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ABSTRACT

Using two different approaches, we estimated that
on average there are about ®ve interacting
partners per protein in the proteome of the yeast
Saccharomyces cerevisiae. In the ®rst approach, we
used a novel method to model sampling overlap by
a Bernoulli process, compared the results of two
independent yeast two-hybrid interaction screens
and tested the robustness of the estimate. The most
stable estimate of ®ve interactors per protein was
obtained when the three most highly connected
nodes in the protein interaction network were
removed from the analysis (eight interactors per
protein if those nodes were kept). In the second
approach, we analysed a published high-con®dence
subset of putative interaction data obtained from
multiple sources, including large-scale two-hybrid
screens, complex puri®cations, synthetic lethals,
correlated gene expression, computational predic-
tions and previous annotations. Strikingly, the
estimate was again ®ve interactors per protein.
These estimates suggest a range of ~16 000±26 000
different interaction pairs in the yeast, excluding
homotypic interactions. We also discuss the
approaches to estimating the rate of homotypic
interactions.

INTRODUCTION

Scale-up of protein±protein interaction screens using the yeast
two-hybrid system has made it possible to analyse complete
proteomes and identify thousands of interactors. Surprisingly,
recent proteome-wide screens in the yeast Saccharomyces
cerevisiae (1,2) have yielded very little overlap in the detected
interactions. This result was largely unexpected and has led to
speculation on the high error rates in large-scale interaction
screens and the need for an upward revision of the number of
protein interactions in yeast (3).

A further indication of such revision is given by mass-
spectrometry studies of puri®ed protein complexes (4,5),
which have also produced little overlap with each other, as
well as with the interactions detected by the yeast two-hybrid
approach (e.g., 7% for tandem af®nity puri®cation method).
However, these methods do not provide information on

pairwise interactions so the direct comparison with two-hybrid
data is not straightforward.

Estimating the total number of interactions would allow one
to understand the complexity of the protein interaction
network, which is often represented as a graph with N nodes
corresponding to individual proteins and E edges correspond-
ing to interactions between them. The yeast interaction
network contains some 6300 nodes but the number of edges
is unknown. In graph theory, the term `degree' is used to
de®ne the number of edges for a given node. Averaging across
all nodes one can de®ne a `mean degree' of the network
(2E/N), which would represent an average number of inter-
actions per protein. So, in order to calculate the total number
of interactions we need to estimate the mean degree of the
interaction network.

Previous estimates of the numbers of interactions per
protein in the yeast varied between 0.1 and 24 with estimates
of the total number of protein interactions in Saccharomyces
cerevisiae corresponding to a narrower range from 10 000 to
40 000 (3,6,7). In each of the two large-scale yeast screens
(1,2), the number of interactions, E, was close to the number of
proteins, N, involved. This gives an estimate of about two
interactions per protein (2E/N) and <6500 interactions in the
whole proteome.

Here, we attempt to estimate the number of interactions
using two different approaches, both of them integrating
information from more than one source. Strikingly, if the most
robust probabilistic estimate is chosen and three nodes are
removed, the estimates produced by both approaches actually
coincide: the mean degree of the interaction network appears
to be about ®ve, thus the total number of different interacting
protein pairs in the yeast proteome is ~16 000. If the three
nodes are kept, the mean degree is about eight and the total
number of interacting protein pairs grows to 26 000.

MATERIALS AND METHODS

Estimating the number of interactions from sampling
overlap

We estimated the number of interactions from the observed
overlap between the interaction datasets, using the fact that
sampling of interactions for a given protein by two indepen-
dent experimental efforts can be viewed as a Bernoulli process
yielding a binomial distribution. This approach can be easily
illustrated on the example of picking in turn (and placing
back) n1 and n2 objects from a box containing a total of N
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objects. The expected number of objects picked twice will
then be = n1n2/N. Since is the average measure of overlap
between samples, every single pair of drawings can result in a
wrong estimate but they will converge after a large number of
trials.

Large-scale yeast two-hybrid screens represent such
sampling processes for all the interaction sequence tags
(ISTs) detected. Thus, if the screen A detects nAi interactions
for a protein i and the screen B ®nds nBi, then the expected
number ABi of common interactions can be calculated as

ABi = kAkBnAinBi / Ni

where Ni is the total number of interactions involving protein i,
and kA and kB are correcting coef®cients for false positives and
negatives in screens A and B, respectively. Replacing the
expected number ABi by the observed number of common
interactions nABi we can try to estimate an average number, n,
of interactions per protein from the distribution of the Ni

calculated across the whole set, P, of proteins (set size sP)
detected in interaction experiments by both methods as:

n = (kAkB / sP) SiÎP nAinBi / nABi

Dealing with cases of no overlap

Some of the proteins do not have any common interactions
detected by both methods and cannot be directly used in the
estimate as zero overlap (nABi = 0) results in an in®nitely large
Ni. Nevertheless, we could still attempt to ®nd an upper bound
of n using a simple scenario of `forcing overlap by one
interaction'. Here, we assume that one of the methods failed to
detect a single interaction already found by the second method
and we add this interaction arti®cially. This would set nABi = 1
and increment the smallest of the numbers nAi and nBi by one,
assuming that in the worst case there would be just a single
common interaction identi®ed by both methods. Thus, instead
of in®nity, we can give Ni an upper bound of nAinBi/1 = nAinBi.

Minimizing error

We cannot directly estimate kA or kB but we can choose the
most reliable subsets of data to minimize the number of false
negative and positive interactions (so that kAkB®1). In a
previous study (8) different yeast protein±protein interaction
datasets were compared on the basis of their agreement with
gene expression pro®les. A simple requirement of multiply
con®rmed interacting pairs was found to signi®cantly increase
the reliability of the interaction data. For example, the `core'
data from Ito et al. (2) with three or more ISTs as well as the
data from Uetz et al. (1) agreed with expression pro®les
signi®cantly better than the whole or non-core datasets of Ito
et al. (2) and hence were used in our calculations below.

We did not consider datasets such as MIPS (9) collected
from numerous publications on small-scale interaction screens
since the choices of baits and preys in those are mainly
hypothesis drivenÐhence they cannot be considered random
and are not appropriate for our estimates based on random
sampling.

Testing stability of the estimate

The robustness of this approach was evaluated by taking out in
turn each of the common proteins and their interactions and
performing the calculations for a subnetwork of remaining

proteins (excluding those having connections only with the
removed protein). From the distribution of the resulting
estimates (nk after removal of a protein k) the mean estimate nr

of interactions per protein and standard deviation (SD) were
determined. Z-score was calculated as |nk±nr|/SD. Removal of
the highly connected proteins produced the largest changes as
evidenced by the Z-score and the range of the distribution.

Estimating the number of interactions by integrating
multiple data sources

We analysed putative interaction data obtained from multiple
sources using a previously published dataset of putative
interactions (10). We constructed an interaction subnetwork
comprising only the interactions with two or more different
lines of evidence. The average number of interactors per
protein was then determined as 2E/N.

RESULTS

Identifying overlapping samples from yeast two-hybrid
screens

After removing redundancy, we created set U containing 884
interactions between 973 proteins, compiled from Uetz et al.
(1) with later additions from Schwikowski et al. (11), and set I,
which represented the `core data' from Ito et al. (2) with 754
interactions between 786 proteins. Homotypic interactions
were not included in sets U and I and were not taken into
account in the calculations. The union of both datasets
comprised 1442 proteins while in common between the
networks U and I there were 317 proteins, identi®ed either as
bait or prey or both.

One example of such a common network node (YGR119C)
is shown in Figure 1. In this example, nA = 5, nB = 4, nAB = 2,
so the expected total number of partners of YGR119C is
N = 534/2 = 10, though only seven have been detected.

However, 169 of the proteins common between sets U and I
had no common interaction partner identi®ed by both
experimental groups and only 148 proteins had one or more
interactions shared by the two datasets.

Removing three highly connected network nodes

For three proteins, estimates of the interaction partners Ni were
very large (>100): 240 for YML064C (gene name TEM1,
GTP-binding protein involved in termination of M-phase,
ras superfamily), 233 for YNL189W (gene name SRP1,
karyopherin alpha homolog) and 110 for YJR091C (gene
name JSN1, benomyl-dependent tubulin mutant). These

Figure 1. Overlap of the protein±protein interactions for YGR119C. Green
and red rectangles correspond to interacting partners from set I and set U,
respectively. Partners common between sets I and U are shown as blue
rectangles. In this example, nA = 5, nB = 4, nAB = 2, so the expected total
number of partners of YGR119C is N = 10, though only seven are currently
detected.
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numbers are signi®cantly higher than the estimates for the rest
of the proteins, where the highest number is 64 interaction
partners for YLR423C. Not surprisingly, among the nodes
common between the two networks these are the most highly
connected ones. Further, their common partners are too few in
number, resulting in those elevated estimates. All of the
interaction partners of these nodes are shown together in
Figure 2 with the exception of the node YJR091C, which has
zero overlap in both datasets.

As expected, YML064C, YNL189W and YJR091C also
produced the largest changes in terms of robustness of the
estimate (see below). Hence they have been removed from the
network and their interactions omitted from the subsequent
calculations. After the removal, the highest estimate of
interaction partners was 55 for YLR423C.

Robustness of the estimate

We evaluated how robust our estimate was by taking out in
turn each of the 317 common proteins (and corresponding

interactions) and performing the calculations for a subnetwork
of 316 remaining proteins (without adding arti®cial inter-
actions). From the distribution of the resulting estimates the
mean number of interactions per protein, n, and SD were
determined (Table 1). Removal of the highly connected
proteins above produced the largest changes: e.g., Z-score >
9.5 for YML064C, while the range (or the distance between
the minimum and maximum) of the distribution was ~17 SD.
After elimination of the three nodes the same procedure was
repeated and the estimate of n was much more robust: both the
SD decreased >3-fold and the range of the distribution shrunk
appreciably to some 14 SD (Table 1). Thus, removal of the
highly connected nodes reduces the average number of
interactions from eight to about ®ve per protein.

Since 169 of the proteins had no common interaction
partner (identi®ed by both experimental groups), we tested the
effect of adding singular arti®cial interactions to these to
obtain `overlap by one interaction', as described in Materials
and Methods, and repeated the estimate. As expected, this did

Figure 2. Overlap of the protein±protein interaction subnetworks. Subnetworks displayed are around the proteins encoded by YNL189W, YML064C and
YLR423C (shown as white rectangles), the most highly connected nodes common for the datasets U and I (the u- and i- pre®xes corresponds to sets U and I,
respectively). The comparative display represents a screen shot of PINS (Protein Interaction Navigation System; Grigoriev, unpublished) software. Interaction
partners are shown only for these three proteins. Color coding is as in Figure 1, while pink rectangles designate proteins linked to more than one of the
above nodes.
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not change the estimate dramatically. The mean degree
increased to 5.36 6 0.06, indicating that among these 169
proteins the mean number of interacting partners was slightly
below six if arti®cial interactions were added.

Integrating multiple data sources to estimate the
number of interactions

We derived another estimate of the average number of
interactors per protein from the data compiled by von Mering
et al. (10) containing some 80 000 putative interactions
collected from a number of different sources including direct
experimental data (genome-wide yeast two-hybrid screens,
complex puri®cations, synthetic lethals) and computed/
inferred results (correlated gene expression and computational
predictions).

We constructed an interaction subnetwork comprising only
the interactions with at least two different lines of evidence,
this threshold also having been used by von Mering et al. (10)
for assigning a `high con®dence' quali®er to an interaction
pair. In this network, 2455 interactions with high con®dence
involve 988 yeast proteins, resulting in 4.97 interactions per
protein. This is a striking coincidence with the estimate in
Table 1. Thus, both approaches suggest that on average there
are about ®ve interactors per yeast protein.

All these 80 000 putative interaction pairs obtained by
genome-wide methods have been quali®ed with regard to co-
occurrence of both proteins in the same complex as annotated
at the MIPS website (http://mips.gsf.de/proj/yeast/catalogues/
complexes/index.html), and co-occurring pairs have thus been
marked as `previously annotated' by von Mering et al. (10).
We analysed the rate of the protein pair co-occurrence in
MIPS complexes and found that it is about eight times higher
in the high con®dence subset than in the whole set of putative
interactions (23 versus 2.9%). Since the presence of two
proteins in the same complex most likely indicates an
interaction between them, this con®rms the better quality of
the data in the high con®dence subset.

DISCUSSION

We estimated the average number of interacting partners per
protein in the proteome of the yeast S.cerevisiae, using two
different approaches. In the ®rst approach, we compared the
results of two independent yeast two-hybrid interaction
screens (1,2). Our estimate was derived from the observed
overlap between the interaction datasets, assuming that
sampling of interactions for a given protein by two indepen-
dent experimental efforts can be viewed as a Bernoulli process
yielding a binomial distribution.

The robustness of this approach was evaluated by taking out
in turn each of the common proteins (and corresponding
interactions) and performing the calculations for a subnetwork
of remaining proteins. The most robust estimate of about ®ve
interactors per protein was obtained when the three most
highly connected nodes in the protein interaction network
were removed from the analysis. When they were kept in the
network, the mean degree was about eight.

It is interesting to compare this number with the estimate
obtained using the second approach. In that approach, we used
the dataset compiled by von Mering et al. (10) where some
80 000 putative interactions collected from large-scale two-
hybrid screens, complex puri®cations, synthetic lethals, cor-
related gene expression and computational predictions are
assigned con®dence based on con®rmation by multiple
methods. We analysed their compilation with regard to the
average number of interacting partners and found that 2455
interactions with high con®dence involve 988 yeast proteins,
again resulting in about ®ve interactions per protein.

What biases may affect these estimates? The most obvious
is experimental bias. For instance, there may be enough
similarity in the systematic errors of the large-scale yeast two-
hybrid screens to lead to a biased measure of overlap between
the datasets. Such errors may manifest themselves as false
negatives when certain biological requirements that enable
interactions are lacking in the yeast two-hybrid system: e.g.,
protein stability, localization and steric constraints, a free
N-terminal domain of one of the proteins, physiological
conditions unlike those of the yeast nucleus, etc. On the other
hand, false positives may arise from reporter activation
dependent on only one or the other of the fusion proteins,
although these errors should be weeded out after a screen is
done. For library screens it is known that some proteins appear
to interact with many other proteins, and that other false
positives may be a result of selection for genetic changes in the
yeast that lead to activation of the reporter genes, etc. For the
yeast interaction screens (more so than for human screens in
the yeast two-hybrid system) false positives may arise via
interaction of each of the two proteins with an intermediate
protein (or several proteins).

Since we cannot directly estimate such error rates, we chose
to use the more reliable subsets of the interaction data as
inferred from an earlier comparison with gene expression
results (8). Furthermore, as discussed in Ito et al. (2), the
experimental systems used in the two screens are actually
different regarding unique plasmid constructs as well as the
strategy and stringency of selection (plasmid copy number and
numbers of reporters). Different yeast two-hybrid systems
often show different sensitivity with respect to the same
interaction. This varies from one interaction to another to the
extent that may well be considered random and lends support
to the validity of our model for the estimate based on binomial
distribution.

Sampling bias may also introduce errors. For instance, the
chance of detecting highly connected nodes (proteins) in a
non-saturated screen is higher than those linked to only a few
interacting partners. However, we model sampling of inter-
actions (edges between nodes) and not proteins. In fact, in the
absence of experimental bias some proteins are more likely to
be identi®ed, but all detectable pairwise interactions have the
same chance of being identi®ed. In this case the bias may

Table 1. Estimates of the mean number of interactions per protein

Proteins excluded from network? No Yesa

Mean 8.26 4.97
SD 0.17 0.05
Rangeb (in SD units) 17.14 14.09
Rangeb 2.92 0.72

aORFs YML064C, YNL189W and YJR091C.
bDistance between the the minimum and maximum of the distribution in
absolute units and units of SD. Lower SD and narrower range (right
column) indicate more robust estimate.
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result from different levels of gene expression re¯ected in
genome coverage of a constructed library.

We also identi®ed two proteins, which appeared to interact
with many other proteins in the large-scale screens but have
little overlap between the two datasets and whose estimated
number of interaction partners exceeded 230 (Fig. 2). Another
protein was found with four interactions in set I, 22 in set U
and no common interactions (the estimate produced by adding
one arti®cial interaction exceeded 110 interactants for this
node). Removal of these proteins produced the largest changes
in the robustness. We thus made estimates both excluding and
including these proteins since, on one hand, their connectivity
may result from experimental bias despite our efforts to select
the most reliable datasets, while on the other hand, their role
may indeed involve interactions with so many partners (e.g.,
YNL189W codes for karyopherin alpha homolog participating
in the protein transport action of the nuclear pore).

Our estimates are based on datasets smaller than the yeast
genome/proteome (about 300 ORFs common between the
yeast two-hybrid screens and some 1000 proteins in the high
con®dence subnetwork created from multiple sources).
However, these datasets have shown good agreement with
results obtained by other methods: yeast genome-wide
expression pro®ling studies (8) and protein complexes anno-
tated at the MIPS website (http://mips.gsf.de/proj/yeast/
catalogues/complexes).

With ®ve partners per protein, there should be ~16 000
different interaction pairs in the yeast proteome comprising
6300 different proteins (630035/2 = 15750), and ~26 000 with
eight partners. This further narrows down the range of
previous estimates from 10 000 to 40 000 (3,6,7,10). By
scaling a postulated power-law degree distribution of the yeast
protein network, Bader and Hogue (12) produced another
estimate that is in the middle of our estimated range: ~20 000.
Another estimate, close to that presented here, of 15 000±
20 000 has been published by Legrain et al. (13), although this
estimate involved more of an educated guess than speci®c
calculations.

Our estimate does not include homotypic interactions.
Newman et al. (14) argued that homotypic interactions,
especially those involving homodimers, are likely to be
underrepresented in yeast two-hybrid screens due to prefer-
ential interaction of baits within a dimeric DNA binding
protein over preys coming from solution. However, many
homotypic interactions have been detected by both two-hybrid
methods and repressor fusions (15) and they constitute some
4±7% (8) of the known yeast interaction sets (1,2,9). Hence,
the total number of interactions will be higher.

One way to estimate that increase is to analyse the
distribution of domains known to be involved in self-
interactions. For example, homotypic interactions are often
mediated by coiled-coil regions in proteins, and speci®c
screens for interacting domains of those proteins identi®ed an
overlap with a predicted coiled-coil domain in many cases
(15). Here, a rough order-of-magnitude estimate can be
obtained from the fact that some 550 yeast proteins are
predicted to contain two-stranded or three-stranded coiled
coils (14).

About ®ve interactions per protein have also been found in
various Caenorhabditis elegans interaction screens (16), and
this may well be a general average parameter for many

eukaryotic proteomes. On the other hand, as mentioned above,
the ability of proteins to interact with each other is generally
ascribed to the presence of speci®c domains mediating
interactions. It is interesting in this respect that the average
domain content of human proteins is higher than that in yeast
(17), which may lead to a higher number of interactants per
human protein.
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