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Abstract  

Background 

The development of high-throughput technologies such as yeast two-hybrid systems 

and mass spectrometry technologies has made it possible to generate large protein-

protein interaction (PPI) datasets.  Mining these datasets for underlying biological 

knowledge has, however, remained a challenge.   

 

Results 

A total of 3108 sequence signatures were found, each of which was shared by a set of 

guest proteins interacting with one of 944 host proteins in Saccharomyces cerevisiae 

genome.  Approximately 94% of these sequence signatures matched entries in 

InterPro member databases.  We identified 84 distinct sequence signatures from the 

remaining 172 unknown signatures.  The signature sharing information was then 

applied in predicting sub-cellular localization of yeast proteins and the novel 

signatures were used in identifying possible interacting sites. 

 

Conclusion 

We reported a method of PPI data mining that facilitated the discovery of novel 

sequence signatures using a large PPI dataset from S. cerevisiae genome as input.  

The fact that 94% of discovered signatures were known validated the ability of the 

approach to identify large numbers of signatures from PPI data.  The significance of 

these discovered signatures was demonstrated by their application in predicting sub-

cellular localizations and identifying potential interaction binding sites of yeast 

proteins.   
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Background  

The development of high-throughput technologies for discovering interactions 

between proteins has made it possible to screen entire proteomes and produce large 

protein-protein interaction (PPI) datasets.  Different methods of PPI detection, 

including yeast two-hybrid assays [1-3], mass spectrometry of coimmunoprecipitated 

protein complexes [4, 5], and correlated messenger RNA profiles [6, 7], discover PPIs 

of variable reliability and the majority of putative PPIs are of low confidence.  

Despite the presence of false positives, the wealth of PPI data generated over the past 

several years is the source of many publicly available databases, such as the Database 

of Interacting Proteins (DIP [8]) and the MIPS mammalian protein-protein interaction 

[9]. The availability of these large datasets is now enabling researchers to predict 

undiscovered PPIs and hypothesize the function and sub-cellular localization of 

proteins.   

 PPI data has been used to analyse domain-domain interactions (DDIs), based 

upon the widely accepted hypothesis that proteins interact with one another via 

conserved domains (Figure 1).  Large-scale PPI databases are used to identify 

correlated domains that are implicated in the binding of protein partners.  When one 

of these sequence signatures is observed in a newly discovered protein, it is possible 

to predict its interactions with other proteins based on the knowledge base of 

correlated domains.  DDIs were thus used to predict the function and PPIs of newly 

discovered proteins [10].  Deng et al. [11] used maximum likelihood estimation to 

discover DDIs, which were then used to predict the likelihood of interaction for any 

protein pair.  Other recent forms of DDI analysis include the use of interacting 
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domain profile pairs [12], and a domain combination based probabilistic framework 

[13]. 

Very recently, PPI data, in conjunction with structural information, were used 

to produce a set of putative binding motif pairs [14].  The significance of motif 

discovery stems from the idea that the actual binding sites most directly responsible 

for the binding of proteins are probably smaller than whole domains.  Thus, the 

discovery of these smaller sequence signatures allows researchers to structurally 

characterize PPIs with more precision.   

 This study was also based on the assumption that PPIs result from the 

interactions of conserved sequence signatures.  Unlike Li and Li’s work [14], our 

method of PPI data mining did not use structural data, which are well known to be 

biased towards small, globular proteins.  In this paper, a set of guest proteins 

represents those proteins known from PPI database to share a common interacting 

partner, i.e. a host protein.  If a protein interacts with itself, it is a host as well as a 

guest.  Signatures shared by sets of guest proteins were initially discovered using the 

program MEME [15] on a large PPI dataset.  Searches of sequence signature 

databases for the identified motifs revealed that 84 distinct motifs had not been 

characterized previously.  The significance of these newly discovered signatures was 

then demonstrated by their application in predicting the sub-cellular localization of 

yeast proteins and identifying potential interacting sites. 

 

Results  

A sequence signature is defined as a “highly conserved region”, a sequence 

pattern that is found repeatedly in a group of related protein sequences [15].  By this 
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definition, a sequence signature could be a protein family, functional domain, 

functional site, or any conserved region of unknown function, and thus the actual 

physical manifestation of a signature can vary greatly in size.  In our study, sequence 

signatures were derived from MEME motifs.  We wrote numerous Perl scripts and 

used a MySQL relational database to facilitate the processes of data collection, 

program execution, and data analysis. 

 

Discovery of sequence signatures 

 The 1923 batch executions of MEME yielded 3108 sequence signature models 

shared by the 1555 distinct guest proteins of 944 host proteins from Saccharomyces 

Cerevisiae (baker’s yeast) (see details in Methods).  Of the 6770 distinct PPIs actually 

involved in building these signature models, 1509 (22.3%) were identified as high 

confidence interactions in the PPI dataset.  When compared to the percentage of high 

confidence PPIs in the input files (20.7%), the percentage of high confidence PPIs 

used to construct motif models represents a statistically significant difference (p-value 

= 0.0013, two-tailed t-test).   

Signature model length varied from 10 to 300 residues: the minimum and 

maximum lengths specified for each MEME execution.  Only 25 models (<1%) were 

as long as 300 residues, which indicated that the maximum length used in this study 

was appropriate.  MEME splits one sequence signature in two if its length is greater 

than the specified maximum.  Thus, less than 2% of the 3108 models were the result 

of splitting sequence signatures.  The average model length was 33.6 residues, with a 

standard deviation of 40.3.  It should be pointed out that there was redundancy among 

these signatures because different host proteins may interact with similar sets of guest 

proteins.  We did not attempt to identify distinct signatures because that was not the 
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main goal of the present study.  Instead, we identified distinct novel sequence 

signatures (84 distinct signatures out of 172 initial results, see below for details).  

Thus, we estimated that overall about half of these signatures were distinct.    

 

Occurrence of discovered sequence signatures in the yeast genome 

 Using the 3108 signature models discovered in MEME as input, MAST [16] 

was used to scan the entire genome of S. cerevisiae for occurrences of these sequence 

signatures in proteins that were not used to build the motif models.  1,993 protein 

sequences contained one or more of the sequence signatures, a 28% increase over the 

1,555 proteins used to construct the signatures.  Although this increase indicates that 

the newly discovered sequence signatures have some potential predictive value, any 

predictions based on these sequence signatures would be limited to approximately 

one-third of the S. cerevisiae genome.  A broader application will be feasible only 

when more reliable PPI data are available. 

  

Novelty of discovered sequence signatures 

 Using the standalone version of InterProScan, the consensus sequences of 

2337 of the discovered motif models were found to match signatures listed in one of 

the InterPro member databases.  When the online version of InterProScan was used, 

an additional 599 sequence signatures were matched to un-integrated entries of the 

InterPro member databases.  172 novel sequence signatures remained.  FASTA 

searches, which were the basis for the grouping of similar/identical sequence 

signatures, resulted in the creation of 84 distinct, novel sequence signatures.  The 

length of these novel sequence signatures ranged from 10 to 36 residues.  Table 1 

provides a list of several of these novel signatures.  A complete list can be found on 
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the supplementary website (http://www.bcf.ku.edu/PPI/).  Interestingly, when 

InterProScan was used to match consensus sequence signatures to the Pfam database 

alone, only 545 (~18%) of the signatures were matched to known signatures.   

 

Localization prediction 

Using signature sharing information, the sub-cellular localizations of 108 

proteins were predicted based on the known locations of 5416 budding yeast proteins 

(see details in Methods).  52 predictions agreed with the ontology annotations of the 

SGD and 24 disagreed (~68% accuracy).  The accuracy of the remaining 32 (Table 2) 

predictions could not be assessed, as the locations of these proteins have yet to be 

determined empirically.  It is reasonable to believe these predictions would have 

similar prediction accuracy.     

 

Homology modeling and detection of putative interacting sites 

 The exact biological meanings of these novel sequence signatures can only be 

determined by web-lab experiments.  One possible role of these signatures is to serve 

as the binding sites for protein-protein interactions.  A binding site should have 

significant exposure to solvent.  In order to assess this possibility, we built homology 

models for those yeast proteins containing novel signatures and having good model 

templates [see Additional file 1].  Using DSSP software program [17], we calculated 

the proposition of residues of signatures appearing on the surface (residues with 

solvent exposed surface ≥ 25 Ǻ2
).  Statistical analysis (two-sided Fisher's exact test) 

confirmed that residues of signatures occurred on the surface more frequently than 

would be expected by chance (P < 0.04, Fisher's exact test).  Thus we hypothesized 
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these signatures are potential binding sites and plan to use site-directed mutagenesis 

and NMR spectrometry to verify the bioinformatics results.             

 

Discussion  

 Although independent, the PPI data mining method presented here is similar to 

that proposed by Li and Li [14].  Their research focused on motif pairs located on 

protein surfaces, and motif discovery was, in part, based on three-dimensional 

structures of proteins.  Our method did not rely on PDB structural information, which 

is known to be biased towards small, globular proteins.  Even without the additional 

structural information, many of the novel sequence signatures discovered in this study 

appear in the surfaces of proteins.  Thus they are likely interacting sites.  

Approximately 94% of the sequence signatures discovered in this study matched 

known sequence patterns, confirming the ability of this method to discover sequence 

signatures involved in various biological functions.  It is our contention that the 84 

novel sequence signatures reported in this study likely play biological roles such as 

interacting sites, and we are planning wet-lab experiments to investigate their 

functions.     

 The lengths of the novel sequence signatures are quite short, ranging from 10 

to 36 residues.  This is not surprising, as the yeast genome has been the subject of a 

remarkable number of studies and the majority of long sequence signatures are likely 

already known.  Additionally, longer sequence signatures tend to contain gaps, and 

will thus be interpreted as multiple shorter signatures by MEME.  Nevertheless, the 

discovery of short, novel sequence signatures, based on medium- and high-confidence 

PPIs, suggests that short sequence signatures do play biologically significant roles.  
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 Only 545 (~18%) of the discovered sequence signatures matched known 

signatures in Pfam: a significantly smaller number than the 2936 signatures matched 

to one or more InterPro member databases.  This result highlights a potential 

shortcoming of PPI predictions based on the analysis of DDIs inferred from Pfam data 

alone (e.g. ref [11]).  The use of a single domain databases, such as pfam database 

with the average length of 145 amino acids [18] might cause a researcher to miss 

many important short sequence signatures, thereby decreasing prediction accuracy. 

 The use of PPI data to predict the sub-cellular localization of proteins is based 

on an intuitively simple idea: proteins that are found in the same location within a cell 

are more likely to interact with one another than proteins that are not.  Ten subcellular 

compartments were actually used in our study.  The resulting accuracy of PPI-based 

prediction of sub-cellular localization is reasonably good in this study and, at ~68%, 

represents a substantial increase in accuracy relative to what would be achieved (37%) 

if cytoplasm, the most populated compartment, was predicted for all systems.  Our 

accuracy is comparable to that achieved in other recent studies.  For example, using a 

hybrid system of gene ontology, functional domain and pseudo amino acid 

composition approaches, Chou and Cai obtained 70% of overall success identification 

rate [19, 20].   Our accuracy rate was inferior to others that used fewer localization 

categories (for example, 88% accuracy rate based on cross validation was achieved 

when only four localization categories were used in ref [21]), but it is perfectly natural 

that a more ambitious categorization scheme such as ours should have a greater 

margin of error.  Also we should emphasize that our approach represents a very 

intuitive and simple scheme based on PPI induced sequence signatures alone, in 

contrast to complicated hybrid systems employed in previous studies.  Admittedly, 

our approach can only be used in predicting the localization of proteins involving in 
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currently known PPIs, thus a broader application will be feasible only when more PPI 

data are available. 

 One of the major challenges to mining PPI data is the presence of numerous 

false positives, resulting from the deficiencies of current high-throughput screening 

techniques.  The PPI data produced by some screening techniques such as yeast two-

hybrid systems has been estimated to contain as much as 91% false interactions [22].  

The 11,161 PPIs used as input to MEME were identified as medium or high 

confidence interactions, of which 20.7 % were high confidence.  Of the PPIs actually 

used to build sequence signatures, 22.3% were high confidence interactions, a 

statistically significant increase of 7.7% over the original dataset.  The 

disproportionate use of high-confidence PPIs to build sequence signatures supports 

the validity of the original reliability assignments, and suggests a method by which 

one may increase confidence in putative PPIs.  Nevertheless, the quality of the results 

generated by all forms of PPI data mining remains constrained by the quantity and 

quality of the PPI data currently available.  Consequently, the reliability of predictions 

based on PPI data is expected to increase as PPI databases increase in accuracy, size 

and taxonomic range. 

 

Conclusions  

In conclusion, we have reported a novel procedure by which sequence 

signatures were discovered based on a large PPI dataset from Saccharomyces 

cerevisiae.  The majority of these sequence signatures were matched with known 

sequence signatures present in the InterPro member databases.  Nevertheless, 84 

distinct sequence signatures were novel, and may be involved in the interactions of 
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the proteins containing them.  The sub-cellular localizations of 108 proteins of the 

yeast genome were predicted, based on the known locations of other proteins and PPI 

dataset.  Of the 108 localization predictions, 52 agreed with SGD annotations, and 24 

disagreed.  The localization of remaining 32 proteins was experimentally unknown. 

However, it is reasonable to believe these predictions would have similar prediction 

accuracy.     

Wet-lab experiments to determine the biological function of the discovered 

novel sequence signatures are being planned.  We are also in the process of 

developing an algorithm that will enable the discovery of gap-containing sequence 

signatures based on PPI data.  The PPI data mining method presented here is 

imminently applicable to other genomes associated with large PPI datasets.  For 

example, we conducted similar study on the E. Coli genome and were able to identify 

22 novel signatures (the results of which can be found in the complementary website).   

  

Methods 

Dataset 

 PPI data specific to the genome of Saccharomyces Cerevisiae (baker’s yeast) 

were used because the quantity of PPI data available for yeast exceeds that of any 

other model organism.  The ~6000 proteins of the yeast proteome could potentially 

produce more than 18 million distinct, guest-host interactions, though the actual 

number of PPIs is certainly much smaller, probably less than 100,000 [23, 24].  

However, PPIs are dynamic, and the empirical discovery of these interactions is time 

and location dependent.  The current list of putative PPIs between proteins of the 

yeast proteome, therefore, does not represent all PPIs that occur in the cells of yeast.   
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 The dataset used here was reported by von Mering et al. [23].  It contained 

78380 non-redundant PPIs from yeast, which were assigned to three categories of 

reliability: 2455 high confidence, 9400 medium confidence, and 66535 low 

confidence.  PPIs of this dataset were discovered by various experimental and 

computational methods including yeast two-hybrid systems, mass spectrometry 

technologies.    

  In an attempt to minimize the occurrence of false positives, only those PPIs 

assigned a reliability of high or medium confidence were used (2617 host proteins 

involved in 11855 interactions).  Because MEME requires input in the form of set of 

two or more related proteins, 694 host proteins that interacted with only one protein 

were also excluded.  Of the remaining 1923 host proteins, only 25 were involved in 

more than 100 distinct PPIs, including the most interactive protein, YPR110C, which 

was involved in 118 putative PPIs.  

 

MEME and MAST 

 MEME (v.3.0.10) was used to search for signatures shared by each group of 

guest proteins.  MEME implements an unsupervised learning algorithm and 

ultimately produces one or more probabilistic signature models based on this input.  

The statistical significance of each signature model is quantified as an expectation 

value (E-value), which is an estimate of the number of signatures that would possess a 

higher log-likelihood ratio given randomly-generated training sequences.  All 

signatures discovered by MEME are gapless, and the best width, number of 

occurrences, and description of each motif are based on statistical models.  

 For each of the 1923 host proteins associated with two or more guest proteins, 

a multiple sequence FASTA file was created from the amino acid sequences of its 
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guest proteins.  In every instance, MEME was executed with the following options: a 

minimum motif width of 10, maximum motif width of 300, maximum E-value of 0.1, 

and 5 as the maximum number of motifs.    

 MEME output files were then used as input for MAST (v3.0).  MAST was 

used to search the entire yeast proteome for the sequence signatures described in the 

MEME output files.  MAST output consists of the sequence name of each high-

scoring match as well as the E-value of each match.  For all MAST executions, the 

maximum E-value was set to 0.1.  The results of MAST searches were used to assess 

the sequence coverage of sequence signatures identified by MEME and the usefulness 

of MEME output to PPI prediction.  

 

Signature model comparison 

  InterPro [25] is an integrated collection of the most commonly used databases 

of protein families, domains, and functional sites.  The program InterProScan allows a 

user to search for sequence signatures in any number of these databases 

simultaneously [26].  Only LAMA can be used to compare MEME results to the 

BLOCKS database [27], but no tools currently exist for comparison to other sequence 

signature databases.  Therefore, the consensus sequence of each motif model 

identified by MEME was searched for in all InterPro member databases, using the 

standalone version of InterProScan (release 4.0) and a local copy of InterPro (release 

8.1).  Signatures that were unsuccessfully matched with any entries in the local 

InterPro database were input to the online version of InterProScan to identify matches 

to known signatures that were not integrated into the InterPro database (i.e., thus 

unavailable in the local database).  Those signatures that remained unmatched were 

considered novel.  Because different host proteins may share the same set of guest 
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proteins, some of these novel signatures were identical or similar.  Thus, FASTA [28] 

searches were performed, using each potentially novel signature as a query sequence, 

and the set of all potentially novel signatures as a local database.   We tested several 

E-values (0.1, 0.5, 1) and found that 0.5 was the best for distinguishing signatures.  

Higher threshold E-values led to the identification of signature pairs as similar when 

only one or two contiguous residues were identical, while lower values excluded the 

detection of signatures that were clearly similar.  To compare the coverage of the 

individual InterPro member databases, each consensus sequence signature was also 

assessed using the Pfam database only. 

 Querying sequence signature databases with the consensus sequence of a 

MEME model, rather than the model itself, is similar to the approach proposed by 

Kahsay et al. [29], which facilitated the comparison of two Hidden Markov Models.  

To verify the appropriateness of using consensus sequences in lieu of the actual 

models, we queried the consensus sequences of several signature models along with 

each of their component sequences against InterPro databases.  We found the hits of 

the consensus sequences were consistent to those of their component sequences.  For 

example, the consensus sequence of the signature YPL049_1 matched to all 

significant signatures that two component sequences had.  The only difference was 

that two residues of the consensus sequence additionally matched to an un-integrated 

signature.  This match was insignificant considering that the length of the signature 

was 65 residues.   

 

Prediction of protein subcellular localization 

 Two proteins that interact with one another are likely found in the same 

subcellular location [23].  Thus PPI data can be used to predict the subcellular 
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localizations of proteins.  However, PPI data alone are currently not sufficient to 

predict subcellular localization due to the generally low reliability of current PPI data.  

In this study, we added an additional layer of confidence to predictions of subcellular 

localization by including our knowledge of sequence signatures shared by the guests 

of a host protein.  For a guest protein with unknown localization, if its host protein 

and at least half of its fellow guest proteins shared a subcellular location, that guest 

protein was predicted to share this location as well.  Similarly, if the localization of a 

host protein was unknown, and more than half of its guest proteins shared a common 

subcellular localization and one or more sequence signatures, the host protein was 

predicted to exist in the localization (Table 3).   

 Predictions of subcellular localization were based on the known localizations 

of 4156 budding yeast proteins [30], where there are 22 categories of subcellular 

location.  Predictive accuracy was evaluated by comparing predicted locations to the 

known locations of these proteins as reported in the ontology annotation of the 

Saccharomyces Genome Database (SGD, http://www.yeastgenome.org). 

 

Homology modeling 

 NCBI’s online BLAST engine (http://www.ncbi.nih.gov/BLAST/) was used 

to search PDB database for protein sequences similar to the selected yeast protein 

sequences.  The best match was selected as a template structure and its PDB file was 

downloaded from the PDB database.  All homology modeling was carried out with 

MOE (Molecular Operating Environment 2004.03, The Chemical Computing Group 

Inc., 2004).  The query sequences and their templates were first aligned in MOE.  Ten 

intermediate models were then created, each was finely energy-minimized for steric 
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interactions using the AMBER-94 forcefield with the solvation option turned on.  The 

best structure prediction was then selected according to energy ranking.   
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Figure legends 

 

Figure 1. A scheme illustrates the procedure of inferring DDIs from PPIs.  Colored shapes represent 

sequence signatures.  Suppose protein H (the host) interacts with four guest proteins (G1, G2, G3, G4) 

and all signatures in the schema are known with the exception of the one represented by purple 

hexagon.  In this case only interactions with G1 and G2 are useful in inferring DDIs.  In this study we 

used MEME program to identify all signatures shared by guests.          
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Tables 
 
Table 1. Novel sequence signature examples. 
 

Signature id Host Consensus sequence Length 
YDL166C_1 YDL166C EVLCCQLPKWCGFFQM 16 

YML094_4 YML094 QRQGKLEVPGYVDIVKTSSGNEMPPQ 26 

YOL094C_3 YOL094C LWVEKYRPKNLDEVCGN 17 

YGL063W_2 YGL063W VKAVEGRKKGKEGKASQLVDLKFALAEDKV 30 

YOR335C_5 YOR335C AQSVGCRVDFKNPHDIIEGINAGEIE 26 
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Table 2. Predicted localizations without known annotations from SGD.  Evidence notation: 1: the ORF 

is a host, all or most guests are in the same location. 2: a guest, its host and all or most siblings 

are in the same location; 3: also a guest, but the location of host is unknown, all or most 

siblings are in the location.  If there are multiple predictions for one ORF, the evidence and/or 

host names are concatenated in the corresponding columns.         

 

ID ORF Predicted_location Evidence(s) Host name(s) 

1 Q0105 cytoplasm 1  

2 YAL046C cytoplasm, nucleus 1  

3 YAR073W cytoplasm 2 YMR217W 

4 YBL041W cytoplasm,nucleus 1,2 YJL001W, YPR103W, YGR135W, 

YML092C, YGR253C, YER094C, 

YGL011C 

5 YBL092W cytoplasm,nucleus 2 YGR034W, YDL191W 

6 YBR257W cytoplasm,nucleus 2 YHR203C, YJR014W, YJR145C 

7 YCR031C cytoplasm,nucleus 2 YGR034W 

8 YCR072C cytoplasm,nucleus 1  

9 YDL075W cytoplasm,nucleus 3 YDR292C 

10 YDR064W cytoplasm,nucleus 1,2 YGR262C, YAL035W 

11 YDR109C cytoplasm,nucleus 2 YJR024C 

12 YDR287W cytoplasm,nucleus 2 YEL041W 

13 YEL041W cytoplasm,nucleus 1,2 YDL236W, YHL046C 

14 YER094C cytoplasm,nucleus 1,2,3 YFR050C, YGL011C, YPR103W, 

YBL041W, YJL001W, YML092C, 

YGR253C, YGR135W 

15 YGL063W cytoplasm,nucleus 1,2 YDR158W, YDR007W 

16 YGL224C cytoplasm,nucleus 2 YMR009W, YDL219W, YJR024C 

17 YHR016C cytoplasm,actin 2 YBL007C 

18 YHR044C cytoplasm,nucleus 2 YDR074W 

19 YJL213W cytoplasm 2 YGR094W 

20 YKL104C cytoplasm,nucleus 2 YDR127W, YPL160W, YDR211W, 

YDR394W, YER110C 

21 YLR209C nucleolus,nucleus 1  

22 YLR359W cytoplasm 2 YGL234W 

23 YMR084W cytoplasm,nucleus 1,2 YDR211W 

24 YMR130W cytoplasm,nucleus 2 YJR024C 

25 YMR217W cytoplasm 1  

26 YOL114C cytoplasm,nucleus 2 YPL160W 

27 YOR054C cytoplasm,nucleus 2 YDR454C, YBR252W 

28 YOR093C cytoplasm 2 YBR208C 

29 YOR111W actin 2 YDL161W 

30 YPL003W cytoplasm,nucleus 2 YDR054C 

31 YPL171C cytoplasm,nucleus 2 YKR031C 

32 YPL217C nucleolus,nucleus 2 YLR197W, YHR052W, YDR449C 
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 Table 3. An example of protein location prediction.  The host YGL115W has four guest proteins that 

share four statistically significant signatures.  The host and all its guests with known location were 

found in cytoplasm.  Thus the location of YGL208W was predicted as cytoplasm.  The prediction was 

then confirmed with the ontology annotation in SGD database.  The p-value of the occurrence is the 

probability that a single random subsequence of the length of the motif matches the motif.   

 

Guest Motif ID P-value Guest location 

YER027C YGL115W_1 3.17E-76 cytoplasm 

YGL208W YGL115W_1 7.48E-75  

YDR422C YGL115W_1 4.78E-48 cytoplasm 

YER027C YGL115W_2 3.87E-56 cytoplasm 

YGL208W YGL115W_2 8.48E-57  

YDR422C YGL115W_2 3.64E-37 cytoplasm 

YER027C YGL115W_3 6.83E-77 cytoplasm 

YGL208W YGL115W_3 6.37E-71  

YDR028C YGL115W_3 9.81E-38 cytoplasm 

YER027C YGL115W_4 5.62E-22 cytoplasm 

YGL208W YGL115W_4 7.23E-24  

YDR477W YGL115W_4 1.89E-14 cytoplasm 
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Additional files 
 

Additional file 1: additional_file_1.doc, Homology models of five yeast proteins.   

 

The following files are available in the complementary website 

(http://www.bcf.ku.edu/PPI/): MEME output files for all novel signatures, PDB files 

of five homology models, a complete list of identified novel signatures and a list of 

these signatures grouped by similarity, a complete list of protein location prediction, 

and the distribution of the number of interaction partners. 
 



Figure 1



 
 
Additional files provided with this submission: 

Additional file 1 : additional_file_1.doc : 1449Kb 
http://www.biomedcentral.com/imedia/3258122486158351/sup1.DOC 
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