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ABSTRACT

In recent years, the Munich Information Center for
Protein Sequences (MIPS) yeast protein–protein
interaction (PPI) dataset has been used in numerous
analyses of protein networks and has been called a
gold standardbecauseof its quality andcomprehens-
iveness [H.Yu,N.M.Luscombe,H.X.Lu,X.Zhu,Y.Xia,
J. D. Han,N.Bertin, S. Chung,M. Vidal andM.Gerstein
(2004) Genome Res., 14, 1107–1118]. MPact and the
yeast protein localization catalogprovide information
related to theproximityofproteins inyeast.Beside the
integration of high-throughput data, information
about experimental evidence for PPIs in the literature
was compiled by experts adding up to 4300 distinct
PPIs connecting 1500 proteins in yeast. As the inter-
action data is a complementary part of CYGD, inter-
activemapping of data on other integrated data types
such as the functional classification catalog
[A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani,
M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt,
M. Münsterkötter and H. W. Mewes (2004) Nucleic
Acids Res., 32, 5539–5545] is possible. A survey of
signaling proteins and comparison with pathway data
fromKEGGdemonstrates thatbasedon thesemanually
annotated data only an extensive overview of the com-
plexity of this functional network can be obtained in
yeast. The implementation of aweb-based PPI-analysis
tool allowsanalysis andvisualizationof protein interac-
tion networks and facilitates integration of our curated
datawithhigh-throughputdatasets. Thecompletedata-
set as well as user-defined sub-networks can be
retrieved easily in the standardized PSI-MI format. The
resource can be accessed through http://mips.gsf.de/
genre/proj/mpact.

INTRODUCTION

The analysis of numerous genomes over the past decade
contributed substantially to a comprehensive understanding
of the complex biological processes in living cells since the
‘parts list’ of a genome lacks any information on the action of
genes in context provided by the cellular environment. Several
types of interaction networks such as metabolic pathways,
regulatory modules or signaling cascades, which require
coordinated action of many different proteins can be distin-
guished. The most exhaustively studied model for functional
interactions in eukaryotes is the yeast Saccharomyces
cerevisiae. In addition to the impressive number of individual
experiments that uncover protein–protein interactions (PPIs)
in yeast, data generated by several high-throughput techniques
are available. Especially, large-scale yeast-two-hybrid ana-
lysis added valuable information to the understanding of
the protein network in yeast (1,2). However, a major dis-
advantage of most high-throughput approaches is their signi-
ficant rate of false-positive interactions. The overlap between
the two large but independent yeast-two-hybrid data sets has
been found to be remarkably low which gave rise to the ques-
tion of how these data should be weighted. Since no straight-
forward benchmark standards of truth are available, manually
curated data in the MPact dataset are accepted as a trusted
standard (3,4).

Not only providing a sound reference for the evaluation of
experimental results, MPact was used intensively for the val-
idation of bioinformatics methods for predicting functional
associations from experimental data. It was shown that
genes with similar expression profiles are more likely to
encode interacting proteins, thus describing a subset of func-
tional modules, named ‘party hubs’, in contrast to ‘date hubs’
which consists of interacting proteins not synchronized by co-
regulation (5–9). Extracting information from scientific liter-
ature and subsequent processing for systematic storage is a
time consuming and expensive task. Accordingly, only few
databases of manually compiled PPIs exist. CYGD (10), DIP
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(11), BIND (12), MINT (13) and HPRD (14) are important
resources of this kind.

As applications mapping experimental data to PPIs ask not
only for dynamic and interactive ways of retrieval, a new
section of the Munich Information Center for Protein
Sequences (MIPS) Genome Research Environment (GenRE)
(http://mips.gsf.de/genre/proj/genre) was developed. This sec-
tion, initially designed as a generic and versatile data structure
for interaction data, was used to structure interaction data on
mammalian proteomes (15). Using MPact, mapping of inter-
action data to other secondary information such as the func-
tional classification catalog (FunCat) or mapping of
interaction data to related proteomes is feasible (16). For
instance the latter revealed that the likelihood of having an
ortholog in other ascomycota species correlates with the num-
ber of interacting partners which show a clear preference to be
pairwise conserved as a pair (17).

We describe MPact, a manually annotated protein inter-
action database in yeast as a reference for the experimental
and theoretical work to elucidate the characteristics of cellular
protein interaction networks (3,5,7,9). The power of the manu-
ally curated data set is illustrated by the network of proteins
involved in signal transduction as an example. In addition, we
describe a web-based tool, that allows scientists to analyze
user-defined PPI-networks enabling investigation of protein
subsets of interest. The resource can be accessed through
http://mips.gsf.de/genre/proj/mpact.

METHODS

Software development

The MIPS interaction information resource is divided into
several physically separated independent databases. This
approach was chosen to fulfill different requirements of
diverse protein interaction projects at MIPS like the MPPI
resource (15).

To avoid redundancy and possible inconsistencies, we focus
on interaction relevant information and retrieve additional
information about the interaction partners from related data-
bases. Therefore, we decided to implement the resource with a
component oriented approach. The MIPS GenRE (http://mips.
gsf.de/genre/proj/genre) concept is built on linked but distrib-
uted components following the J2EE (http://java.sun.com/
j2ee/) specification. The design principles of GenRE allow
for seamless integration of different data sources and their
representation as domain objects. The advantage of GenRE
is its modularity that can be part of integrated distributed
environments by introducing a multi-tier architecture with
separated layers (Figure 1).

The core classes comply with a light-weight object-oriented
data model able to map the minimal information about protein
interactions (http://mips.gsf.de/genre/proj/mpact/info/about.
html), in accordance with the PSI-MI standard for exchange
of protein interaction data (18). PSI-MI specifies minimal
requirements for the description of molecular interactions
like confidence levels and information necessary for protein
identification. Additionally, it provides controlled vocabular-
ies for experiment types or the role of the interactor in the
experiment (e.g. bait and prey). The classes are mapped within
the integration layer using Hibernate, an object/relational

mapping technology (http://hibernate.org/) and do not access
the databases directly. Retrieval of the data is performed by
data access objects using the Hibernate persistence mechan-
ism. Supplementary information about the interaction part-
ners, such as functional annotation or localization, is
accessed with similar components already available in GenRE.

On top of the core classes we developed components located
in the application tier for further processing. Data is wrapped
into a generic XML format allowing HTML generation by
XSL style sheet transformation for the presentation layer.
The generic XML format contains all the interaction
information, including protein and gene annotation from
in-house databases. Furthermore, the relevant subset of
this information can be compiled into PSI-MI XML
documents.

We restrict the access not only to internal applications but
offering the same functionality also for web-wide external
access. Therefore we also developed a HOBIT service layer
(http://hobit.sf.net) based on the web service technology to
share MPact in a programming language independent and
web-wide way with the public domain. The MPact web service
is accessible at http://mips.gsf.de/proj/hobitws/services/
PsimiService?wsdl.

RESULTS

Data collection and retrieval

Although attempts have been published for natural language
analysis and text-mining techniques (19,20), automatic extra-
ction of information from scientific articles is still in its
infancy and does not compete yet with high-quality manual
annotation. While many journals require authors to deposit
sequence information for new proteins and genes in one of
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Figure 1. The GenRE n-tier architecture. JSP—JavaServer Pages; XML—
Extensible Markup Language; XSL—Extensible Stylesheet Language;
JDBC—Java DataBase Connectivity; CYGD—Comprehensive Yeast Genome
Database; and FGDB—Fusarium graminearum Genome DataBase.
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the publicly available sequence databases, other knowledge
such as protein interactions, regulation, signaling, cellular
location or function is rarely submitted to an appropriate data-
base or in an appropriate notation and hence are effectively
lost for systematic approaches. The MIPS group has acquired
long-standing experience in protein and genome annotation
contributing to the protein database PIR-International as well
as several genomes such as yeast and Arabidopsis thaliana.
(21–25). In order to annotate PPIs, relevant articles are selec-
ted from PubMed using text-mining tools and processed by a
human expert. The collection of yeast PPI data was started in
the context of the original effort to annotate the S.cerevisiae
genome for the Comprehensive Yeast Genome Database
(CYGD) (25). As a consequence, our protein interaction
data is well integrated with other CYGD data such as descrip-
tion and the localization data or functional classification of
proteins, using the FunCat annotation scheme (26). Since then,
newly discovered PPIs have been added continuously. More-
over, CYGD continues integrating data from high-throughput
experiments.

Key information in the annotation of PPIs are the identi-
fication of the interacting partners, the kind of experiment as
well as the original source of information (PubMed ID). For a
standardized specification of experiments an evidence catalog
exists. This is in line with the requirements for PSI-MI com-
pliant annotation (see below). Based on this information it
is possible to filter the data according to interaction type
(physical/genetic) or to restrict the analysis to a certain type
of experiment. As large-scale experiments have their unique
strengths and weaknesses, and produce a significant fraction of
false positives, it is important to distinguish this data from
individual and manually extracted interactions described in the
literature (3). We clearly make a distinction in our data using
the ‘high-throughput’ tag (htp), indicating that these inter-
actions should be filtered first while browsing the data or
performing in-depth analysis.

The reliability for any individual interaction described in
the database increases by the number of annotated evidences.
In MPact, the manually extracted data have on average 2.6
interactions per protein and are annotated with 1.2 evidences
per interaction; 2.5 interactions are published per reference
(Figure 2). In contrast to the lower quality of high-throughput
data sets, highly reliable co-immunoprecipitation—together

with affinity chromatography—experiments are the major
source for the extracted data (Table 1).

Browsing through the MPact protein interaction space

The database can be accessed through http://mips.gsf.de/
genre/proj/mpact. Further details concerning the implementa-
tion are described in the method section.

Several types of predefined queries are available. ‘Query by
Protein’ offers simple queries by searching for interactions of
individual proteins by their systematic name, gene name or
aliases. Queries are not limited to single proteins; alternatively
selections using attributes such as functional categories based
on the MIPS FunCat (26), cellular localization and EC number
are possible.

Complex confinements of the search space are possible
using ‘Query by Interaction’. Several filters can be applied;
searches between two distinct individual proteins or lists of
proteins can be performed. The result set delivers all inter-
actions with at least one partner from each list. As in the
‘Query by Protein’ form, combinations of attributes are avail-
able. To consider the different strengths of certain interaction
detection methods the user can choose to display only inter-
actions derived from a specific method based on the PSI-MI
controlled vocabulary. To distinguish the manually extracted
data as described above, high-throughput experiments can be
excluded. Since MPact contains both physical and genetic
interactions we provide separate exclusion for these types.
Finally, interactions described in a certain reference (PubMed
ID) can be selected.

 

Figure 2. (A–C)Statistical analysis of the manually extracted data.

Table 1. Distribution of evidences of the manually extracted data

Evidence % No.

Co-immunoprecipitation 43.7 777
Two-hybrid 40.0 712
Affinity chromatography 10.7 191
Gel retardation 1.9 33
Centrifugation 1.5 26
Crosslinking 1.1 19
In vitro reconstitution 0.7 12
Overlay assay 0.4 8
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Search results are presented as tables, depending on the
selection of the short or long output option different levels
of detail are displayed. Short description of the interaction
participants are linked to the corresponding entries of the
CYGD database. For convenient navigation through the inter-
action network a link to the direct interactions of a specific
participant is available. The long format additionally provides
details such as the type of experimental evidence, PubMed
references and a description of the interaction. MPact offers

the possibility of extracting this result set in the standardized
PSI-MI format.

Complementary to the tabular format, visualization of the
interaction graph or its selected subgraphs is offered. Edges of
the interaction graph are colored according to the number of
evidences supporting the respective interaction. Additional
information from CYGD including the functional annotation
of the interacting proteins is included. Visualizations may be
downloaded in PDF format for offline use and to allow

Figure 3. Interaction network of signal transduction proteins restricted to physical interactions, high-throughput interactions not included. Node colors indicate the
most prevalent functional category assigned to all proteins of a sub-network.
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enlargement of interesting regions even for very large
graphs. As an example for the visualization and analysis of
a complex cellular protein interaction network we focus on
signal transduction processes.

Survey of the MPact dataset on signal transduction
processes

Protein interactions involved in signaling pathways provide
a suitable example to illustrate the information collected
and structured by MPact. Figure 3 shows all proteins of
S.cerevisiae that have been annotated as signal transduction
proteins and their physical interactions. Our dataset contains
evidence of physical interactions with at least one partner for
190 (204 physical and genetic) out of a total of 231 signaling
proteins. The vast majority of signal transduction proteins are
connected through one large network including 51 members.
While the majority of proteins in the graph are connected to
only one or two binding partners a few nodes exhibit connec-
tions with a large number of other proteins thus serving as
signaling hubs in the interaction network. This characteristic
feature of scale-free networks has been shown to be applicable
to most known biological interactions (27). The complete
network as well as the signal transduction network follows
a power law distribution indicating a scale-free behavior. The
overall picture in Figure 3 shows that signal transduction in
yeast is a highly complex network in which regulatory proteins
do not necessarily interact directly but are linked through
different players.

To get a notion of the completeness of our interaction
collection, we compared our dataset with signal transduction
pathways documented in the KEGG pathway database (28).
In KEGG, signal transduction in yeast is shown for the
MAPK signaling pathway, two-component system, second
messenger pathway and phosphatidylinositol signaling
system.

The MAPK pathways are highly conserved signaling
units present in all eukaryotes, where they play essential
roles in the response to environmental signals and hormones,
growth factors and cytokines. They control cell growth, mor-
phogenesis, proliferation and stress response (29). Figure 3
shows that members of the MAPK pathway appear in the
centre of the large network, which agrees with the pivotal
role of the MAPK pathway in information transfer processes.
In KEGG, 54 proteins are displayed in the MAPK pathway of
S.cerevisiae. Of these proteins 40 were annotated in CYGD as
involved in signal transduction. Proteins that were assigned to
signal transduction in KEGG but not in CYGD were found to
be linked only peripherally to signal transduction processes.
It is a general problem in the functional assignment of proteins,
how to distinguish between core proteins of a biological
process and others that are only associated with it. In
KEGG, a total of 40 protein–protein relations are represented
by single arrows or lines, which could theoretically also be
found as PPI in MPact. In fact, our dataset includes 27 PPIs
which are also part of the KEGG dataset. Differences between
KEGG and our manually annotated dataset can originate for
different reasons.

(i) Annotation of our dataset is not comprehensive but repre-
sents only a fraction of the published PPIs. Accordingly,
many interactions are indicated as high-throughput data but

have not yet been published as individual experiments.
For example, four PPIs from the MAPK pathway in
KEGG can be found in mass-spectrometry analysis of pro-
tein complexes and large-scale two-hybrid experiments,
respectively.

(ii) Interaction between proteins in signal transduction does not
necessarily depend on physical interaction but may occur
indirectly via regulation on the level of transcription.

The two-component system of yeast in KEGG consists
of three proteins and their interactions. These are redundant
in the MAPK pathway and completely represented in our
dataset. The second messenger pathway and phosphatidylin-
ositol signaling system in KEGG are represented by 17 and 9
proteins, respectively; 14 and 6 of those are found in our
dataset.

Although physical interaction is not an obligatory condition
in many signal transduction processes a comparison with three
important signaling cascades taken from the KEGG database
revealed good coverage of the respective pathways by our
physical interaction data.

CONCLUSIONS

A comprehensive resource on yeast protein interaction data
was set up as a reference for comparative genomics and setting
a standard for other organisms such as human (15). To access
the data a convenient data structure as well as a public inter-
face is available allowing user-defined analysis of sub-
networks and data retrieval in the standardized PSI-MI format.
The data resource is interlinked with the CYGD database
enabling in-depth mapping and analysis employing functional
classification or localization data. As the resource is continu-
ously updated its value for the community will steadily
increase in future.
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