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Abstract 

Background: Whether or not a protein’s number of physical interactions with other proteins 
plays a role in determining its rate of evolution has been a contentious issue.  A recent analysis 
suggested that the observed correlation between number of interactions and evolutionary rate 
may be due to experimental biases in high-throughput protein interaction data sets. 
Discussion: The number of interactions per protein, as measured by some protein interaction 
data sets, shows no correlation with evolutionary rate.  Other data sets, however, do reveal a 
relationship.  Furthermore, even when experimental biases of these data sets are taken into 
account, a real correlation between number of interactions and evolutionary rate appears to exist. 
Summary: A strong and significant correlation between a protein’s number of interactions and 
evolutionary rate is apparent for interaction data from some studies.  The extremely low 
agreement between different protein interaction data sets indicates that interaction data are still 
of low coverage and/or quality.  These limitations may explain why some data sets reveal no 
correlation with evolutionary rates. 



Background 

 Over twenty-five years ago, a number of authors suggested that a protein’s rate of 
evolution should decrease with the number of molecular interactions in which it participates [1-
3].  The rationale behind this prediction was that additional interactions impose functional 
constraints on otherwise relatively unconstrained residues, such as those on the surface of the 
protein.  Thus, other things being equal, a protein with more interactions would evolve more 
slowly.  This prediction was recently corroborated by us, in the form of a negative correlation 
between a protein’s rate of evolution and the number of other proteins with which it interacts [4].  
While other authors have questioned the existence of this relationship [5], we later showed that 
in their analysis, the absence of a correlation was due to the particular protein interaction data 
that they used; when all data sets available at that time were used, a very strong and statistically 
significant correlation was apparent [6]. 
 In a recent, thorough analysis of protein interaction data sets, Bloom and Adami have 
questioned whether the correlation between number of protein interactions and evolutionary rate 
is independent of gene expression level [7].  While we agree that the results of Bloom and Adami 
show quite convincingly that an association between expression and number of interactions 
contributes significantly to the correlation between interactions and evolutionary rate, we believe 
that two of their conclusions are unwarranted.  First, it is not yet clear that the association 
between expression and number of protein interactions is due exclusively to experimental biases 
rather than real properties of the organism.  Second, current results do not indicate that the 
correlation between interactions and evolutionary rate is entirely due to the association between 
expression and evolutionary rate.  In this work, we argue that their conclusions represent an 
over-extension of their analyses, and also provide further analyses demonstrating that a protein’s 



number of interactions does indeed influence its rate of evolution, independently of its 
expression level. 
 
Discussion 

Critique of Bloom and Adami 

Bloom and Adami [7] tested protein interaction data from seven methods (two 
experimental and five computational) individually for correlations between the number of 
protein interactions and protein evolutionary rates, while statistically controlling for gene 
expression levels.  They found that only in the two interaction data sets generated using mass 
spectrometry was there a strongly significant correlation between the number of protein 
interactions and evolutionary rate independent of expression levels.  In protein interaction data 
sets generated by the computational methods of gene co-occurrence and gene neighborhood, a 
weakly significant correlation between number of interactions and evolutionary rate remained 
when expression levels were statistically controlled [7].  Despite the inability of expression 
levels to account for the correlation between number of interactions and evolutionary rate in 
these data sets, Bloom and Adami argued that expression levels completely explain the 
correlation between number of interactions and evolutionary rate, and that they failed to see this 
in the partial correlations because the partial correlations did not completely control for 
expression levels.  To explain why partial correlations were unable to completely control for 
expression levels, Bloom and Adami suggested that their expression data (measured by DNA 
microarrays and codon bias) are imprecise. 
 While we agree with Bloom and Adami that current codon usage and expression data do 
not measure expression levels with perfect precision, we do not believe that their interpretation is 



supported by the evidence.  If one is to consider the quality of each of the types of data involved 
in calculation of the partial correlations—expression data, evolutionary rate data, and interaction 
data—there is no question that the least reliable of the three are the interaction data.  This can be 
seen in many ways, the simplest of which is the nearly nonexistent overlap between different 
high-throughput protein interaction data sets [8].  Regardless of whether this small overlap is 
predominantly due to false positives, false negatives, or simply incomplete coverage, the fact is 
that the two independent expression data sets used by Bloom and Adami show much better 
agreement than any two high-throughput interaction data sets in existence. (As reported by 
Bloom and Adami [7], their two expression data sets are correlated with Spearman rank r = 0.62; 
in contrast, the correlation between number of interactions per protein in two of the most 
comprehensive and highest quality high-throughput interaction data sets [9, 10] is only 0.12, and 
correlations between most other protein interaction data sets are weaker or even negative [11]). 
Expression data, we may conclude, are of significantly higher quality and/or coverage than 
currently available interaction data.  Therefore, if one is to invoke poor data as an explanation for 
not observing some particular outcome of the analysis, then it should be invoked to explain why 
the correlations involving protein interactions are not any stronger than they presently are.  More 
generally, if the precedent set by Bloom and Adami were to be followed, then any variable A 
that only partially weakens a correlation between two other variables B and C when it is 
statistically controlled for could be claimed to be completely responsible for the correlation 
between B and C, if the values of A are not known with perfect precision.  While it is certainly 
always possible that A will completely account for the correlation between B and C when it is 
known with more precision, this remains speculative in the absence of any supporting evidence.  



 As further evidence that the correlation between number of interactions and evolutionary 
rate is mediated by expression level, Bloom and Adami [7] showed that only in the interaction 
data sets in which the proteins with many interactions are highly expressed is there a significant 
negative correlation between number of interactions and evolutionary rate.  Working under the 
assumption that the observed relationship between number of interactions and level of expression 
is an experimental artifact, Bloom and Adami suggested that the correlation between number of 
interactions and evolutionary rate is due to an experimental bias toward the detection of many 
interactions for highly expressed proteins.  However, a simple alternative explanation must also 
be considered: it is entirely possible that highly expressed genes do tend to have more protein 
interactions than weakly expressed genes.  Indeed, in addition to being found in yeast, a positive 
correlation between expression level and number of interactions has been reported in other 
organisms as well, using protein interaction detection methods (such as yeast 2-hybrid) which 
Bloom and Adami believe are unbiased with respect to expression levels [12].  If more highly 
expressed proteins do tend to participate in more protein interactions, one would expect to 
observe precisely the pattern of correlation coefficients Bloom and Adami report.  Specifically, 
interaction datasets of sufficiently high coverage and accuracy would reveal the (real) 
relationship between expression and number of interactions, as well as the relationship between 
evolutionary rate and number of interactions.  In contrast, less accurate or complete datasets 
would show no such relationships.  As evidence against this idea, Bloom and Adami state that 
Jordan et al. [5] “observed no significant correlation between evolutionary rate and the number 
of interactions when they used a set of manually curated interactions that might be expected to be 
of higher accuracy than those from any single high–throughput method.”  While it is true that 
Jordan et al. did not observe a significant correlation, it is not true that they relied on a set of 



manually curated interactions.  As we previously pointed out [6], approximately half of the 
interactions in the list used by Jordan et al. (after duplicate interactions were removed [13]) were 
from the high-throughput yeast 2-hybrid screen of Uetz et al. [14], which has been shown to be 
one of the least reliable high-throughput protein interaction data sets in existence [8]. 
 Finally, Bloom and Adami criticized the biophysical explanation we proposed [4] to 
explain why proteins with many interactions would tend to evolve slowly.  They stated that 
“there is no obvious reason why residues involved in intermolecular contacts should be more 
evolutionary [sic] constrained than other residues with the same number of intramolecular 
contacts” [7].  While this is true, it is not directly relevant to our original proposal, which was 
that “proteins with more interactions could evolve more slowly because a greater proportion of 
the protein is involved in protein functions” [4].  Our proposal was not that intermolecular 
contacts impose more stringent constraints than intramolecular contacts, but rather that additional 
interactions could impose constraints on sites that are otherwise relatively unconstrained, such as 
residues on the surface of a polypeptide.  Thus the critique presented by Bloom and Adami has 
no bearing on the hypothesis we proposed. 
 
Additional analysis of the data 

A simple statistical method for examining the relationship between two variables (e.g., 
number of interactions, I and rate of evolution, E), while partially controlling for a third, 
potentially related variable (e.g., gene expression, A), is to divide the dataset into quantiles 
according to the controlled variable.  This reduces the variance of the controlled variable relative 
to the other variables within each quantile, resulting in partial statistical control.  This approach 
is complementary to partial correlation in that it the two methods can be combined, and division 



of the dataset into bins allows one to investigate the consistency or variation of relationships 
across quantiles.  To emphasize that current data do not indicate that the relationship between 
evolutionary rate and number of interactions in mass spectrometry data is entirely mediated by 
expression levels, we present here a simple binning and partial correlation analysis of mass 
spectrometry [9], expression, and evolutionary rate data.  It bears restating here that correlations 
among separate datasets indicate that interaction data are far less accurate than expression data; 
therefore, noise and other limitations of data should be expected to reduce the estimated strength 
of the relationship between number of interactions and evolutionary rate more than they reduce 
the strength of the relationship between expression levels and evolutionary rate. 

As Bloom and Adami [7] noted, the proteins that are chosen to be tagged and 
overexpressed in mass spectrometry studies are subject to an ascertainment bias.  For this reason, 
we used only the untagged data.  We used the expression data of Wang et al. [15], which was 
produced from more replicates than other available expression datasets and, unlike the data used 
by Bloom and Adami [16], was not accidentally measured in an aneuploid strain of yeast [17].  
For evolutionary rate data we used dN/dS values calculated from four species of the 
Saccharomyces genus, with a correction for the effect of codon bias on dS (Hirsh AE, Fraser HB, 
and Wall DP, submitted).  We used Spearman’s rank correlation for all analyses. 
 Before dividing the dataset into quantiles according to expression level, we measured the 
strength of the correlation between number of interactions and evolutionary rate for all 555 genes 
for which we had interaction, evolutionary rate, and expression data.  The correlation between 
number of interactions (I) and evolutionary rate (E) was quite strong, even when controlling for 
expression (rEI = –0.403, p = 5x10-23; rEI.A = –0.277, p = 3x10-11; Table 1, row 1, column 1).  We 
then partitioned the dataset into quantiles according to expression levels and calculated rEI and 



rEI.A within each bin.  We present results using two, three, four, and five bins.  In every bin, the 
correlation between number of interactions and evolutionary rate is significant, even after 
controlling for expression levels.  Perhaps even more importantly, controlling for expression 
levels actually strengthens the correlation between number of interactions and expression level in 
three of the bins (Table 1, underlined).  In one of these bins, controlling for expression levels 
results in more than a two-fold improvement in the p-value of the correlation.  In order for 
inaccurate expression data to explain this result, the expression data in those three bins would not 
only have to be noisy—they would have to be negatively correlated with the true expression 
levels of those genes.  Since this is quite unlikely to be the case, we believe the most 
parsimonious explanation is that the number of interaction partners a protein has is correlated 
with its evolutionary rate independently of its expression level. 
 

Summary 

 We agree with Bloom and Adami [7] that the quality of high-throughput protein 
interaction data sets is quite variable, and that some show a correlation with evolutionary rates 
while others do not.  However we do not believe that expression levels can account for this 
correlation in all data sets.  To support this position, we showed that limitations of the data are 
likely to weaken the apparent effect of number of interactions more than they weaken the 
apparent effect of expression.  Therefore, Bloom and Adami’s suggestion that the significant 
contribution of expression to the relationship between number of interactions and evolutionary 
rate should be interpreted to mean that expression is entirely responsible for this relationship 
seems unwarranted.  To emphasize that the measurable effect of number of interactions on 
evolutionary rate remains highly significant even when controlling for expression, we presented 



a re-analysis of mass spectrometry interaction data.  Across quantiles of expression, the 
relationship between number of interactions and evolutionary rate, controlling for expression 
levels, was significant.  In several quantiles, controlling for expression actually strengthened the 
relationship between number of interactions and evolutionary rate. 
 Bloom and Adami’s thorough analysis shows, above all, that large-scale data sets remain 
woefully noisy and incomplete. While it remains possible that expression levels will ultimately 
account for the correlation between number of interactions and evolutionary rate once more 
accurate expression data are published, we find it far more likely that the vast majority of 
improvement will be in protein interaction data.  In any case, it will be interesting to see what 
relationships emerge as more (and higher quality) functional genomic data are produced. 
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Table 1.  Quantile analysis of mass spectrometry protein interaction data.  Genes were 
separated into 1-5 bins based on their expression levels [15].  Each column is an analysis of the 
data set with a different number of bins.  Each row is the rank of each bin’s average expression 
level, where low rank indicates low expression.  The upper number in each cell is the Spearman 
rank correlation coefficient between number of interactions and evolutionary rate (rEI).  The 
lower number in each cell is the partial correlation coefficient between number of interactions 
and evolutionary rate, controlling for expression level (rEI.A); the three cases in which this 
number has a greater absolute value than rEI are underlined.  *, p<0.05; **, p<0.005; ***, 
p<0.0005. 
 
      

 1 2 3 4 5 
1 –0.403*** 

–0.277*** 
–0.223*** 
–0.216*** 

–0.182* 
–0.182* 

–0.179* 
–0.179* 

–0.206* 
–0.205* 

2  –0.341*** 
–0.285*** 

–0.323*** 
–0.328*** 

–0.245** 
–0.272** 

–0.192* 
–0.197* 

3   –0.263*** 
–0.258** 

–0.366*** 
–0.358*** 

–0.352*** 
–0.336** 

4    –0.225* 
–0.222* 

–0.357*** 
–0.325** 

5     –0.253* 
–0.207* 
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