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We present a statistical method for the prediction of protein—protein interactions within an
organism.  This approach is based on the treatment of proteins as collections of conserved
domains, where each domain is responsible for a specific interaction with another domain.   By
characterizing the frequency with which specific domain—domain interactions occur within
known interactions, our model can assign a probability to an arbitrary interaction between any
two proteins with defined domains.  Domain interaction data is complemented with information
on the topology of a network and is incorporated into the model by assigning greater probabili-
ties to networks displaying more biologically realistic topologies.  We use Markov chain Monte
Carlo techniques for the prediction of posterior probabilities of interaction between a set of pro-
teins; allowing its application to large data sets.  In this work we attempt to predict interactions
in a set of 40 human proteins, known to form a connected network, and discuss methods for
future improvement.

1.   Introduction

Increases in the number of sequenced genomes have led to rapid growth in the num-
ber of biological systems with characterized molecular components.  Understanding
of how these individual components are integrated together into a complete system,
however, has lagged.  Part of the difficulty in this undertaking originates in the fact
that experimental data as to the existence of interactions between any two molecules
are extremely sparse.  While advances have also been made with, for example,
high—throughput two—hybrid studies and complementary interaction databases, a
comprehensive view of these molecular interaction networks is still lacking.  

Networks consisting of proteins, DNA, RNA, and various small molecules, are
formed due to one molecule’s propensity to bind or otherwise influence another and
hence alter system function.  In this article, functional areas that provide this ability
for one molecule to interact with another are referred to as domains.  For example,
subsequences of DNA where specific proteins bind are one class of domain (as are
the amino acid subsequence responsible for binding activity within the protein).
Interactions between proteins are of particular interest, as they are responsible for the



majority of “active” biological function.  To date, protein—protein interactions are
also the predominant type of interaction with significant quantities of supporting
experimental data sets.  As a result of these two factors, the work described here is
focused on protein interaction networks, and more specifically, the a priori predic-
tion of interactions between proteins as well as the prediction of whole networks. 

Here we describe a statistical model capable of predicting protein—protein inter-
actions which can be extended to other classes of molecules.  While some previous
methods have focused on using gene fusion events for the prediction of interactions
[1, 2], our approach is more general in that any type of experimental evidence sup-
porting an interaction can be used in prediction.  Based upon experimentally verified
interactions and estimates of network topology, this approach generates posterior
probabilities conditioned on data for all possible interactions.  The work described
here is an extension of earlier work [3], which described the fundamentals of this
model in some detail and presented small examples of its application.  In this paper
we describe the results of a more challenging application of the model and discuss
methods for its improvement.  A primary goal of this work is to provide a method for
generating predictions that would be useful to the experimental biology community.
In particular we feel that the prediction of molecular interactions, along with the abil-
ity to assign a probability to a given interaction, could be of significant benefit in the
generation of new hypotheses and the prioritizing of appropriate (and perhaps more
focused) experiments.

2.  Model description

We start by representing a network as an oriented graph, G = <V, E>, where the verti-
ces, V, of the graph are connected to each other through the edges, E.  In this paper,
edges represent a physical binding between corresponding proteins.  Each vertex rep-
resents a protein, although extension of the model to handle other types of molecules
(e.g. DNA) is rather straightforward.  Each protein can be broken into smaller sub-
units consisting of one or more domains.  We treat domains as evolutionarily con-
served, elementary units of function.  We assume that the domains are responsible
for the generation of edges within the network; a simple example being a phosphory-
lation site and a kinase domain capable of phosphorylating that site.  The upstream
kinase domain is where the edge originates, and the edge terminates at the phospho-
rylation site.  Domains themselves are found through the use of current tools and
databases capable of assigning domains to proteins (e.g. Pfam)[4].  In addition to
interaction data we use an additional parameter, characterizing the network topology,
in the prediction of a network.  While we describe the model in some detail here,
greater description of certain aspects of the model can be found elsewhere [3].



2.1 Assigning probabilities to edges

Assigning a probability to a given network consists of two independent steps.  The
first step consists of assigning a probability pij to the existence of an edge connecting
the proteins i and j or not connecting them (1 - pij).  This process of assigning an
edge can be thought of as the toss of biased coins (one coin per edge) for all possible
edges, |V|2 edges in all.  The coin may be biased by prior information, assigning
probabilities greater than 0.5 to vertices likely to be “attracted” to each other and
form an edge. Probabilities of less than 0.5 can be assigned between proteins that
“repel” each other and are thus unlikely to interact.  Then for a protein network with
a fixed number of vertices and a particular set of edges E between them, the probabil-
ity of this network becomes  

How then do we define these individual edge probabilities pij?

We treat each protein as a collection of domains, and each of these domains has a
tendency to attract or repel other domains between distinct proteins.   Specifically,
we define a probability of attraction p(dm, dn) that exists for each upstream and
downstream domain (as defined by moving with the “flow” or temporal sequence of
the pathway), dm and dn, respectively.  If the orientation is unknown, p(dm, dn) =
p(dn, dm), and the edge is undirected and both directed edges are present.  Identical to
edge probabilities between proteins, probabilities greater than 0.5 represent attrac-
tion while those less than 0.5, repulsion.  For a pair of multidomain proteins i and j,
where vi and vj are the set of unique protein domains for each, the probability of an
edge forming between the two is

Thus the probability of an edge forming between a pair of proteins is dependent on
the relative attraction and repulsion of each protein’s complement of domains, taken
over all upstream—downstream pairwise combinations.  This expression is a reason-
able assumption as long as the number of edges incoming to or outgoing from a ver-
tex is independent of the number of domains per protein; we have verified this
assumption previously [3].  

We determine the probability between a pair of domains, p(dm, dn), by observing
the frequency with which domain dm appears upstream of domain dn within experi-
mental protein—protein  interaction data.  Specifically, we use
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where Ψ is a positive real-valued pseudocount, kmn is the number of edges in the
training set that contain at least one domain dm at the vertex of edge origin and at
least one domain dn at the vertex of edge destination, km is the number of distinct
vertices that contain at least one domain dm, and kn is the number of distinct vertices
that contain at least one domain dn.  This expression generates domain attraction
probabilities greater than or equal to 0.5.  As discussed later, probabilities of less
than 0.5 are reserved for future modeling of repulsive interactions between domains,
as observed, for example, in domain combination studies [5].  In this work, Ψ was
assigned a value of 1.  We assume that data supporting the existence of a particular
interaction is usually backed by several experiments, while experiments showing the
absence of an interaction are generally underrepresented by having either failed (and
these failures not reported) or have not been performed.  Thus this expression does
not “penalize” for lack of an interaction, but assumes it to be the lack of supporting
data.  In the absence of any supporting data, all interactions between domains (and
hence proteins) are equally likely.  

In summary, we observe the frequency with which domain X lies immediately
upstream or downstream of domain Y within experimental protein—protein interac-
tion data.  For an arbitrary pair of proteins, each with their own set of domains, we
are then able to assign a probability to the likelihood of an edge forming between
them.  A complete network with a defined set of edges can similarly be assigned a
probability; networks with many favorable edges will have a higher probability than
a network with many unlikely edges.

2.2 Assigning probabilities to network topologies

The second part of our model deals with a global property of the network, that being 
its topology.  The topology of a network is defined here as the distribution of edges 
going into and out of each vertex of the network.  The number of edges going into a 
vertex is termed the indegree, and the number outgoing, the outdegree.  In this 
model, we sort networks into a finite number of bins each representing a specific 
topology, where biologically realistic topologies have greater probabilities.  Since 
multiple networks may be characterized by the same topology, each bin represents a 
collection of networks each with the same topological probability.  For each network 
we compute the number of vertices that have outdegree zero, n0

out, one, n1
out, two, 

n2
out, and so on to nN

out .  The vertices of a particular indegree are similarly com-
puted.  Networks with identical sets {nx

in } and {ny
out } are then grouped into a sin-

gle bin.  The probability of this bin is defined as
P({nx

in};{πx
in},|V|)* P({ny

out};{πy
out},|V|),

where



The probability distributions �x
in and �y

out give the probability of a network having x 

incoming and y outgoing edges respectively (described in more detail below).
It is easy to see that the probability of a network is simply the product of this dis-

tribution and P(E) described in section 2.1:

P(E) × P({nx
in };{ px

in },|V|) × P({ ny
out };{ py

out },|V|).

Networks with favorable edge sets and favorable topologies will be more likely to be
selected under our model.

The probability distributions �x
in and �y

out were estimated from yeast data taken
from the Database of Interacting Proteins (http://dip.doe-mbi.ucla.edu/) [6, 7] and
were found to follow a power—law distribution [3]; generally associated with
scale—free behavior.  This property was observed independently for the yeast pro-
tein network by Jeong and colleagues [8] and is also typical of a variety of other sys-
tems, both biological and man—made [5, 9, 10].  In this case, the probability of a
vertex having k incoming or outgoing edges is

with the values of c and γ different for each.  For this work fits for each distribution 

gave c = 0.30 and γ = 1.97 for outgoing edges, and c = 0.56, γ = 2.80 for incoming.  

For �0
in and �0

out we used

We used these distributions in the predictions described here, however, their use in 
other distributions is also possible.  See the discussion section for further detail.

3.  Methods

For training data, we used a combined dataset of protein—protein interaction data
for both Saccharomyces cereviseae and Homo sapiens.  We used the Pfam database
(Pfam6.2; 2773 domains) and the HMMER package to determine the domains within
each proteins (0.01 significance threshold).  For the yeast data, we used a compre-
hensive list of interactions downloaded from Stanley Field’s lab home page (http://
depts.washington.edu/sfields/).  This data included interactions from a number of
sources [7, 11, 12].  We analyzed a total of 708 protein—protein interactions from
yeast, all of which had at least 1 domain.  For human data, we used a set of 778 inter-
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actions downloaded from the Myriad Genetics Pronet Online web site (http://
www.myriad-pronet.com/).  

In this study, we attempted to predict interactions between a set of 40 human pro-
teins known to form a fully connected network.  Proteins were chosen from Pronet,
with some of the proteins involved in the process of apoptosis.  These interactions
were not included as part of the original training set.  Except for the requirement that
all proteins of the network must be defined by at least one domain, this network was
chosen at random.  Proteins used in this analysis, and their indices in all figures, are
given in Figure 1. 

4.  Results

4.1  Predictions of human protein—protein interactions 

Edge probabilities based on domain—domain interaction data alone indicated that 97
edges had probabilities > 0.5 (see Figure 1).  Note that we assumed that edges were
not directed and thus the matrix shown here is symmetric.  A total of 44 edges were
in the original data set.  Of these 44 edges, 8 are observed (18%) in the predicted 97
with probabilities > 0.5.  Three out of eight interactions were involved in the heat
shock pathway (read as (Y-axis, X-axis) on the figure); CHIP (12, 12) self—interac-
tion, HSPA8—MRJ (24, 27), and HSPA8—PLCG1 (24, 30).  The remaining 5
included FLN1—KSR1 (16, 25), PS2—CIB (32, 13), GDI2—RAB6 (20, 37),
RAB6—GAPCenA (37, 18), and RAB6—RAB6KIFL (37, 38).  

To see if any of the remaining 89 predicted edges represent known edges, we
attempted a brief literature search.  While often requiring significant expertise in a
given pathway to adequately evaluate these results, we were still able to find obvious
successes.  The predictions of GDI1 (Guanine Nucleotide Dissociation Inhibitor, ver-
tex 19) interacting with Rab11A, Rab3A, Rab5A, and Rab6 (vertices 34, 35, 36, 37
respectively) are in fact correct, and again not in the original data [13-15].

The prediction of CHIP interacting with TTC1 (tetratricopeptide repeat domain
1)(12, 40) is also understandable (though likely not a correct prediction, it may also
be questionable in the original data) as the tetratricopeptide domain is a common
protein—protein interaction motif, and a number of TPR containing proteins are
known to interact with members of the heat shock protein family [16].  While purely
speculative, the interaction of CIB (calcium and integrin binding protein with FLN1
(filamin) is interesting, as filamin has recently been shown to be a scaffold protein
that interacts with calcium receptor and other cell signaling proteins [17].  While the
prediction of only 8 known edges is disappointing, it is not unexpected due to limita-
tions in the training data, and so it is quite possible that most of the predicted interac-
tions are simply “noise.”  The valid prediction of the GDI-Rab interactions, however,



were encouraging.  Limitations of the data and  methods for improving the model are
presented in greater detail in the Discussion.

4.2  Markov chain Monte Carlo (MCMC) simulations

We used a MCMC simulation approach for computing the posterior probabilities of
all edges within the network [18, 19].  This approach, particularly useful in generat-
ing posteriors from complicated distributions, allowed us to adequately sample from
the astronomically large number of possible network configurations (for |V| vertices
there are 2|V||V| possible networks).  In our approach we used a uniform prior distribu-
tion over all networks, as we had no prior information that would cause us to prefer
one network over another.  Starting with an arbitrary network, and using a revers-
ible—jump methodology [20], edges were both added and removed at each iteration
of the algorithm.  Addition and removal of edges moves the network from the current
state X to a proposed state Y.  Using a symmetric proposal distribution, the new state
is accepted with probability 

where L(.) is the likelihood of the network.  If the proposed state is accepted, it 
becomes the current state.  This method thus samples networks from the space of all 
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Figure 1.  Known and
predicted edges. 
Known edges are
shown as open circles,
while predicted edges
are displayed as an “x.”
Proteins and their
indices in all figures
are: 1) ANT2, 2) APP
(695), 3) B-CAT, 
4) BAG3, 5) BAK,
6) Bax-beta, 7)Bcl-xL,
8) BCL2A1, 9)Bcl2-
alpha, 10) Calsenilen,
11) CAV1, 12) CHIP,
13) CIB, 14) D-CAT,

15) DRAL, 16) FLN1, 17) FLNB, 18) GAPCenA, 19) GDI1, 20) GDI2, 21) GGTB,
22) GTPBP1, 23) HSPA4, 24) HSPA8, 25) KSR1, 26) MCL1, 27) MRJ, 28) PSAP,
29) PKP4, 30) PLCG1, 31) PS1 (467), 32) PS2 (448), 33) QM, 34) RAB11A,
35) RAB3A, 36) RAB5A, 37) RAB6, 38) RAB6KIFL, 39) TF, 40) TTC1.  Values
given in parentheses for proteins 2, 31, and 32 refer to alternative splice forms. 
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possible networks while keeping each edge occupied, or unoccupied over time, in 
proportion to its posterior probability.  

The posterior distribution generated from approximately 107 samples is shown in
Figure 2a and b.  In 2a it can be seen that a few edges are readily apparent; rising well
above the surrounding background.  The two tallest peaks are of the HSPA8—MRJ
interaction.  Edges such as these show up rapidly in our simulations, while low—
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probability edges can take considerably greater amounts of sampling to distinguish
them from background.  Figure 2b shows the posterior probabilities for each edge of
the network.  The lower probability (darker) “lines” running horizontally at vertices
20 and 27 and vertically along vertex 27 show the influence of the nonsymmetrical
edge distributions.  For example, since vertex 27 has a relatively high probability
connection, the edge distribution tends to suppress the addition of new edges to the
same vertex.  Of course any vertex can have multiple incoming and outgoing edges,
however due to the scale—free property of these networks, highly connected vertices
are relatively rare.

5.  Discussion

Obviously, we would have preferred to have better accuracy in our predictions,
though the prediction of a few edges not in the data set and that were able to be con-
firmed through a literature search was very encouraging.  However due to inadequa-
cies in the training data and current limitations of the model, a large number of
potential errors is unavoidable at this time.  In our previous analysis, we used cross-
validation to measure the effectiveness of the model.  By starting with a large net-
work (642 edges), and either adding or removing a single edge and determining
whether the network probability increased or decreased as a result, we estimated 7%
false negative and 10% false positive error rates [3].  The study described here, how-
ever, was significantly more challenging.  We should also note that it is extremely
difficult to evaluate the true accuracy of these results.  Of the edges that could not be
matched to known edges, it is quite possible that some of these are also correctly pre-
dicted.  In fact, a primary goal of this effort is to generate just such predictions of
currently unknown interactions.  

Our approach, however, is primarily limited by the use of a rather limited set of
previously defined domains.  For example, of the 6202 proteins within yeast, nearly
40% were unable to be assigned any type of domain.  Furthermore, of the 2238 edges
used here, only 708 originated and terminated at proteins each with at least one
domain.  Similar limitations are seen within the human data.  In addition, while yeast
proteins tend to be characterized by a single domain, multidomain proteins are closer
to the norm in humans, and thus the limited amount of training data is again a factor.
Obviously, the lack of adequate domain coverage presents serious difficulties, as our
model requires at least 1 instance of a particular domain—domain interaction in the
training set to predict it in "real" data.  To address this issue, we are in the process of
developing a method that should be capable of providing 100% coverage.

As discussed in the model description, we currently use a multinomial distribu-
tion to characterize the distribution of edges going into and out of each vertex of the
network, with the bin probabilities taken from fits to yeast data.  While not optimal,



the use of yeast parameters seemed an acceptable first—pass attempt as, for exam-
ple, edge distributions from metabolic networks (which also follow power—law
behavior) have been shown to be very similar across species [21].  While we plan to
acquire distributions for a number of species, it appears that the lack of reasonably
large data sets could be a hindrance, with improper edge distributions perhaps mask-
ing interactions that would otherwise be apparent, particularly in interspecies predic-
tions.  In the interim, we plan to use parameters from a well—characterized system
(e.g. yeast) in a distribution with identical mean but with greater variance.  This
requirement can be fulfilled with the incorporation of the negative multinomial dis-
tribution (instead of the multinomial distribution) into our simulations, defined as

In Figure 3a and b, we show the negative multinomial with different parameters
Pi, while  Figure 3c shows a multinomial distribution.  It can be seen that by increas-
ing Pi we are able to increase the variance of the distribution while keeping the
expected value identical to the multinomial distribution shown in part c.  Note that
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Figure 3.  The negative multinomial distribution is an alternative to the
multinomial.  Parts (a) & (b) show the negative multinomial (suface plot above its
corresponding contour plot) in comaprison to the multinomial distribution in (c).
For the multinomial, Pi = 0.25 and N = 14.  For the neg. multinomial, Pi was set
equal to 0.25 times a constant, with NP held constant.  For part (a) the const = 4,
while for part (b), const = 1x10-6.  See text for further details.
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while we can match the expected value, we can only generate a variance that is
greater than, but not equal to, the multinomial's.  This is because a negative binomal
distribution tends to a Poisson distribution as the variance decreases, and the Poisson
distribution has typically larger variance than a multinomial distribution with the
same mean.

From an implementation standpoint, this approach, while capable of handling
large networks, benefits significantly from the use of appropriate computational
resources.  We ran a C programming language implementation of our method, which
proved to be significantly more rapid than our previous implementation in Matlab. In
addition, we have the benefit of a 5—node Beowulf cluster running Linux, with each
node having 2, 1GHz CPUs.  The availability of appropriate hardware and software
was invaluable, as it can take a considerable amount of time to establish a stationary
distribution (1-2 days in this case) and to generate the posterior (many days to gener-
ate a posterior with resolution of low—probability edges). 

In the future, we plan on implementing “repulsive” interactions between
domains.  This can be achieved by assigning domain—domain interaction probabili-
ties of < 0.5 to interactions that are never present.  While requiring careful normal-
ization and balancing with “attractive” probabilities, this feature should provide
enhanced resolution of predicted interactions (bigger peaks and deeper valleys in the
posterior plots).  While having its own set of favorable and unfavorable properties,
two—hybrid data should prove particularly valuable for this approach.

6.  Conclusion

This work has attempted to describe a probabilistic approach to the prediction of pro-
tein—protein interactions a priori. Other approaches to predicting protein interac-
tions are also being developed.  Recently, work by Bock and Gough [22] described a
Support Vector Machine approach for this prediction.  This approach was based on
primary structural data (the protein sequence) and utilized the DIP database for train-
ing data.  A benefit of the approach described here is that we can assign probabilities
to both edges and to complete networks (or subgraphs).  Given a target protein(s), a
ranking of most likely interaction candidates can be generated directly, providing
some direct measure as to how confident one is as to the existence of a given interac-
tion.  

Our use of Markov chain Monte Carlo techniques provides a computationally
feasible way to calculate the posterior probability of a network given data as:
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While we have assumed a uniform prior distribution over all possible networks, the
model does not require this.  This framework allows new information (in the form of
priors) to be added into the calculation as it becomes available. 

In summary, while requiring further improvement, we feel that this approach
holds significant potential.  Its Bayesian basis allows the integration of disparate
types of data into a single prediction.  The discussed improvements should allow for
more accurate predictions of both known and unknown interactions and will hope-
fully provide predictions of some value to the biological community.
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