacting pairs include proteins, both of which
belong to the respective biological process. We used these
sets of interacting protein pairs to find biological
processes that include protein pairs encoded by genes
with highly correlated gene expression levels. By the use of
a permutation test we compared the correlations of pro-
tein pairs belonging to a certain GO-class with the corre-
lations of protein pairs not belonging to that GO-class.
Analogous to the case without differentiation between
GO-classes we can apply equation (5) again to get a p-
value for each GO-class in each dataset (figure 3, 4, 5, 6,
7). We did not perform a correction procedure for multi-
ple testing because the tested GO-classes often include
very similar or even identical sets of interactions. Essential
in this analysis is the ranking of the GO-classes.

Authors' contributions
AH developed and implemented the method, ran the cal-
culations and prepared a draft of the paper. The other
authors contributed to the development of the method,

the interpretation of the results, and the refinement of the
paper.
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