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Computational Analysis of Protein Function within Complete Genomes

Summary

Anton James Enright
March 6, 2002 Wolfson College

Since the advent of complete genome sequencing, vast amounts of nucleotide
and amino acid sequence data have been produced. These data need to
be effectively analysed and verified so that they may be used for biologi-
cal discovery. A significant proportion of predicted protein sequences from
these complete genomes have poorly characterised or unknown functional
annotations. This thesis describes a number of approaches which detail the
computational analysis of amino acid sequences for the prediction and analy-
sis of protein function within complete genomes. The first chapter is a short
introduction to computational genome analysis while the second and third
chapters describe how groups of related protein sequences (termed protein
families) may be characterised using sequence clustering algorithms. Two
novel and complementary sequence clustering algorithms will be presented
together with details of how protein family information can be used to detect
and describe the functions of proteins in complete genomes. Further research
is described which uses this protein family information to analyse the molec-
ular evolution of proteins within complete genomes. Recent developments
in genome analysis have shown that the computational prediction of protein
function in complete genomes is not limited to pure sequence homology meth-
ods. So called genome context methods use other information from complete
genome sequences to predict protein function. Examples of this include gene
location or neighbourhood analysis and the analysis of the phyletic distri-
bution of protein sequences. In chapter four a novel method for predicting
whether two proteins are functionally associated or physically interact is de-
scribed. This method is based on the detection of gene-fusion events within
complete genomes. During this research many novel tools and methods for
genome analysis, data-visualisation, data-mining and high-performance bio-
logical computing were developed. Many of these tools represent interesting
research projects in their own right, and formed the basis from which the
research carried out in this thesis was conducted. Within the final chapter a
selection of these novel algorithms developed during this research is described.
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Chapter 1

Introduction

Bioinformatics is by definition a multi-disciplinary science. It is this aspect

that makes the field immensely appealing. Conducting research at the inter-

face between molecular biology, mathematics and information technology is

a challenging undertaking. Enormous rewards are possible however, if these

fields are successfully used to analyse fundamental biological questions.

The discovery that the primary amino acid sequence of a protein can

determine both its biochemical function and three-dimensional structure

(Anfinsen and Corley, 1969; Anfinsen, 1973), was instrumental in the birth

of computational biology. The primary sequence of a protein can hence be

used to predict its structural and functional properties. Furthermore, the

observation that biological sequences evolve at measurable and relatively

constant rates, permitted the analysis of molecular evolution at the sequence

level (Zuckerkandl and Pauling, 1962; Zuckerkandl et al., 1965). Peptide

and nucleotide sequencing (Brown et al., 1955; Sanger and Coulson, 1975;

Sanger, 1981) technologies have advanced rapidly, and have allowed the com-

plete genome sequencing of free living organisms (Fleischmann et al., 1995).

These breakthroughs have placed us in a position which allows computational

analysis of gene and protein function on a genomic scale.

The work described in this thesis can be described as functional genomics.

The goal of this field is to determine the function of genes and proteins

in complete genomes. The term ’function’ must be used with caution. A

single gene may have metabolic, regulatory and structural functions. The

function of a gene can not in most cases be described completely by any one

of these roles, but is the sum of its separate sub-functions. Issues such as

this are rapidly being addressed by efforts such as the Gene Ontology project

1



(Ashburner et al., 2000).

This research concentrates on the development of novel methods for the

prediction and description of protein function within complete genomes.

More specifically, we concentrate on using the primary amino acid sequences

of proteins from complete genomes to achieve this goal. While it may be

desirable to compare proteins at a structural level, the quantity of publicly

available structural information needed for large-scale analyses of this kind,

is unfortunately not yet available. We determine functional relationships

between proteins using two methods. The first method involves the classi-

fication of proteins into groups with a common evolutionary history. These

groups are generally known as protein families. In many cases such proteins

will also exhibit conserved functional roles (Dayhoff, 1976). The second area

involves the cross comparison of complete genomes in order to detect evolu-

tionary events which may indicate that proteins interact, or are functionally

associated. This type of analysis uses the context of a gene in a complete

genome in order to discover functional information, and has been termed

contextual genomics (Enright and Ouzounis, 2001c).

This chapter is intended to serve as a gentle introduction to the field of

sequence alignment, which has created the tools and expertise necessary for

much of the work described in this thesis. Because sequence analysis methods

are greatly dependent on the quality of quantity of biological sequence data

available, this introduction will also describe key sources for biological data.

Each subsequent chapter will contain a more detailed introduction to the

research described therein. We hope that the work described within this

thesis will prove interesting and useful for biological discovery.
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1.1 Protein Sequence Alignment

and Similarity Detection

The primary data for most analyses described within this thesis is protein

similarity information. This information is derived by comparing the amino

acid sequences of proteins and can be used to infer functional and evolu-

tionary links between them. In order to compare two protein or nucleotide

sequences, one needs to determine the locations of where insertions or dele-

tions may have occurred in each sequence. This problem is commonly known

as sequence alignment. Alignments are generally represented in a manner

similar to this:

Sequence 1: ATTTTGCCCTTTATGCCGT-ATTAT

|||| ||||| ||||||| | ||

Sequence 2: ATTT-GCCCT--ATGCCGTTACGAT

In this case two DNA sequences are aligned with matches/mismatches (shown

by the presence or absence of a ’| ’) and gaps (shown by ’- ’) which represent

insertions or deletions (commonly called indels) in either sequence. There

may however be many possible alignments of two sequences, for example here

our previous example is compared with two other possible alignments.

Sequence 1: ATTTTGCCCTTTATGCCGT-ATTAT

|||| ||||| ||||||| | ||

Sequence 2: ATTT-GCCCT--ATGCCGTTACGAT

19 matches, 2 mismatches, 4 gaps

Sequence 1: ATTTTGCCCTTTATGCCGT-A-TTAT

| ||||||| | ||||||| | ||

Sequence 2: A-TTTGCCC-T-ATGCCGTTAC-GAT

19 matches, 1 mismatch, 6 gaps.

Sequence 1: ATTTTGCCCTTTATGCCGTATTA---T

|||| |||| |||||| ||| |

Sequence 2: ATTTG-CCCT--ATGCCG--TTACGAT

18 matches, 1 mismatch, 8 gaps

3



Algorithm Alignment
Type

Scoring Matrix Gap Penalty Time Required References

Needleman-
Wunsch

global simi-
larity

arbitrary penalty/gap
k

Θ(n2) (Needleman
and Wunsch,
1970)

Sellers (global) dis-
tance

unity penalty/residue
rk

Θ(n2) (Sellers,
1974)

Smith-
Waterman

local similar-
ity

Si,j < 0.0 affine q + rk Θ(n2) (Smith and
Waterman,
1981; Gotoh,
1982)

FASTA approx. local
similarity

Si,j < 0.0 limited gap
size q + rk

Θ(n2)/K (Lipman
and Pearson,
1985; Pearson
and Lipman,
1988)

BLASTP maximum
segment score

Si,j < 0.0 multiple seg-
ments

Θ(n2)/K (Altschul
et al., 1990)

Table 1.1: Algorithms for comparing protein and nucleotide sequences.

The problem of accurate sequence alignment amounts to finding an alignment

of two sequences with the maximum number of matches while minimising the

number of gaps and mismatches. The first of our three alignment examples

above has the maximum number of matches, and a smaller number of gaps

and mismatches than the others, and is hence the better alignment. Sequence

alignment of this kind is an important problem in biological sequence analy-

sis, and has been tackled by a number of varied approaches (shown in Table

1.1).

1.1.1 The Needleman-Wunsch Algorithm

The first commonly used approach is that of Needleman and Wunsch (Needleman

and Wunsch, 1970). This approach uses an alignment scoring system which

assigns a penalty to gaps linearly according to their length. For any align-

ment its score S can be calculated by:

S = x − ∑
wkzk

In this scoring system the score is calculated by counting the total number

of matches x and subtracting from this value the product of the number of

k-length gaps (zk) and an arbitrary gap penalty wk for a gap of length k.

The linear gap penalty wk can be defined as wk = a + bk where a and b are

arbitrary penalties for gap opening and gap extension. An optimal alignment

4



between two sequences is hence calculated by finding the alignment between

two sequences which maximises the score S.

S = Max(x − ∑
wkzk)

An alternative way of looking at this problem is to calculate the minimum

number of edits that need to be made to two sequences in order to produce

an alignment. The key question is of course, how does one computationally

and efficiently detect this optimal alignment between two sequences ? The

easiest way to represent all possible alignments between two arbitrary protein

or nucleotide sequences is as a path graph. Edges on this graph represent

matches, mismatches and gaps, while vertices indicate an alignment state

ending at that point. An example alignment path graph is shown in box 1

of Figure 1.1. This path graph shows all possible alignment paths between

the sequences GAATTC (top) and GGATC (left). Diagonal alignment paths rep-

resent match and mismatch alignments, while horizontal and vertical paths

represent a gap in either the top or left sequence. Any alignment state in the

graph has been reached through a series of matches, mismatches or gaps.

Dynamic programming methods lend themselves perfectly to this type of

optimisation. From a dynamic programming perspective each state in the

graph can be scored as follows, using the Needleman-Wunsch scoring scheme:

Mi,j = Max




Mi−1,j−1 + Si,j

Mi,j−1 − w
Mi−1,j − w

Each state (node) in the path graph Mi,j is assigned a score based on the

scores of its incoming states which are connected in the path graph. The value

Mi−1,j−1 represents a diagonal match/mismatch state while the Mi,j−1 and

Mi−1,j−1 values represent the insertion of gaps in either sequence. Because

not all paths are equally desirable, we add the value Si,j to match-mismatch

paths, this value is a score for a match between the amino acids or nucleotides

represented by i and j. Conversely paths which introduce a gap, are penalised

by subtracting the value w. Given these rules it is relatively straightforward

to use dynamic programming to assign a score to each state within the graph,

based on the highest scoring alignment path ending at that point.

In order to illustrate the dynamic programming Needleman-Wunsch ap-

proach we shall use very simple rules. Match paths will be scored by adding
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1 to the alignment score, while paths ending in a gap or mismatch will receive

nothing.

Mi,j = Max




Mi−1,j−1 + Si,j(1 or 0)
Mi,j−1

Mi−1,j

The dynamic programming solution is shown in Figures 1.1 & 1.2 and can

be described as follows:

1. The first row (M0,j) and first column (Mi,0) of the graph automatically

have zero values assigned (Figure 1.1 box 1). We start at M1,1 and

choose the path which maximises the value at that point. The two

gapped paths (horizontal and vertical) will maintain the score at zero,

representing starting the alignment with a gap in either sequence. The

match state will give a score of 1, representing the alignment starting

with a G/G match. The score is obtained by taking the incoming score

M0,0 = 0 and adding to it the score for a G/G match (S1,1 = 1), hence

the score obtained is 0 + 1 = 1. In this case we shall choose this match

path as it gives the highest score, and assign the score 1 to Mi,j (Figure

1.1 box 2).

2. We continue the first dynamic programming round by assigning values

in a similar fashion to each state in M1,j and Mi,1. In the case shown

in Figure 1.1 (box 3), the highest scores are obtained by taking the

gapped path that conserves or increases the current score of 1 from

M1,1.

3. The second dynamic programming step adds values to the states M2,j

and Mi,2. In this case the value of M2,2 is maintained at 1, as the

diagonal path represents a mismatch (score 0) and the horizontal and

vertical paths represent gaps (score 0). The value at M2,3 increases to

2 as the diagonal A/A match path increases the score at this point by

1 (Figure 1.1 box 4).

4. We continue in this fashion and calculate a score at each alignment state

according to the highest scoring path ending at that point (Figure 1.1

box 5).
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show possible paths through the graph. The red arrows illustrate one possible
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5. Because the Needleman-Wunsch method is a global alignment algo-

rithm, the maximal alignment score is shown in the bottom right of

the path graph (Figure 1.1 box 6). In this case the alignment score is

4. In order to generate the alignment that gives this score, we trace back

from the bottom right (end of the alignment) taking at each step the

path that gave the score at each point. In cases where multiple paths

can give the same score at any point, we chose any of these paths. Be-

cause of this property, multiple optimal alignments may be obtained.

For simplicity, most implementations will take only one alignment. In

the case shown in Figure 1.1 (box 6) we have traced back from the

end of the alignment according to the red path, which gives the final

alignment:

GAATTC

| || |

GGAT-C

This simple example does not apply penalties of any sort for gaps, in practice

the Needleman-Wunsch algorithm uses a fixed penalty for gaps. A more de-

tailed example of the Needleman-Wunsch algorithm with fixed gap penalties

is shown in Figure 1.4.

1.1.2 The Smith-Waterman Algorithm

The Needleman-Wunsch algorithm produces a global alignment between two

sequences. In other words, the alignment must span every residue of each of

the two sequences being aligned. Frequently biological sequences will exhibit

similarity across regions of their length but not their full length. One ex-

ample of this is when two sequences with multiple domains share a common

domain. For this reason algorithms have been written which can discover

optimal local alignments between two sequences. One of the first local align-

ment algorithms developed was the Smith-Waterman algorithm (Smith and

Waterman, 1981). For local alignment detection we need to consider align-

ments that can begin and end at any of the MN positions in the alignment

matrix. Where M and N represent the lengths of each of the sequences being

aligned. Since every possible position in the matrix can be the start of an

alignment, scores in the matrix are never allowed to fall below zero. Because
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begin M0,0 ← 0
for j ← 1 to N do

M0,j ← Mi,j−1 + σ(−bj
)

end
for i ← 1 to M do

Mi,0 ← Mi,j−1 + σ(ai− )
for j ← 1 to N do

Mi,j ← max[Mi−1,j−1 + σ(ai
bj

),Mi,j−1 + σ(ai− ),Mi−1,j + σ(−bj
)]

end
end
write ”Global Similarity Score is” MM,N

end

Figure 1.2: Pseudocode for the dynamic programming implementation of
the Needleman-Wunsch algorithm.

every point in the matrix can also be viewed as the end of an alignment,

we also need to store the highest score from each step. The added complex-

ity of the local alignment method is in fact very simple to implement. The

Smith-Waterman pseudocode is shown in Figure 1.3. The only differences

are the storage of the highest score (best) and the added criteria that no

matrix entry can have a negative score. The highest scoring alignment is

built by starting at the position in the matrix with the highest score, and

tracing back the alignment path from which this score arose until a zero

value is reached. A comparison of the global Needleman-Wunsch method

and local Smith-Waterman method is shown in Figure 1.4. In practice, local

and global alignment algorithms of this type are relatively similar in terms

of computational complexity (Table 1.1).

1.1.3 The FASTA Algorithm

Although the Needleman-Wunsch and Smith-Waterman algorithms are rig-

orous methods for detecting optimal local and global alignments between

sequences, they are quite computationally intensive. In order to compare a

query sequence against a large database of sequences, a significant amount of

computation time may be required, even with high-performance computers.

For this reason, many faster heuristic alignment methods have been devel-

oped. These methods unlike the Needleman-Wunsch and Smith-Waterman
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begin best ← 0
for j ← 1 to N do

M0,j ← 0
end
for i ← 1 to M do

Mi,0 ← 0
for j ← 1 to N do

Mi,j ← max[0,Mi−1,j−1 + σ(ai
bj

),Mi,j−1 + σ(ai− ),Mi−1,j + σ(−bj
)]

best ← max(Mi,j, best)
end

end
write ”Local Similarity Score is” best

end

Figure 1.3: Pseudocode for the dynamic programming implementation of
the Smith-Waterman algorithm.

methods, do not examine the complete space of all possible alignments, but

instead use heuristics to quickly identify potentially high scoring alignments

and hence limit the search space considerably. The first such method de-

veloped was the FASTA algorithm (Pearson, 1990). FASTA concentrates

on identifying regions containing high concentrations of pairs (ktup=2) or

single aligned residues (ktup=1). These regions are then explored for high

scoring alignments. The action of the FASTA algorithm can be summarised

as follows:

• Step 1) Identify regions shared by two sequences with the highest den-

sity of identities (ktup=1) or pairs of identities (ktup=2).

• Step 2) Rescan the ten regions with the highest density of identities

using a substitution matrix. Trim the ends of the region to include

only those residues contributing to the highest score. Each region is a

partial alignment without gaps.

• Step 3) If there are several initial regions with scores greater than

a given cut-off value, check whether the trimmed initial regions can

be joined to form an approximate alignment with gaps. Calculate a

similarity score that is the sum of the joined initial regions minus a
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penalty (usually 20) for each gap. The score of the single best initial

region found in Step 2 is also reported.

• Step 4) For sequences with scores greater than a threshold, construct an

optimal local alignment of the query sequence and the library sequence,

considering only those residues that lie in a band centred on the best

initial region found in Step 2. For protein searches with ktup=2 a 16

residue band is used by default. A 32 residue band is used with ktup=1.

• Step 5) After the first 60,000 scores have been calculated, normalise

the raw similarity scores using estimates for the statistical parameters

of the extreme value distribution. The default strategy regresses the

similarity score against ln(library−sequencelength) and calculates the

average variance in similarity scores. Z-scores (normalised scores with

mean 0 and variance 1) are calculated, and the calculation is repeated

with library sequences with Z-scores greater than 5.0 and less than -5.0

removed. These Z-scores are then used to rank the library sequences.

• Step 6) Finally the Smith-Waterman algorithm (without limitation on

gap size) is used to display alignments.

1.1.4 The BLAST Algorithm

Another heuristic alignment algorithm is the BLAST algorithm (Basic Local

Alignment Search Tool) (Altschul et al., 1990; Altschul et al., 1997). This

algorithm is significantly faster than FASTA and is the most commonly used

algorithm for sequence homology detection. The initial phase of the algo-

rithm is to build a list of words within a query sequence, which represent

sequential residue combinations of a specific size (usually 3 for protein se-

quences). The central idea of the BLAST algorithm is that a statistically

significant alignment of two sequences is likely to contain a high-scoring pair

of aligned words. A discrete finite automaton is constructed to rapidly detect

matches of these words in a database of query sequences. Word matches are

then extended into ungapped local alignments, and alignments that score

above a specific threshold are extended using slow gapped alignment ex-

tensions. Older versions of BLAST could not produce gapped alignments

(Altschul et al., 1990), but instead multiple ungapped alignments. Newer

versions of BLAST however are much improved and can rapidly and accu-

rately produce gapped local alignments (Altschul et al., 1997). In order to
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understand the operation of the BLAST algorithm, it is worth focusing on

the initial word generation step. Here is an example of word generation for

the sequence qlnfsagw showing all words of size 2:

q l n f s a g w

q l

l n

n f

f s

s a

a g

g w

This word list can be extended to include words with residues of similar

chemical properties, as defined in a substitution matrix. The words are scored

by aligning them back to the query sequence using the scoring system from

the substitution matrix. Words that score higher than a specific threshold

are kept. The example below extends the initial list of words and uses a

threshold of 8 for word scoring and the PAM120 substitution matrix.

Expanded Word List

ql: ql, qm, hl, zl

ln: ln, lb

nf: nf, af, ny, df, qf, ef, gf, hf, kf, sf, tf, bf, zf

fs: fs, fa, fn, fd, fg, fp, ft, fb, ys

sa: no words score 8 or more, including the initial word sa

ag: ag

gw: gw, aw, rw, nw, dw, qw, ew, hw, iw, kw,

mw, pw, sw, tw, vw,bw, zw, xw

The action of BLAST is illustrated in Figure 1.5 and can be summarised as

follows:

• Step 1) For each three amino acids in the query sequence, identify all

of the substitutions of each word that have a similarity score greater

than a threshold score T .
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• Step 2) Build a discrete finite automaton (DFA) to recognise the list

of identical and substituted three letter words.

• Step 3) Use the DFA to identify all matching words in sequences in the

database (Figure 1.5 box 1). The refined BLAST algorithm is based

upon the observation that a high scoring pair (HSP) of interest is much

longer than a single word pair, and may therefore entail multiple hits on

the same diagonal and within a relatively short distance of one another.

Hence, if two non-overlapping matches are found closer than a thresh-

old distance A (Figure 1.5 box 2), each match is extended both for-

wards and backwards without allowing gaps. Extended matches above

a specific threshold are stored. These matched ungapped alignment

segments above the threshold are called high scoring pairs (HSPs). If

a high scoring pair exhibits a score above yet another threshold, then

gapped extensions are triggered. These extensions start from a seed

pair of aligned residues within the HSP (Figure 1.5 box 3). The seed

is chosen by locating an 11 residue alignment with the highest score

along the HSP and taking its central residue as the seed. From the

seed residue, gapped extensions travel across the path graph originating

from the seed residue, and the highest scoring gapped local alignment

is stored if it is deemed to be statistically significant (Figure 1.5 box

4).

• Step 4) Report all of the significant alignments detected.

1.1.5 Statistics for Sequence Alignment Searching

Finding optimal or sub-optimal alignments is only one part of the sequence

alignment problem. Another problem that needs to be addressed is the scor-

ing of alignments to separate biologically meaningful alignments from ones

that have arisen purely by chance. Accurate statistical analysis of local

sequence similarity scores can improve the detection of distantly related pro-

teins (Karlin and Altschul, 1990; Mott, 1992). Most of the major similarity

searching algorithms (such as BLAST, FASTA and Smith-Waterman) have

statistical estimates built into their scoring systems. Perhaps the most widely

used statistical estimate for large-scale sequence comparison is the expecta-

tion value (E-value) used by the BLAST algorithm. In this section we will
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1) Identify all word matches (+) above a threshold 2) Extend close hits on the same diagonal (ungapped)

3) Choose a high scoring seed ( + ) and start exploring 
gapped extensions through the path graph (shown in grey)

4) Report maximal local alignments detected
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Alignment Schematic: 
M=match/mismatch     ' - '=gap

Figure 1.5: Overview of the BLAST algorithm. Each box represents two
sequences (one on each axis) according to length. Box 1 shows the relative
positions on each sequence of detected word matches between both sequences.
In box 2, BLAST has identified high-scoring matches which occur on the
same diagonal and relatively close together. Box 3, shows the generation of
an ungapped seed alignment from one of these diagonal match pairs. Finally
in the box 4, a high scoring gapped alignment is extended from the seed, to
produce a sequence alignment. BLAST is significantly faster than methods
such as Smith-Waterman because the computationally slow gapped extension
steps are restricted to those regions shown in grey, and not the whole graph.
An alignment schematic from the result in box 4 is shown (M =match; ’-’
=gap).
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discuss the statistical analysis of sequence alignments, for alignments without

gaps.

Ungapped Alignments

The sum of a large number of independent identically distributed (IID) ran-

dom variables will tend to a normal distribution. This is not the case however,

for sequence alignment scores. In this case we are dealing with the maximum

values of a large number of IID random variables, which will tend to an ex-

treme value distribution (Gumbel, 1958). An illustration of the Extreme

Value Distribution (EVD) is shown in Figure 1.6.

Karlin and Altschul undertook one of the first detailed statistical analy-

ses of local similarity scores for sequence alignments, without gaps and using

an arbitrary amino acid substitution matrix (Karlin and Altschul, 1990).

This statistical analysis assumes that the distribution of sequence similarity

scores obtained by searching a query sequence against a database of sequences

should follow the extreme value distribution (shown in Figure 1.6). Karlin

and Altschul derived an appropriate distribution analytically, using results

which have been previously described (Dembo and Karlin, 1991), with two

parameters called λ and K. These parameters can be thought of simply

as natural scales for the scoring system and the search space size respec-

tively. Values for λ and K are derived from the substitution matrix and the

amino acid composition of the query sequence. One can use these values to

normalise a similarity score S obtained from an alignment with a arbitrary

scoring matrix as follows:

S ′ = λS − lnKmn (1.1)

Where S ′ is the normalised similarity score for the alignment, m is the length

of the query sequence and n is the total length of the library sequence. The

probability of obtaining a normalised similarity S ′ score above a threshold x

can then be calculated as:

P (S ′ ≥ x) = 1 − exp(−e−x) (1.2)

Equations 1.1 and 1.2 can be merged to give:

P (S ≥ x) = 1 − exp(−Kmne−λx) (1.3)
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An expectation value (E-value) can be calculated from this probability P .

The expectation value is the probability of finding a score S ′ ≥ X for a search

of D sequences, and is calculated as follows:

E(S ′ ≥ X) = PD (1.4)

The λ constant is a scale parameter for converting a raw similarity score S

into a natural scale and is calculated as the positive root of:

∑
a,b

qaqbe
λS = 1 (1.5)

The K constant corrects for non-independence of possible match starting

points. Deriving K is convoluted and is described elsewhere (Karlin and

Altschul, 1990). Both λ and K parameters are calculated analytically for

ungapped alignment statistics but must be estimated for gapped alignments.

Current versions of BLAST and FASTA report scores in terms of information

bits. This is a normalised and corrected similarity score and is derived as

follows:

Sbit =
λSraw − lnK

ln2
(1.6)

Expectation values for scores in bits are then calculated as follows:

E(Sbit) = mn2−Sbit =
mn

2Sbit
(1.7)

Example output from BLAST is shown in Figure 1.7. Values for λ and K

have been calculated analytically by the algorithm, and are shown at the

bottom of the output. In this case these values have been calculated as

λ = 0.323 and K = 0.140. The raw score for this alignment is obtained by

looking up each of the alignment residue pairings in the BLOSUM62 matrix

(Figure 1.8) and taking the sum of all scores for the complete alignment. In

this example the positive and negative scores for all pairs are shown below the

alignment. The total score in this case is 145. This score can be normalised

using Equation 1.6, resulting in a normalised score of 70.4 bits.

Sbit =
(0.323 × 145) − ln(0.140)

ln(2)
=

48.80

0.693
= 70.42 (1.8)
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BLASTP 2.0.8 [Jan-05-1999]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= MG293 glycerophosphoryl diester phosphodiesterase, putative
{Mycoplasma pneumoniae} (244 letters)

Database: /ebi/cgg/data/genomes/cgd 73,345 sequences; 94,110,160 total letters

Score = 70.4 bits (145), Expect(3) = 9e-23
Identities = 31/53 (58%), Positives = 37/53 (69%)

>CPER-X13-001877 glycerophosphodiester phosphodiesterase (Length=238)

Query: 7 LLAHRGYSFIAPENTKLAFDLAFEYCFDGIELDVHLTKDEQLVIIHDETTLRT 59
+ AHRG+S+ PENT LAF A + GIELDVH +KD +LVIIHDE RT

Sbjct: 3 VFAHRGFSYKYPENTLLAFKEALKLDIYGIELDVHKSKDGKLVIIHDEDIKRT 55

+++++++++--++++-+++--+++--+-+++++++-+++-++++++++---++
Scores: 10495634332756524461340113036454648215621464486511255 = 145

Database: /ebi/cgg/data/genomes/cgd
Posted date: Mar 2, 2002 1:02 AM
Number of letters in database: 94,110,160
Number of sequences in database: 273,345

Lambda K H
0.323 0.140 0.406

Matrix: BLOSUM62
Number of Hits to DB: 1st pass: 41778674, 2nd pass: 1051929
Number of Sequences: 1st pass: 273345, 2nd pass: 3593
Number of extensions: 1st pass: 1687673, 2nd pass: 836884
Number of successful extensions: 1st pass: 3593, 2nd pass: 9007
Number of sequences better than 10.0: 126

length of query: 244 length of database: 94110160
effective length of query: 192 effective length of database: 79896220
effective search space: 15340074240 effective search space used: 15340074240

Figure 1.7: Example output from the BLASTp algorithm. Individual scores
from aligned residue pairs have been illustrated, and are explained further in
the text.
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The E-value shown is then calculated using Equation 1.7, where m is the size

of the query sequence (in amino acids) and n is the total size of the sequence

database searched (also in amino acids). These values are also shown in

Figure 1.7. The E-value calculated represents the expectation likelihood

that an alignment of these two sequences detected within a database of given

size, has occurred by chance.

Scoring Matrices

The statistics described in the previous section rely on scores derived from

a substitution matrix. This matrix scores any given pair of aligned residues

according to their substitution likelihood in a protein family at a certain

evolutionary distance.

Given how important this substitution matrix is for accurate alignment

scoring, it is imperative that accurate matrices are constructed. The most

simple approach is to count the frequencies of aligned residue pairs in con-

firmed alignments and to develop maximum likelihood estimates from these

data. This approach can however produce misleading results. The reason

for this, is that sequences usually occur in families, so alignments are not

always independent from one another. Some sequence families have diverged

more recently from ancestor sequences than other sequences. For closely

related (recently diverged) sequences, one would expect alignments of these

sequences to contain many identical residues. The probability Pab for aligned

residues that are not identical (a �= b) should be very low, so that scores ob-

tained from the matrix for alignment of a and b will be negative. Conversely

for sequences which have diverged a longer time ago, Pab will approach the

background frequency of amino acids a and b (qaqb), and the associated score

for an a, b alignment will be close to zero. For this reason substitution ma-

trices are optimised for different levels of divergence between sequences, and

care should be taken to choose the appropriate matrix for sequence compar-

isons.

Two types of substitution matrices are in common use. The Point Ac-

cepted Mutation (PAM) matrix (Dayhoff, 1978) uses closely related proteins

to obtain substitution rates for recently diverged proteins and extrapolates

rates for sequences which are more distant. The matrix is constructed by

building phylogenetic trees for closely related protein families. Sequences are

compared to their closest ancestor in a tree and frequencies of all residue
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A R N D C Q E G H I L K M F P S T W Y V B Z X
A 4
R -1 5
N -2 0 6
D -2 -2 1 6
C 0 -3 -3 -3 9
Q -1 1 0 0 -3 5
E -1 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1

Figure 1.8: The BLOSUM62 substitution matrix (Henikoff and Henikoff,
1991). Scores for every pair of aligned residues are shown. Scores indicate
the likelihood of substitutions between two residue types in a protein family
at a specific evolutionary distance. Scores are scaled in half-bit units, and
may be positive or negative.

21



pairings are stored. These values are transformed into conditional substitu-

tion probabilities for short time intervals. Finally the results are extrapolated

to longer time intervals according to the number of point accepted mutations

(PAM units) that are expected. A PAM value of one indicates that we expect

a 1% level of substitution. Matrices containing these substitution probabili-

ties are then created for increasing PAM values. One commonly used matrix

is the PAM250 matrix which is scaled by 3/log2 giving scores in third-bits

for aligned residues. This extrapolation from short time intervals to longer

intervals fails to capture the real complexity of biological sequence evolution

(Henikoff and Henikoff, 1991). Closely related sequences exhibit different

patterns of amino acid substitution. Single related amino acid changes are

common in closely related sequences, for example isoleucine to leucine (I

⇐⇒ L) or leucine to valine (L ⇐⇒ V). Also, sequences at large evolutionary

distances can exhibit all manner of codon changes in their DNA sequences.

The BLOSUM set of substitution matrices are an attempt to overcome

this bias in PAM matrices (Henikoff and Henikoff, 1992). The data used

to construct a BLOSUM matrix is derived from the BLOCKS database of

aligned ungapped regions (or blocks) from protein families (Henikoff and

Henikoff, 1991). This set of aligned blocks is clustered by placing blocks in

the same cluster if their percentage of identical residues is above a threshold.

The frequencies of observing an alignment between residues which come from

different clusters is calculated, and normalised to correct for the relative sizes

of clusters. This set of frequencies is then used to estimate substitution scores

using a log-odds calculation:

pab = log(
pab

qaqb

)

This log-odds matrix elements are scaled and rounded to nearest integer

values. The commonly used BLOSUM62 matrix (Figure 1.8) is scaled so

that its values are half-bits. This scaling is performed by multiplying log-

odds matrix elements by 2/log2.

1.1.6 Profile Searching:
PSI-BLAST and HMMER

Although sequence similarity searching algorithms and their associated statis-

tics can easily identify similarity relationships between proteins, there are

limits to their sensitivity. Many functionally important protein similarities
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only become apparent with comparison of the three-dimensional structures

of proteins (Holm and Sander, 1997; Brenner et al., 1998).

Unfortunately the majority of proteins do not yet have three-dimensional

structures determined. In the absence of these structural data, methods have

been developed that can identify remotely similar proteins based on profile

searching. Given a set of related proteins, such as those with significant

BLAST similarity, it is possible to align these proteins and use observed

patterns of amino acid conservation within the family to build a statistical

profile for this protein family. Searching with a sequence profile is highly

desirable, as it captures information contained in the whole family which

may be missed by simply comparing a single sequence from that family to

a database (Gribskov et al., 1987). Patterns of conservation identified from

the alignment of related sequences can hence aid the recognition of distant

similarities (Altschul et al., 1997; Brenner et al., 1998). Many methods exist

to build and search profiles from sequence alignments. Traditional pairwise

alignment algorithms such as BLAST, FASTA and Smith-Waterman use po-

sition independent scoring parameters. Profiles use position-specific scores

for amino acids pairings and position-specific scores for gaps. This property

of profile methods is well suited to capturing the degree of conservation at

specific positions across a multiple alignment, and the rate at which gaps

may be introduced. Two of the most commonly used methods for profile se-

quence searching are PSI-BLAST and HMMER (Altschul et al., 1997; Eddy,

1998). In this section we will briefly discuss these two methods, and their

application to biological sequence analysis.

PSI-BLAST

The PSI-BLAST algorithm is based on the standard BLAST algorithm. A

query sequence is scanned against a database of sequences and high scoring

alignments are detected. A multiple alignment of detected sequences is then

used to construct a profile. For each position in the derived alignment pat-

tern, every amino acid is assigned a score. If a residue is highly conserved at

a particular position, that residue is assigned a high positive score, residues

that are not conserved are assigned high negative scores. At weakly con-

served positions, all residues receive scores at or near zero. Position-specific

scores can also be assigned to potential insertions and deletions.

This profile is then used as a query to perform another (more sensitive)
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Match State
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Insert State

Figure 1.9: Diagram of a Profile Hidden Markov Model (HMM) for an align-
ment of length four (Krogh et al., 1994). Individual states and transitions
between states are explained in the legend.

search of the database. The PSI-BLAST algorithm is iterative which means

that subsequent searches which detect related homologues are used to further

refine the profile. The iteration is programmed by the user and continues

until convergence (i.e. no more significant sequence similarities are detected)

or for a specific number of iterations. While this method has been shown to

be fast and reliable for distant sequence homology detection (Brenner et al.,

1998), care must be taken to control thresholds for the inclusion of sequences

in profiles. If a threshold chosen is too permissive, it may allow unrelated

protein sequences to be added to a profile and hence the method may never

converge.

HMMER

The HMMER algorithm (Eddy, 1998) is similar to PSI-BLAST at a very

basic level. The method generates sequence profiles from an alignment of re-

lated sequences and uses this profile to accurately and sensitively detect more

distantly related sequences that fit this profile. It differs from PSI-BLAST

in the method by which profiles are generated. The algorithm uses profile

hidden Markov models (profile HMMs) to build a statistical model of an

alignment based on the consensus sequence of a family (Krogh et al., 1994).

The use of HMMs had previously been successful in the field of speech recog-

nition and is very well suited to the problem of sequence profile generation

(Eddy, 1998).

The use of HMMs allows a more systematic approach to estimating model
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parameters. A HMM is a type of dynamic statistical profile, constructed by

analysing the distribution of amino acids and other features in a training set

of proteins. The HMM concept is more complex than simple profiles and can

be visualised as a finite state machine, a concept frequently used in fields

such as computer science.

Finite state machines travel through a series of states and produce output

while moving from state to state, or when a particular state is reached. A

HMM generates a protein sequence by emitting amino acids as it travels

through a series of states. Each state has an associated table of amino acid

emission probabilities. Transitions are controlled by transition probabilities

associated with moving from state to state. An example profile HMM is

shown in Figure 1.9 (Krogh et al., 1994). The term Hidden Markov Model

arises from the fact that the state sequence is a first-order Markov chain,

but only the symbol sequence is directly observed. In other words, the state

sequence (e.g. an alignment) is not uniquely determined by the observed

symbol sequence, but is inferred probabilistically from it.

The profile HMM shown in Figure 1.9 can be described as follows. For

consensus columns in a multiple sequence alignment a match state models

the distribution of residues that are allowed in that column. The insert and

delete states allow the insertion of one or more residues between one column

and the next, or the deletion of the consensus residue. Models such as this

must be trained on a multiple sequence alignment to generate probabilities

for states and state transitions. Once the model has been trained, it is

possible to accurately detect whether other sequences fit this profile. Any

sequence can be represented by a path through the model. The probability of

any sequence, given the model, is computed by multiplying the emission and

transition probabilities along the path. Dynamic programming approaches

(such as the Viterbi algorithm) are used to calculate the most likely path

through the model. Once the most likely path is detected, the probability

of this path is used to assess the probability that a given sequence fits the

model. The HMMER package provides all of the tools necessary to build a

profile HMM from a multiple sequence alignment, and to search sequences

against this profile (Eddy, 1998).
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1.2 Computational Biology Data Sources

Bioinformatics is a data-driven field, vast quantities of information pertaining

to nucleotide, amino acid and other biological data, are constantly being gen-

erated by laboratories around the world. The methods described in the first

part of this introduction require accurate and reliable sequence information

in order to work successfully, and hence it is imperative that biological infor-

mation is stored in a meaningful and consistent format. A phrase coined by

computer scientists ’garbage in, garbage out’, is a succinct way of describing

the problem. In this section we focus on primary nucleotide and sequence

databases, as a complete discussion of biological databases is beyond the

scope of this introduction. A section on protein domain family database is

however included, as these resources are important for the work described in

Chapters 2 & 3. Table 1.2 shows a list of some of the most useful databases

and illustrates the variety of biological data that are currently available.

1.2.1 Nucleotide Sequence Databases

EMBL, GenBank and DDBJ

The three primary nucleotide sequence databases are EMBL, GenBank, and

DDBJ (Stoesser et al., 2002; Benson et al., 2002; Tateno et al., 2002) (Ta-

ble 1.2). These databases include sequences submitted directly by individual

laboratories and genome sequencing consortia. Sequences are also taken from

literature and patent applications. The databases are synchronised on a daily

basis, and accession numbers are managed in a consistent manner between

these three centres. Given the size of these databases (over 15 billion nu-

cleotides) they are also available in subdivisions. For example, GenBank

is currently partitioned into 17 divisions. The European Molecular Biol-

ogy Laboratory (EMBL1) nucleotide sequence database is maintained by the

European Bioinformatics Institute (EBI), in Cambridge, UK. The EMBL

database can be accesses and searched using the SRS2 system (Etzold and

Argos, 1993), or the entire database can be obtained as a single flat file.

The GenBank3 nucleotide database is maintained by the National Center for

Biotechnology Information (NCBI), which is part of the National Institute of

1http://www.ebi.ac.uk/embl/
2http://srs.ebi.ac.uk/
3http://www.ncbi.nlm.nih.gov/Genbank/
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Database Location Type of Data Reference

Nucleotide Databases

EMBL† European Molecular Biology Laboratory Genomic and submitted sequence (Stoesser et al., 2002)

GenBank† National Center for Biotechnology Information
(NCBI)

Genomic and submitted sequence (Benson et al., 2002)

DDBJ† DNA Data Bank of Japan Genomic and submitted sequence (Tateno et al., 2002)

Amino Acid Databases
SwissProt European Molecular Biology Laboratory, Swiss Insti-

tute for Bioinformatics (SIB)
Curated peptide sequences (Bairoch and Apweiler, 2000)

PIR National Biomedical Research Foundation (NBRF),
in collaboration with MIPS and JIPID

Curated peptide sequences (McGarvey et al., 2000)

NRDB90 European Molecular Biology Laboratory Protein sequences with near-neighbour redundancy
removed

(Holm and Sander, 1998)

Protein Family, Domain and Motif Databases

Pfam‡ Sanger Centre and PFAM consortium Annotated protein domain families, alignments and
profile HMMs

(Bateman et al., 2000)

ProSite‡ Swiss Institute of Bioinformatics (SIB) Protein domains and families (Falquet et al., 2002)

PRINTS‡ University of Manchester Conserved protein sequence motifs (fingerprints) (Attwood et al., 1999)
BLOCKS Fred Hutchinson Cancer Research Center Conserved protein sequence motifs (blocks) (Henikoff and Henikoff, 1991)

ProDom‡ Institut National de la Recherche Agronomique Protein domain families (Corpet et al., 2000)

SMART‡ European Molecular Biology Laboratory Protein domain families (Schultz et al., 2000)
InterPro European Molecular Biology Laboratory Merged and linked database of other resources (see

‡below)
(Apweiler et al., 2001)

Structural Information Databases
PDB Research Collaboratory for Structural Bioinformatics Protein 3-dimensional structures (Sussman et al., 1998)
CATH University College London Expert hierarchical classifications of protein struc-

tures
(Orengo et al., 2002)

SCOP Laboratory for Molecular Biology (LMB), Cambridge Expert hierarchical classifications of protein struc-
tures

(lo Conte et al., 2000)

Pathway and Interaction Databases
KEGG Institute for Chemical Research, Kyoto University Metabolic and Regulatory Pathways (Kanehisa and Goto, 2000)
DIP University of California, Los Angeles (UCLA) Curated Protein-Protein Interactions (Xenarios et al., 2002)

† EMBL, GenBank and DDBJ are cross linked
‡ These databases form part of the InterPro database of protein domains and families

Table 1.2: Summary of major biological databases.
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Health (NIH) in the United States. It is accessed and searched through the

Entrez system at NCBI, or can be downloaded as flat files. The DNA Data

Bank of Japan (DDBJ4) began as a collaboration with EMBL and GenBank.

It is run by the National Institute of Genetics, Japan.

Organism Specific Databases

The primary nucleotide sequence database store information in a general

manner for all organisms. For many model organisms, there exist specialised

genome databases which have been expertly annotated by researchers with

extensive knowledge of the biology of specific organisms. These databases

exist for a variety of organisms, but three of these databases (SGD, FlyBase

and Ensembl) are exceptional, both in terms of methodology and annotation

quality.

The FlyBase5 resource was one of the earliest model organism databases

(Ashburner, 1993). This database endeavours to capture large amounts of

biological information regarding the complete genome sequence of the fruit

fly Drosophila melanogaster. Detailed information has been gradually added

to the database which includes: genes, proteins, genetic elements, chromo-

somal maps, aberrations, literature references and images. The database is

constantly being updated and modified. Since the publication of the draft

D. melanogaster genome (Adams et al., 2000), FlyBase has become an even

more powerful resource for functional analysis of fly proteins. The Saccha-

romyces Genome Database6 (SGD) is a similar resource concerning the com-

plete genome of bakers yeast (Saccharomyces cerevisiae) and related yeast

strains (Dwight et al., 2002). This resource was started in 1994 and also has

benefited from the publication of the complete S. cerevisiae genome (Mewes

et al., 1997).

The Ensembl7 resource (Hubbard et al., 2002) is a joint initiative of the

European Bioinformatics Institute and the Wellcome Trust Sanger Institute.

The project is a complete pipeline of genome assembly, gene prediction, large-

scale annotation and analysis of the draft human genome sequence. Ensembl

was started in 1999 and the initial pipeline, databases and world wide web

resources were put in place before the completion of the draft genome. The

4http://www.ddbj.nig.ac.jp/
5http://flybase.bio.indiana.edu/
6http://genome-www.stanford.edu/Saccharomyces/
7http://www.ensembl.org/
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current version of Ensembl (Build 26) contains over 4,389 megabases, 29,181

predicted genes and 34,019 predicted transcripts. Ensembl also contains

information pertaining to predicted genes and proteins, cytological markers,

single nucleotide polymorphisms (SNPs), protein families, domains and a

variety of other information. Ensembl is very different to other resources at

some very basic levels. The entire system and data are Open Source (i.e.

the entire system, not just the data, is freely available). Ensembl also allows

users to submit annotations remotely via the distributed annotation system

(DAS) (Dowell et al., 2001).

1.2.2 Protein Sequence Databases

SwissProt

The two major protein sequence databases (Table 1.2) are the SwissProt

and PIR manually curated databases. Scientific curators collaborate with

the individuals or institutions submitting sequences in order to accurately

annotate the biochemical function of the protein being submitted. Litera-

ture links regarding scientific research carried out on a given protein are also

stored. SwissProt8 (Bairoch and Apweiler, 2000) is a collaborative project

between the Swiss Institute of Bioinformatics and the European Bioinfor-

matics Institute. The goal of this database is to consistently maintain a high

level of annotations for each protein. Annotations include: function, domain

structure and post-translational modification information. A minimal level

of redundancy and a high level of integration with other databases is another

key aim. SwissProt was initiated in 1986 by Amos Bairoch at the Depart-

ment of Medical Biochemistry at the University of Geneva. This database is

one of the best protein sequence databases in terms of the quality of the an-

notation and its size. The current release of SwissProt (release 40) contains

101,602 curated protein sequences.

TrEMBL is a computationally derived supplement to SwissProt that con-

tains translations of EMBL nucleotide sequence entries that have not yet been

integrated into the main SwissProt resource. Annotations for TrEMBL en-

tries are automatically derived and are generally not of the same high quality

as SwissProt entries. Both databases can be accessed and searched through

the SRS9 system (Etzold and Argos, 1993).

8http://www.ebi.ac.uk/swissprot/
9http://srs.ebi.ac.uk/
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The Protein Information Resource (PIR)

The Protein Information Resource10 (PIR) (McGarvey et al., 2000) is a divi-

sion of the United States National Biomedical Research Foundation (NBRF).

It is involved in a collaboration with the Munich Information Center for

Protein Sequences (MIPS) and the Japanese International Protein Sequence

Database (JIPID). The PIR-PSD (Protein Sequence Database) release 71.03

(February 2002) contains 283,138 entries. PIR was the first public protein

sequence database and was founded in 1984 by Margaret Dayhoff.

The PIR database strives to be comprehensive, accurate, consistently an-

notated and well organised. However, from a curation and annotation point

of view, the SwissProt database is probably more desirable. The SwissProt

and PIR databases exhibit a large degree of overlap, yet there are still many

sequences which can be found exclusively in only one of them.

The Non-Redundant Database (NRDB)

There is a large level of redundancy in many biological sequence databases,

including the SwissProt and PIR protein sequence databases (Holm and

Sander, 1998). It is desirable when searching sequences against a large

database to remove closely related sequences, which provide little extra in-

formation and increase the search space significantly. The Non-redundant

Database11 (NRDB) is a database containing protein sequences from Swis-

sProt, SwissNew, TrEMBL, Tremblnew, GenBank, PIR, Wormpep and PDB.

Near-neighbour redundancy in this database has been removed by detecting

very closely related sequences by virtue of highly similar amino-acid compo-

sitions, and subsequent sequence alignment. The NRDB90 database merges

two sequences into a representative sequence if they exhibit more than 90%

identity detected in this fashion. This is very useful because large-scale com-

putational analyses do not need to be carried out on a full sequence database,

but on a smaller non-redundant database, without sacrificing information.

10http://pir.georgetown.edu/
11http://www.ebi.ac.uk/˜holm/nrdb90/
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1.2.3 Protein Domain and Family Databases
(Pfam & InterPro)

A large proportion of this thesis describes the classification of proteins into

sequence families. A number of similar projects have been performing this

type of analysis for the classification of protein domains and motifs. Many

such databases exist, and it would be beyond the scope of this work to discuss

all of them. In this section two of these resources (Pfam and InterPro), which

we have used extensively during this work, will briefly be described.

Pfam is a database of multiple alignments of protein domains constructed

using profile hidden Markov models (Bateman et al., 2000). The database is

comprehensive well curated and very useful for determining the presence of

domains or motifs within protein sequences. Domain families are constructed

by building a seed alignment of related sequences taken from sources such

as SwissProt, Prosite and ProDom. Care is taken at this stage to check

for errors in both the sequences and the seed alignment. A profile HMM

is constructed from a finished seed alignment using the HMMER package

(Eddy, 1998). This profile is used to search the SwissProt database for more

members of the family, and a multiple sequence alignment for the full family

is generated. Once again, these full alignments are also rigorously checked

for errors and inconsistencies. These finished full alignments are stored and

(in many cases) extensively annotated in the PfamA database of high quality

alignments.

This method is clean and accurate for the classification of protein do-

mains into families, but can be manually intensive. In order to enrich the

database further and to cover sequences in SwissProt that are not already

part of the PfamA database, another automatic protocol is used. In this case

the Domainer (Sonnhammer and Kahn, 1994) algorithm is applied to Swis-

sProt BLAST similarity data, and used to automatically detect conserved

domains and motifs within proteins. Profiles are once again constructed

from these automatically generated alignments, and are used to detect more

family members which are built into a final alignment. These results are

stored in the PfamB subdivision. Currently the Pfam database consists of

3,360 protein domain families, and is growing rapidly.

Many other family databases exist, providing classifications of full-length

proteins, motifs and domains. The Pfam database has perhaps been one

of the most successful family databases. Recently, the InterPro initiative
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(Apweiler et al., 2001) has linked the major family databases into a single

resource linked to the SwissProt and TrEMBL databases. This database con-

tains families from the Pfam, Prosite, Prints, ProDom, SMART and TIGR-

Fams resources. InterPro is an exceptionally useful resource as it allows the

strengths of each separate family database to be combined into a single com-

prehensive resource for information regarding protein sequence motifs and

domains. InterPro release 4.0 consists of 4,691 entries representing: 1,068

domains, 3,532 families, 74 repeats, and 15 post-translational modification

sites. The database also stores over 2 million links between a large proportion

of SwissProt and TrEMBL proteins. Both the Pfam and InterPro databases

have been exceptionally useful for the research described in this thesis, and

will be further discussed in Chapters 2 & 3.
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Chapter 2

Algorithms for Automatic
Protein Sequence Clustering

Clustering techniques are used for the classification of objects with discrete

features into groups. This type of classification procedure has been used

extensively in many fields. Biology is an observational and experimental sci-

ence, and as such, classification is of paramount importance. The earliest

recorded biological clustering was developed by Aristotle, a student of Plato

around 300BC. The classification scheme he developed for plants and animals

remained mostly unchanged for two thousand years until Carl Von Linnaeus

in 1735 published his work Systema naturae (Linnaeus, 1735). Linnaeus was

a Swedish botanist known as the father of taxonomy. The species classifica-

tion system he developed (based on ’genus’ and ’species’) is still very much

in use today. An early biological classification from 1874 is shown in Figure

2.1.

From a bioinformatics perspective, clustering has been used extensively in

the field of molecular phylogeny for the reconstruction of phylogenetic trees

(Nuttall, 1904; Fitch and Margoliash, 1967) from protein and nucleotide se-

quence data. Recently however, clustering has also been employed for the

classification of many other diverse types of information within the field of

bioinformatics and computational biology. One example of this, is the clus-

tering of genes into related groups based on the co-expression of their mes-

senger RNAs (Eisen et al., 1998), as determined by microarray experiments

(Schena et al., 1995). The development of whole genome microarray (DeRisi

et al., 1997) approaches has further tested the limits of various clustering

techniques to make sense of these complex data.
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Figure 2.1: Stammbaum des Menschen: ’Family Tree of Mankind’ (Haeckel,
1874).
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Another important field within bioinformatics is the clustering of pro-

teins, based on their sharing of sequence similarity, into related evolutionary

groups which are termed protein families. This Chapter will describe the

problem of protein sequence clustering, previous approaches to this problem

and two novel clustering algorithms developed during this research, for the

classification of proteins into functionally related groups.

2.1 Genomic Protein Family Analysis

The development of rapid and accurate global and local sequence alignment

tools, such as BLAST, FASTA and Smith-Waterman (Altschul et al., 1990;

Pearson, 1990; Smith and Waterman, 1981), which have been described in

detail in the previous chapter, have broadened the scope of bioinformatics re-

search enormously. Large scale functional analysis of proteins and nucleotide

sequences became possible, and provided new insights into molecular and

genomic processes. While these tools became readily available in the early

1990s, there was still relatively little information in protein and nucleotide

sequence databases that could be used for accurate genome comparison and

analysis.

An enormous growth of sequence data began with the sequencing of the

first complete genome of a free living organism, that of Haemophilus influen-

zae (Fleischmann et al., 1995). In the following seven years over seventy

complete genomes have been completely sequenced. The rate of growth of

sequence information is enormous, as novel sequencing and assembly tech-

nologies such as capillary sequencing and whole genome shotgun approaches

(Carrilho et al., 1996; Venter et al., 1996) have been developed. These devel-

opments have provided valuable genomic data that allows the development

of many novel tools and methods for complete genome analysis and compar-

ison. The goal of functional genomics is to determine the function of pro-

teins predicted from these sequencing projects (Tsoka and Ouzounis, 2000b;

Eisenberg et al., 2000). To achieve this goal, computational approaches such

as sequence clustering can assist the classification of functional genomics

targets.

As the flood of sequence information increases rapidly, various attempts

have been made for widespread classification of predicted protein sequences

into related functional and evolutionary groups. Throughout this chapter

the term ”protein family” will be used to denote groups of proteins related
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in terms of both evolution and function (Fitch, 1973; Dayhoff, 1976). Such

classifications of proteins into families are of enormous use in many areas of

biological research.

At one level, protein families can be used to explore the function of a

predicted protein sequence. If a protein of unknown function is deemed to

be a member of a protein family, then this unknown protein can be assigned

a function based on other proteins within that family, whose functions may

be known (Hegyi and Gerstein, 1999). Surprisingly, there are many pairs

of clearly orthologous proteins in databases, where one of the pair is anno-

tated with a functional description, but the other is annotated as ”unknown”

(Galperin and Koonin, 2000). This predictive aspect of protein families is

hence very useful, as the common method of functional assignment (tak-

ing the highest scoring similarity from a database search) can frequently be

misleading or inaccurate in terms of functional assignment (Kyrpides and

Ouzounis, 1998).

Complete genome comparisons can also be aided greatly by accurate pro-

tein family information (Ouzounis et al., 1996). Families may be specific to

certain taxonomic groups or widespread across all domains of life (Ouzounis

and Kyrpides, 1996), facts that can provide evolutionary insights into the

underlying biology of organisms (Rubin et al., 2000). The set of protein fam-

ilies of a complete genome provides a functional and evolutionary snapshot

of its underlying biological mechanisms. Indeed, genome phylogeny can be

accurately reconstructed by analysing the proportion of protein families that

two genomes share and is remarkably similar to phylogenies constructed from

ribosomal RNA sequences (Huynen and Bork, 1998; Enright and Ouzounis,

2001b). Investigation of universal protein families which occur in all com-

plete genome sequences, can also shed light on the functional content of the

proposed last universal common ancestor (Kyrpides et al., 1999; Doolittle,

2000).

Many methods exist for the classification of proteins into families, and

many attempts have been made to build large comprehensive, searchable

databases of protein families. However, no method exists for accurate and ex-

haustive classification of sequence space, which at present totals over 600,000

protein sequences from many different genomes. At the level of protein do-

mains, which also provide functional and evolutionary insight, progress has

been rapid. The Pfam protein family database (described in Chapter 1) is an

excellent example of this, it combines a rapid and accurate search strategy
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for detecting and classifying protein domains into domain families, and a

large searchable database of these results (Bateman et al., 1999). Most im-

portantly however, this database is updated regularly and curated, making

it of enormous benefit to the scientific community.

This chapter will detail the development of two novel algorithms for the

accurate detection of protein sequence families, which we hope will also be

of benefit to the wider scientific community.

2.2 Protein Sequence Clustering Techniques

To define a protein family, algorithms should take into account all similarity

relationships in a given arbitrary set of sequences, a process that is defined

as sequence clustering (Heger and Holm, 2000). Clustering techniques group

objects together based on this sharing of discrete features. In order to cluster

a set of objects, a measure is used to assess how similar each object is to the

other objects in the set, based on their sharing of features. For protein

family detection the similarity measure used is generally sequence similarity

determined using a sequence alignment search tool such as BLAST, PSI-

BLAST or HMMER. In principle the concept of clustering protein sequences

into families from these data is straightforward, and can be described as

follows:

1. Take a set A of protein sequences to be clustered.

2. Compare each protein from A to every other protein in the set A.

3. Use the detected similarities to build a distance measure between all

proteins in A.

4. Apply a standard clustering technique (Such as K-means, Single Link-

age Clustering, etc).

5. Interpret this clustering result as protein families.

In practice such simplistic approaches generally fail to produce biologically

relevant families for many reasons. Firstly, many proteins have complex do-

main structures and may only show sequence similarity across certain regions

of their length (Figure 2.2). Secondly, the underlying assumption that homol-

ogous proteins are always evolutionarily related and have conserved function
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is not always true. Complex evolutionary events, such as horizontal gene

transfer, non-orthologous gene displacement, gene duplication and gene re-

cruitment can make these assumptions invalid (Galperin and Koonin, 2000).

Another serious problem is that of data size and complexity, a problem which

is faced in almost all aspects of bioinformatics. Clustering methods must be

able to deal with large numbers of protein sequences and the computational

cost of such methods should not be so high as to make them impractical. In

the following sections each of these serious issues will be discussed individu-

ally, together with their impact on conventional protein sequence clustering

techniques.

2.2.1 Multi-Domain Proteins

Multi-Domain proteins are very common in complete genomes, especially

in Eukaryotic genomes. Indeed, given the limited repertoire of domains

(Chothia, 1992; Wolf et al., 2000) and folds (Holm and Sander, 1996), do-

main recombination and domain shuffling events (Doolittle, 1985; Patthy,

1985) appear to be a significant factor in genome evolution (Rossman et al.,

1974; Apic et al., 2001a). Multi-domain proteins make protein family analy-

sis very difficult indeed (Smith and Zhang, 1997). The presence of a shared

domain within a group of proteins does not necessarily imply that these pro-

teins perform the same biochemical function (Henikoff et al., 1997). Ideally,

proteins should be classified into a single family only if they exhibit highly

similar domain architectures. A simple example of this problem is shown

in Figures 2.2 & 2.3. The first figure shows a multi-domain protein A with

two domains. The first domain of this protein (shown in blue) is similar

to a related family of proteins which possess only this domain. Similarly

the second domain (orange) shows that this region of protein A is similar

to a separate family of related proteins. These similarity relationships can

be depicted more clearly as a graph (Figure 2.3). The two unrelated sets of

orange and blue proteins can be connected via an intermediate step through

protein A. Many clustering techniques build clusters using such intermedi-

ate sequence relationships to improve the detection of remotely homologous

cluster members (Park et al., 1997). Such methods, when presented with a

case such as this, will fail to keep unrelated blue and orange proteins sepa-

rate. An ideal clustering of this example case is for blue and orange proteins

to form separate clusters, while the multi-domain protein A is a member of
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Figure 2.2: Sequence alignment cartoon showing a multi-domain protein (A)
and its similarities to two separate groups of related proteins (shown in blue
and orange).

both clusters. This represents a more realistic clustering solution in terms of

capturing protein function.

Apart from these relatively large, independently folded, protein domains,

it has been realised that smaller, quite widespread protein modules exacer-

bate the problem even further (Doolittle and Bork, 1993). Many proteins

sharing these so-called ’promiscuous domains’ (e.g. SH2, WD40, DnaJ)

(Marcotte et al., 1999a) are known to have very different functions. Proteins

assigned to a protein family purely on the basis of a promiscuous domain are

unlikely to share a common evolutionary history with other members of that

family.

Accurate clustering of protein sequences requires the detection and reso-

lution of these domain conflicts within groups of related sequences (Enright

and Ouzounis, 2000). Some of the currently available clustering methods do

indeed attempt to detect and resolve domain conflicts, but these methods

either require manual intervention (Tatusov et al., 1997) or are very compu-

tationally expensive (Gracy and Argos, 1998a; Park and Teichmann, 1998).

Given the increasing size of sequence datasets, domain detection methods

need to be fully automatic, accurate and rapid in order to provide useful

protein family information.

39



C

B

A

D

E

F

G

Figure 2.3: A graph representation of sequence similarities between a multi-
domain protein (A) and two separate groups of related proteins (shown in
blue and orange).

2.2.2 Orthology, Paralogy and Evolution

Comparative genomics has illustrated the complexity of genome evolution.

It can no longer be assumed that if two proteins are homologous, then they

will possess the same biochemical function. The best example of where this

assumption fails, is to examine the relationships between orthologous and

paralogous proteins. Orthology and paralogy relationships arise from gene

duplication events. Formally orthologues and paralogues shall be defined as

follows (Figure 2.4):

Orthologues are pairs of genes related by speciation, whereas par-

alogues are pairs of genes related by a gene duplication event.

Gene duplication events appear to be a key process in genome evolution, and

allow the creation of genes and families with novel functions (Ohno, 1970).

In the previous subsection, domain rearrangements were discussed, this is

also a form of gene duplication, although it only involves duplication of part

of a gene (usually corresponding to a domain at the amino-acid level).

Whole gene duplication is very common and allows one copy of a du-

plicated gene to discover new functions through the course of evolution. A

duplicate copy of a gene may become decoupled from selective pressures,

and may rapidly evolve a new function. This event is rare as most dupli-
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Figure 2.4: Gene duplication and speciation events: This figure shows a
gene α, in an ancestral genome which has duplicated. The duplicate copy of
the α gene develops a new function and is called β. Subsequent speciation
events produce copies of α in different species which are related by vertical
evolutionary descent (orthologues) and similarly copies of β. The α and β
proteins are related to each other by the duplication event, and are termed
paralogues.

cated copies which do not rapidly evolve a useful function will eventually be

removed or become pseudogenes (Wolfe and Shields, 1997). Duplicate genes

which survive this process have generally acquired new functions which are

selectively advantageous, and are hence kept. Well known examples that have

been studied include the human globin genes (Dayhoff, 1978) and homeobox

genes (McGinnis et al., 1984; Scott and Weiner, 1984). The duplication of

an entire genome is also possible and evidence for this has been detected in

the complete genome of Saccharomyces cerevisiae (Wolfe and Shields, 1997).

Because of the prevalence of gene duplication, it is not always possible

to assert that two homologous proteins are functionally equivalent. These

genes may be orthologous (related by speciation events), and perform the

same function, or they may be paralogous (related by a duplication event).

Paralogous proteins may perform exactly the same function, and arose from

a gene duplication event which was advantageous because it increased the

production of those proteins. In most cases however, duplication events cre-

ate paralogous proteins which perform similar roles, but in different tissues,

or proteins which eventually perform very different functions. These complex

relationships between homologous proteins also create problems for protein
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sequence clustering. Accurate methods need to be able to assign proteins as

being paralogous or orthologous with confidence in order to predict accurate

families of proteins with common function.

This problem of detecting the evolutionary ancestry of a gene is made

even more difficult by events such as non-orthologous gene displacement,

horizontal gene transfer and lineage specific gene loss (Galperin and Koonin,

2000). These events can be summarised as follows:

• Non-orthologous gene displacement (Koonin et al., 1996):

The displacement of a gene coding for a particular function, by another

unrelated (or distantly related) gene with an analogous function

• Lineage specific gene loss (Koonin et al., 2000):

The complete loss of a gene from a particular phylogenetic lineage.

This can occur through deletion of the gene, or by rapid evolution of

the gene to a new function, which makes it unrecognisable.

• Horizontal gene transfer: (Syvanen, 1984)

The direct transfer of a gene or genes from one phylogenetic lineage

to another. This can occur between closely related lineages, and also

possibly to distant lineages.

Together these evolutionary events can make it difficult to assume two pro-

teins are related in terms of evolution and function. Clustering techniques

need to try and capture at least some of this evolutionary complexity in order

to accurately classify proteins into functionally distinct families.

2.2.3 Automation and Scaling

Public protein sequence databases are growing at an exponential rate (Iliopoulos

et al., 2001b). At the beginning of this research in 1998, there were 326,753

protein sequences deposited in the SwissProt databases (SwissProt & TrEMBL).

Currently, there are more than twice that number of sequences deposited

(668,701 sequences). Figure 2.5 shows this increase in amino-acid sequence

information by year, starting with the first full peptide sequencing of insulin

in 1955 by Fred Sanger and colleagues (Brown et al., 1955).

Due to this enormous growth in sequence information, algorithms that

rely on protein sequence similarity data (such as clustering algorithms) now

need to be fully automatic in order to reliably handle this vast amount of
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Figure 2.5: Bar charts illustrating the growth of publicly deposited amino
acid sequences since the first sequenced protein in 1955. Graph (a) is a
standard bar chart showing increase in both new sequences and the total
number of sequences, while graph (b) illustrates this growth on a logarithmic
scale. Data for the figure were obtained from the combined SwissProt and
TrEMBL databases using the SRS query program getz (Etzold et al., 1996).
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data. Many previous clustering algorithms relied on user intervention to

correct clustering problems. This is however, only feasible for very small

subsets of these data. Scaling is also very important, algorithms need to

be able to process these data in a realistic timeframe and at a manageable

computational cost. Design and implementation of algorithms for protein

sequence clustering described in this thesis, has been heavily influenced by

these two factors.

2.2.4 Previous Methods

In this section a selection of previous methods for protein sequence clustering

will be described. Many of these methods attempt to tackle problems associ-

ated with multi-domain proteins and complex evolutionary events. However

none of these methods manages to tackle the most important problems in

a rapid and automatic manner. The methods described here will cover the

breadth of different techniques available, many other methods similar to these

also exist but will not be described in detail here.

• The Darwin System (Gonnet et al., 1992):

This analysis involved the first exhaustive match of the entire protein

sequence database. Protein sequences are first indexed using a patri-

cia tree construction which stores all related sets of amino-acid subse-

quences for all proteins. This indexing procedure allows the selection

of related sets of sequences from sub-trees. The Needleman-Wunsch

algorithm (Needleman and Wunsch, 1970) is then applied to related

sequences from subtrees until an optimal alignment of subsequences is

generated. Without the indexing step this analysis would have been

impractical as it would have required an all-against-all matching step

with Needleman-Wunsch requiring 106 years of CPU time.

The Initial alignments are then used to generate a new mutation matrix

(the widely used GONNET matrix), which is then used to further refine

alignments which are stored in a hierarchical database according to the

PAM (point accepted mutation) distances between proteins.

While this large-scale clustering of protein sequences paid particular

attention to automation and algorithmic scaling, no attention is given
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to accurate resolution of evolutionary issues such as orthology and par-

alogy, or multi-domain protein resolution.

• Clusters of Orthologous Groups (COGs) (Tatusov et al., 1997):

This approach was one of the first to examine the relationships be-

tween orthology and paralogy in protein sequence datasets. The prime

motivation of the method is to detect groups of proteins with identical

or highly similar functional roles (orthologue clusters), from bacterial

genomes. The results from this ongoing analysis of complete genomes

are available from the COGs1 database at the United States National

Centre for Biotechnology Information (NCBI).

The method defines a rather simple notion of orthology, yet appears to

be quite effective, at least for bacterial genomes. The orthologue of a

protein A in genome α is defined as a protein B in another genome β

which is more similar to protein A than any of the other proteins in

genome β. This relationship is known as the best-hit criterion.

Complete genome sequences are compared to themselves and to every

other genome using BLAST. The best-hit of every protein in every other

genome is stored. These hits are then analysed for relationships where

three proteins from different genomes are each others best-hits. These

triangular triplet relationships are then extended by linking together

all orthologue triplets which share a common edge. The fully extended

sets of orthologue triplets are called orthologue clusters.

Clusters should contain only orthologues using this method, but differ-

ential gene-loss in different lineages makes this assumption invalid, as

the best-hit criterion can not always guarantee that two proteins are or-

thologous. For this reason some clusters will contain both orthologues

and paralogues. These clusters are inspected manually for such incon-

sistencies and broken down where required. Inconsistencies produced

by multi-domain relationships are also handled in this manner.

While this method attempts to resolve the orthology/paralogy rela-

tionships between proteins, it requires manual intervention to work

correctly. Ideally such a method should be fully automatic in order

to handle the large volume of protein sequence data that are currently

1http:/www.ncbi.nlm.nih.gov/COG/
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available. For small scale bacterial analyses the hand-curated COG

database is however very useful.

• ProtoMap (Linial et al., 1997):

The ProtoMap2 method is a well defined and robust method for clas-

sifying proteins into functionally distinct groupings. The method is

intrinsically hierarchical and can generate superfamily, family and sub-

family clusterings. The method uses a novel approach that eliminates

the need for domain decomposition, and clusters proteins sequences

based on similarity information obtained from the Smith-Waterman

algorithm. While robust and accurate, the method is heavily compu-

tationally intensive.

The method begins by taking an input set of protein sequences to be

clustered. These sequences are broken down into 50 residue segments.

This is done in an attempt to alleviate the effects of multi-domain

relationships between proteins, as peptide fragments are clustered and

not full-length proteins. The Smith-Waterman dynamic programming

alignment tool then generates a similarity measure between each pair

of segments. This similarity is used as a distance metric to embed all

similarities into Euclidian space. This is achieved by randomly selecting

sets of protein segments, building a distance vector for each segment

against all other segments, and embedding each vector into Euclidian

space. This embedded space is analysed and a clustering model of the

sequences is constructed. The model is intensively analysed to avoid

over-fitting noise in the input set. This is achieved using a method

similar to the common delete-half jack-knife approaches. These data

are split into two random subsets and reclustered. At any given level

clusters are built only if the reclustering results agree with the initial

clustering.

A database of protein families was constructed using this method by

taking 38,000 SwissProt (Bairoch and Apweiler, 2000) proteins and

splitting them into over 500,000 segments which are subsequently clus-

tered using the method described above, into a hierarchical database

of protein families.

2http://www.protomap-old.cs.huji.ac.il/
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While this method appears to be accurate and uses a solid statistical

and algorithmic framework, it is too computationally expensive to be

realistically used for rapid generation of protein families. While the

method attempts to avoid problems with multi-domain proteins, by

splitting proteins into 50 amino acid segments it is not clear how well

this step actually performs with domain repeats and complex domain

structures.

• DOMO (Gracy and Argos, 1998b; Gracy and Argos, 1998a):

The DOMO database also represents protein families but is constructed

using some novel approaches for both domain decomposition and se-

quence clustering.

An initial grouping of a set of protein sequences is obtained using mea-

sures of their amino acid composition. Single residue and dipeptide

compositions are calculated for each protein, and proteins with highly

similar compositions are selected. When such a set of proteins exhibits

more than 65% identity, a single protein is selected to represent all

proteins within that set.

The set of proteins that are deemed to be similar (at least at the level

of amino acid composition) are further analysed for local similarities.

All sequences are compiled into an amino acid suffix tree which groups

proteins with similar amino acid subsequences together. A depth-first

search through this tree detects local subsequence similarities between

sequences, which are extended using dynamic programming approaches

and scored for statistical significance.

Each protein is then passed through a domain decomposition step that

breaks sequences down according to their domain structures. This de-

composition step behaves as follows:

– Detected overlapping pairwise similarities between sequences are

clustered into anchors.

– The intersection of these sets of domain anchor points is calculated

to determine the correct start and end points of each candidate

domain.

– Candidate overlapping sequence fragments are weighted according

to their relative similarities, and a multiple alignment is generated.
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Method Domains Orthology Automation Speed
Darwin ◦ ◦ ◦ • ◦ ◦ • • • • • ◦
COGs • ◦ ◦ • • ◦ • ◦ ◦ • • •
ProtoMap • • ◦ • ◦ ◦ • • • • ◦ ◦
Domo • • • ◦ ◦ ◦ • • • • ◦ ◦
Domainer • • • ◦ ◦ ◦ • • • • • ◦
Geanfammer • • ◦ ◦ ◦ ◦ • • • • • ◦
Fingerprints • • • • ◦ ◦ • • ◦ • ◦ ◦

Table 2.1: A general comparison of different clustering methods. Methods
are ranked based on the following characteristics a) ability to detect protein
domains b) ability to detect orthology and paralogy relationships c) degree of
automation d) speed of algorithm. These methods are ranked in an arbitrary
manner and their relative performance is scored on a scale of zero to four
represented by filled or empty circles. Three filled circles represents the
highest score possible and three empty circles represents the lowest score.

– These domain alignments are extended if possible towards the N

and C termini of each sequence.

Now that sequences have been split according to domain structure, the

resulting sets of local alignments between groups of protein domains are

assembled into rudimentary multiple alignments. These alignments are

refined using a fast hierarchical dynamic programming algorithm which

allows alignment gap insertion. Finally a set of sequence profiles for

each detected family is generated based on local similarities from the

initial search, and multiple alignments.

The Domo system is also an elegant and novel approach to protein se-

quence clustering, however it also suffers tremendously from the amount

of computational effort required to generate local similarities and mul-

tiple alignments.

Unfortunately none of these methods effectively tackles all of the main protein

sequence clustering problems. A comparison of these methods is shown in

Table 2.1. Methods in this table have been rated according to their ability to

handle multi-domain proteins, solve orthology/paralogy relationships, level

of automation and their relative speed.
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2.3 GeneRAGE

Clearly previous methods for protein sequence clustering fail to tackle many

of the most important clustering problems in a reliable and automatic fash-

ion. Given the usefulness of protein families for genome comparison and

the functional annotation of proteins it was decided to write novel sequence

clustering algorithms which attempt to tackle these problems.

We sought to learn from the mistakes and successes of previous clustering

methods, and to develop a simple yet elegant algorithm for protein sequence

clustering. To this end the GeneRAGE algorithm (Enright and Ouzounis,

2000) was initially developed, primarily for analysis of bacterial genomes.

The algorithm pays particular attention to the detection and resolution of

protein domains, and also the correction of false-positive and false-negative

similarity assignments from the initial sequence similarity data, a step that is

generally overlooked. The algorithm will be fully described in the following

sections. A graphical flowchart of the algorithm is also shown in Figure 2.6.

2.3.1 Initial Steps

The input for the algorithm is a query database Q containing N protein

sequences within which we seek to identify families of related proteins. For

our purposes this set of protein sequences is generally obtained from one or

more complete genomes, but any arbitrary set of protein sequences may be

used. An all-against-all sequence similarity search is undertaken to determine

significant similarity relationships within the query database Q. In most

cases the BLASTp (Altschul et al., 1990) algorithm is used to determine

similarity relationships between proteins, below a specified E-value cutoff

(E ≤ 1× 10−10). All query sequences are filtered using the CAST algorithm

(Promponas et al., 2000) prior to searching, to mask compositionally biased

regions in these proteins. The CAST algorithm is described in detail in

Section 5.1. The filtering of sequences using the CAST algorithm reduces

noise in the sequence similarity search and makes BLAST E-values more

reliable for sequence clustering (Altschul et al., 1994).

The BLAST family of algorithms are a good basis for similarity detection

as they are relatively fast and sufficiently accurate to provide a solid basis

for genome sequence clustering. It is possible, however, to use other search

tools for this step. For example, one could use PSI-BLAST or HMMER
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(Altschul et al., 1997; Eddy, 1995), if more distant homology relationships

are required. A bitwise matrix (T ) of size N × N elements is constructed

from these pairwise similarity relationships. Each bit in the matrix represents

either the presence (‘1’) or absence (‘0’) of significant similarity between any

two proteins in the database.

2.3.2 Symmetrification of the Matrix

To facilitate clustering, the first step undertaken is the symmetrification of

the similarity matrix T . This condition has been previously used in sequence

comparison (Rivera et al., 1998), but is frequently overlooked in many other

analyses. Accurate symmetrification of the similarity matrix reduces noise

in the input data, and allows for a more consistent analysis of these data

(Enright and Ouzounis, 2000). The symmetrification procedure is imple-

mented in GeneRAGE as follows:

For every element of the matrix Ti,j check:

If: ⇒ ∀Ti,j : Ti,j = Tj,i

⇒ Then: Skip

Else If: ⇒ ∀Ti,j : Ti,j �= Tj,i

⇒ Then: Confirm and Correct

Any asymmetry detected by this method is generally the result of either a

false-positive or false-negative similarity assignment. In order to determine

which case is occurring a Smith-Waterman dynamic programming alignment

(Smith and Waterman, 1981) with randomisation (Pearson, 1996) is used to

determine whether this is a false-positive or a false-negative assignment. If

a significant Z-score (e.g. Z ≥ 10), obtained with a further 100 rounds of

randomised alignments, is detected between proteins i and j, then the matrix

is corrected by setting:

Ti,j = Tj,i = 1

This situation represents a false-negative case from the initial BLAST search

step that is rectified at this symmetrification step.
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Otherwise, if no significant similarity is detected (e.g. Z < 10) the matrix is

corrected by setting:

Ti,j = Tj,i = 0

This situation represents a false-positive case from the initial BLAST search

that is eliminated at this step. When this procedure is complete, matrix T

satisfies the symmetrical properties of a sequence similarity matrix:

⇒ Now: ∀Ti,j = Tj,i

2.3.3 Detection of Multi-Domain Proteins

The detection of multi-domain proteins within the query database is impor-

tant to allow accurate clustering of the matrix (Figures 2.2 & 2.3). Multi-

domain proteins are detected by the following simple, yet effective protocol.

If two proteins a and b hit a common protein c, does protein a hit protein

b? This is shown in Figures 2.6 & 2.7. In other words, does the transitivity

criterion hold?

For every element of the matrix Ti,j check:

If: ⇒ Ta,c = Tc,a = 1

and ⇒ Tb,c = Tc,b = 1

Then:

Check If ⇒ Ta,b = Tb,a = 1

If this is not the case then c may be a multi-domain protein (Figure 2.7).

The multi-domain detection algorithm works as follows:

• For each protein c in matrix T , collect the set Sc of all proteins that

exhibit significant similarity to protein c, from matrix T .

• For every pair of proteins (a, b) in the set Sc, look up matrix T to check

if any similarity exists between them.

If: ⇒ Ta,b = Tb,a = 1

⇒ Then Skip:

52



Else If: ⇒ Ta,b = Tb,a = 0

⇒ Then Confirm:

If no similarity has been detected between a and b there are two pos-

sibilities (Figure 2.7): Either protein c is a multi-domain protein or

proteins a and b are similar, but the initial BLAST similarity search

failed to detect a similarity. These situations can be resolved by per-

forming an additional Smith-Waterman dynamic programming align-

ment between a and b. If significant sequence similarity is detected

(e.g. Z ≥ 10), this is a false negative case that is corrected by setting

Ta,b = Tb,a = 1. In this case Ta,c = Tc,a = 1 and Tb,c = Tc,b = 1 already

hold, therefore a, b and c belong to the same family. If no significant

similarity is detected (e.g. Z < 10), mark protein c as a candidate

multi-domain protein, composed of two domains a,b with similarity to

a and b respectively (Figure 2.7).

Another important application for this technique is the detection of fusion

proteins across genomes (Enright et al., 1999). This will be described more

fully in Chapter 4. In these cases, proteins a and b represent component

proteins in one genome and protein c represents a multi-domain composite

protein in another genome with two domains a and b similar to a and b

respectively. The fusion detection algorithm (called DifFuse) is a variant

of GeneRAGE, where the second dynamic programming test is performed

between entries from two databases.

2.3.4 Clustering the Similarity Matrix

The processed matrix is recursively clustered by beginning a clustering oper-

ation for each row of the matrix T . If a protein corresponding to a given row

i of matrix T is not already clustered, then a new cluster is created contain-

ing sequence i. New sequences are added to this cluster by processing across

row i of the matrix and recursively subclustering each protein that is hit by

protein i. As the clustering procedure descends through each row of the ma-

trix, increasing numbers of proteins are added to each cluster. At this stage,

multi-domain proteins are clustered separately from single-domain proteins.

When the initial clustering operation is complete, multi-domain family in-

formation from the second step of the algorithm is used to split clusters.
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Clusters that are deemed to contain two separate families linked by one or

more multi-domain proteins are split into their constituent families. Multi-

domain proteins can hence be members of more than one cluster. Finally, all

clustering information (including multi-domain information) is represented in

a clusters table (Figure 2.6). Additionally, for genome comparison studies, a

similarity table is created for further analysis (Figure 2.6).

2.3.5 Validation and Testing

To evaluate the performance of the algorithm, the complete genome sequence

of the archaeal methanogen Methanococcus jannaschii was analysed using

GeneRAGE. This particular genome was chosen because of our previous ex-

tensive experience with this organism and the availability of updated and

highly accurate manual annotations for all genes. The initial genome self-

comparison using BLASTp (Altschul et al., 1997) took approximately 20

minutes running in parallel on four workstations (using htBLAST.pl which

is described in Section 5.5). Symmetrification, multi-domain detection and

clustering for all 1,771 proteins, took eight minutes on a two processor R10000

SGI Octane workstation. The analysis was conducted using a BLASTp E-

value of E ≤ 1 × 10−6 and the CAST filter. Z-score cutoff values of 10

(symmetrification) and 7 (multi-domain detection) were used by GeneRAGE.

These values are arbitrarily set by the user, and have been set to the above

mentioned values based on experimentation and empirical observations.

Of the original 3,391 hits obtained by BLAST, 1,026 were considered to be

false-positives and were removed, while 889 were considered as false-negatives

and were added, during the symmetrification step. The total number of hits

after the processing of the similarity matrix was 3,254.

Most proteins in M. jannaschii (69%) have no paralogues in the genome

and hence clustered as individual sequences. Other clusters of varying sizes

were formed from related sequences within the genome. The distribution of

these cluster sizes is illustrated in Figure 2.8. Multi-domain proteins detected

within the genome were clustered correctly according to their individual do-

main architectures. Clusters containing more than three members were anal-

ysed to examine their validity (61 clusters). This analysis was performed by

taking each protein in a cluster and examining its corresponding annotation

from the M. jannaschii functions database (Kyrpides et al., 1996). In addi-

tion, multiple alignments (Thompson et al., 1994) were created to assist in
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Figure 2.8: Distribution of detected protein families in the M. jannaschii
genome. The x-axis shows the family size (number of members) and the
y-axis shows the distribution of detected families of these sizes.

the evaluation of clusters if needed. Of these 61 clusters, 95% (58/61) had

manual annotations that were consistent with that cluster. The other three

clusters had consistent, high quality alignments but conflicting annotations.

These cases may represent incorrect annotations, functionally diverse families

or false-positive cases. Multi-domain proteins detected within the context of

this dataset proved to be consistent with the manual annotations (Kyrpides

et al., 1996) and further multiple alignment analysis (Thompson et al., 1994).

One example is archaeal ATPase proteins (Koonin, 1997), which were suc-

cessfully resolved into three distinct domains. Further examples of successful

multi-domain detection include ABC transporter proteins, hydrogenases and

dehydrogenases. Even domains as short as CBS (Bateman, 1997) or TPR

(Kyrpides and Woese, 1998) were detected and assigned to consistent clusters

within the M. jannaschii genome.

To further examine and validate the multi-domain detection algorithm,

a complex test set containing multi-domain proteins was used. This set con-

tained complex multi-domain relationships that are not present in the M.

jannaschii genome described above. The test set consisted of 13 peptides

from the aromatic amino acid biosynthesis (aro) operon from four different

genomes (S. cerevisiae, E. coli, H. influenzae and M. jannaschii). In yeast,

all proteins from this operon have fused into a single pentafunctional pep-
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tide, while in bacterial genomes, the operon is composed of multiple separate

peptides. Figure 2.9 illustrates the arrangement of these proteins in four dif-

ferent genomes. Conventional clustering techniques generally fail to cluster

individual proteins from each genome into the correct clusters. We are not

aware of any sequence clustering technique that can perform the above task

automatically at this level of precision. GeneRAGE successfully detected the

presence of multi-domain proteins in this test set and divided clusters accord-

ingly. Each cluster generated hence represented a single functional unit or

family. The same result can be reproducibly obtained from the clustering of

their corresponding complete genome sequences.

2.3.6 Algorithm Implementation

The GeneRAGE algorithm is written in ANSI C and was developed on a Sun

Ultra 10 Workstation. The code has been ported to the following operating

systems: Solaris, Compaq Tru64 UNIX, SGI IRIX, AIX and Linux. An SMP

parallel implementation of the code is also available (based on the POSIX

Pthread standard), and has been tested in Linux, SGI IRIX and Compaq

Tru64 multiprocessor environments. The minimum hardware requirements

for the clustering of small genomes (< 6000 proteins) is 32MB RAM and

sufficient disk space to store the sequence database and search results.

2.3.7 Conclusions

The GeneRAGE method represents a fast and efficient method for clustering

protein sequences according to similarity. The algorithm has been designed

for the clustering of protein sequences within and between complete bacterial

genomes. We believe however, that the algorithm also has wide ranging uses

for the clustering of protein sequences in general.

The key abstractions made by the algorithm are the representation and

symmetrification of sequence similarity information in a binary matrix, and

the subsequent detection of multi-domain proteins (Figures 2.6 and 2.7). The

symmetrification step is an important abstraction as it not only detect false-

positive/ false-negative similarity assignments, but also provides a consistent

similarity construct for further processing and analysis. The storage of simi-

larity information as binary relationships in the matrix makes the algorithm

more efficient and less memory intensive. This allows the analysis of large

datasets (up to 50,000 sequences).
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Given the fully automatic implementation of this algorithm and its preci-

sion, we believe that the algorithm represents a significant improvement over

currently available clustering techniques. The multi-domain detection step,

although based on a simple abstraction is a significant improvement over

data-driven methods. Because multi-domain proteins are detected due to in-

consistencies in the similarity matrix, this step not only detects multi-domain

proteins, but also detects and corrects further false-negative similarity rela-

tionships. The precision of this step has been demonstrated in many cases.

The detection of multi-domain proteins is however, highly dependent on the

cut-off scores specified. Multi-domain proteins containing two domains that

are not similar are relatively easy to detect. The difficulty lies in the detec-

tion of multi-domain proteins that contain two or more very similar domains.

Future research may endeavour to provide ways of dynamically modifying the

cut-off values used in the multidomain detection step, allowing more efficient

detection of these cases.

The algorithm was designed for the clustering of peptides from bacterial

genomes, and these validation results indicate that clustering of this sort is

both fast and reliable. The multi-domain detection step is the slowest part

of the algorithm due to its iterative use of the Smith-Waterman algorithm.

When GeneRAGE is applied to proteins from complete Eukaryotic genomes,

such as Caenorhabditis elegans, the method may become very computation-

ally intensive. This is due to the complex domain architecture of eukaryotic

proteins, which require multiple recursive rounds of Smith-Waterman correc-

tion in the multi-domain detection step of the algorithm. For this reason, we

have developed another algorithm for sequence clustering and protein fam-

ily detection in Eukaryotic genomes. This algorithm (Tribe-MCL) will be

described in detail in the following sections of this chapter.

The GeneRAGE package is freely available for protein sequence cluster-

ing3. Although the algorithm is still a relatively new arrival in the field, a

number of research groups have been actively using the algorithm for pro-

tein family analysis and research. Recently a number of these analyses have

been published (Ward, 2001; Janssen et al., 2001; Boucher et al., 2001),

and we hope that the method continues to prove useful for protein sequence

classification.

3http://www.ebi.ac.uk/research/cgg/services/rage/
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2.4 Tribe-MCL

In the previous section we described the GeneRAGE algorithm for the ac-

curate detection of protein families in bacterial genomes. This algorithm

has proved very successful for protein family analysis, however the algorithm

suffers, both in terms of computational complexity and accuracy, due to the

complexity of eukaryotic domain architectures, and the highly paralogous

nature of these genomes. For this reason we have developed a novel and com-

plementary approach called Tribe-MCL (Enright et al., 2002) for rapid and

accurate clustering of protein sequences from very large eukaryotic datasets,

into families. Experiments using the BioLayout algorithm (see Section 5.2)

illustrated the power of graph-based visualisation of protein sequence simi-

larities, to overcome problems associated with complex domain structures of

proteins. To this end we have reapproached the problem of sequence cluster-

ing using a graph-based representation of sequence similarities.

The method relies on the Markov Cluster (MCL) Algorithm (van Dongen,

2000b) for the assignment of proteins into families based on precomputed

sequence similarity information. This novel approach does not suffer from the

problems that normally hinder other protein sequence clustering algorithms,

such as the presence of multi-domain proteins, promiscuous domains and

fragmented proteins. The method has been rigorously tested and validated

on a number of very large databases, including SwissProt, InterPro, SCOP

and the draft human genome. Our results indicate that the method is ideally

suited to the rapid and accurate detection of protein families on a large scale.

The method has been used to detect and categorise protein families within

the draft human genome and the resulting families have been integrated into

the Ensembl4 database (Hubbard et al., 2002).

2.4.1 Introduction

Despite significant progress in the field of sequence clustering, new challenges

have emerged due to the availability of large eukaryotic genomes, in terms

of their size and complexity (Birney et al., 2001). In particular, eukaryotic

protein families constitute a bottleneck for most methods. Many eukaryotic

proteins contain large numbers of protein domains (Hegyi and Bork, 1997;

Apic et al., 2001b), each of which needs to be detected and resolved by an effi-

4http://www.ensembl.org/
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cient clustering algorithm. Iterative automatic domain detection algorithms

such as GeneRAGE suffer from an excessive and unpredictable number of

additional sequence comparison steps, which renders them somewhat im-

practical when using modest computational resources. Another approach is

to detect proteins with very similar domain architectures (Apic et al., 2001a),

rather than attempting to detect each domain individually. The assumption

is that proteins with near-identical sets of domains may have very similar

biochemical roles (Hegyi and Gerstein, 1999; Ouzounis and Karp, 2000).

The GeneRAGE algorithm was developed and tested on protein fami-

lies within relatively small datasets, such as prokaryotic genomes (Janssen

et al., 2001). Given such datasets, the algorithm effectively and accurately

identifies protein families and also correctly detects multi-domain proteins

(Coulson et al., 2001). When the algorithm is applied to larger datasets, such

as those obtained from eukaryotic organisms, some of the previously men-

tioned problems become apparent. The detection of protein domains using

GeneRAGE becomes hampered to a large extent by promiscuous domains,

peptide fragments (representing incomplete database entries) and proteins of

complex domain structure. Domains such as the response regulator domain

from two-component systems (Stock et al., 2000) cause proteins with vastly

differing functions (such as heat shock factors and phytochromes) (Chang

and Meyerowitz, 2001) to be assigned incorrectly to the same family (Yeh

et al., 1997).

Given the difficulty of detecting such domains accurately and the ever-

increasing amount of eukaryotic data available, we have approached this

problem using an elegant mathematical approach based on probability and

graph flow theory. Sequence similarity search algorithms have previously

benefited from such approaches, for example hidden Markov model (HMM)

based search algorithms provide very sensitive detection of distant protein

sequence similarity (Eddy, 1998). An ideal method, in this case, would re-

quire sequence similarity relationships as input and be able to rapidly detect

clusters solely using this information, without being led astray by the com-

plex modular domain structure of eukaryotic proteins. Traditionally, most

methods deal with similarity relationships in a pairwise manner, while graph

theory allows the classification of proteins into families based on a global

treatment of all relationships in similarity space simultaneously. To this

end, we have developed the Tribe-MCL algorithm as an efficient and reliable

method for protein sequence clustering (Enright et al., 2002). Tribe-MCL
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is based on the Markov Cluster (MCL) algorithm, previously developed for

graph clustering using flow simulation (van Dongen, 2000a). This approach

for protein sequence clustering is extremely fast and appears to be highly

accurate. It avoids most of the problems mentioned above and has already

been successfully utilised for the clustering of large datasets and the classi-

fication and annotation of proteins from the draft human genome (Lander

et al., 2001; Hubbard et al., 2002).

2.4.2 Markov Clustering of Sequence Similarities

This section will discuss the process of protein similarity graph clustering

using flow simulation with the Tribe-MCL algorithm. A flowchart of the

algorithm is shown in Figure 2.10.

Data representation

Sequence similarity relationships within a given protein dataset can be rep-

resented as a square matrix, whose elements contain similarity metrics for

any pair of proteins in the dataset. These elements can be binary numbers

(Enright and Ouzounis, 2000) or real numbers, such as E-values from BLAST

(Altschul et al., 1997). Alternatively, this matrix can be considered as a

weighted graph, whose nodes (vertices) represent proteins and connections

(edges) represent similarity relationships (Figure 2.11a). The BioLayout al-

gorithm (Enright and Ouzounis, 2001a), which is described in Section 5.2, has

illustrated that such graphs are an elegant and concise way of representing

sequence similarity relationships. Furthermore, these graphs are amenable to

graph clustering algorithms, developed in the fields of mathematics and com-

puter science. Such algorithms include single-linkage clustering and k-means

(Michalski et al., 1998), with which we have extensively experimented, be-

fore choosing the Markov Cluster (MCL) algorithm, because of its relevance,

elegance and efficiency.

The MCL Algorithm

The Markov Cluster (MCL) algorithm is an algorithm designed specifically

for the settings of simple graphs and weighted graphs (van Dongen, 2000b).

It has previously been used in the field of computational graph clustering

(van Dongen, 2000a; van Dongen, 2000c; van Dongen, 2000d). Given that it
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is possible to represent biological sequence similarity relationships in terms of

these graphs (Enright and Ouzounis, 2000; Enright and Ouzounis, 2001a), it

is possible to use an algorithm such as MCL for biological sequence clustering.

Natural clusters in a graph are characterised by the presence of many

edges between the members of that cluster, and one expects that the number

of ’higher-length’ (longer) paths between two arbitrary nodes in the cluster is

high. In particular, this number should be high, relative to node pairs lying

in different natural clusters. A different angle on this is that random walks

on the graph will infrequently go from one natural cluster to another, based

on graph transition probability estimates.

The MCL algorithm finds cluster structure in graphs by a mathemati-

cal bootstrapping procedure. The process deterministically computes (the

probabilities of) random walks through the sequence similarity graph, and

uses two operators transforming one set of probabilities into another. It does

so using the language of stochastic matrices (also called Markov matrices)

which capture the mathematical concept of random walks on a graph.

The MCL algorithm simulates random walks within a graph by alterna-

tion of two operators called expansion and inflation. Expansion coincides

with taking the power of a stochastic matrix using the normal matrix prod-

uct (i.e. matrix squaring). Inflation corresponds with taking the Hadamard

power of a matrix (taking powers entrywise), followed by a scaling step, such

that the resulting matrix is stochastic again, i.e. the matrix elements (on

each column) correspond to probability values.

Definition of the Inflation operator

A column stochastic matrix is a non-negative matrix with the property that

each of its columns sums to 1. Given such a matrix M ∈ Rk×k,M ≥ 0, and a

real number r greater than one, the column stochastic matrix resulting from

inflating each of the columns of M with power coefficient r is written ΓrM ,

and Γr is called the inflation operator with power coefficient r. Formally, the

action of Γr : Rk×k −→ Rk×k is defined by:

(ΓrM)pq = (Mpq)
r/

k∑
i=1

(Miq)
r

Each column j of a stochastic matrix M corresponds with node j of the

stochastic graph associated with M . Row entry i in column j (i.e. the
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matrix entry Mij ) corresponds with the probability of going from node j to

node i. It is observed that for values of r greater than 1, inflation changes

the probabilities associated with the collection of random walks departing

from one particular node (corresponding with a matrix column) by favouring

more probable walks over less probable walks.

Definition of Expansion

Expansion corresponds to computing random walks of ’higher length’ (i.e.

random walks with many steps). It associates new probabilities with all

pairs of nodes, where one node is the point of departure and the other is

the destination. Since higher length paths are more common within clusters

than between different clusters, the probabilities associated with node pairs

lying in the same cluster will, in general, be relatively large as there are many

ways of going from one to the other. Inflation will then have the effect of

boosting the probabilities of intra-cluster walks and will demote inter-cluster

walks. This is achieved without any a priori knowledge of cluster structure,

but simply the result of cluster structure being present. This property of the

algorithm lends itself well to the problem of biological sequence comparison

described later in Section 2.4.3.

Convergence and Clustering

Eventually, iterating expansion and inflation results in the separation of the

graph into different segments. There are no longer any paths between these

segments and the collection of resulting segments is simply interpreted as

a clustering. The inflation operator can be altered using the parameter r.

Increasing this parameter has the effect of making the inflation operator

stronger, and this increases the granularity or ’tightness’ of clusters.

Cast in the language of stochastic flow, we can state that expansion causes

flow to dissipate within clusters whereas inflation eliminates flow between

different clusters. Expansion and inflation represent different tidal forces

which are alternated until an equilibrium state is reached.

An equilibrium state takes the form of a so-called doubly idempotent

matrix, i.e. a matrix that does not change with further expansion or in-

flation steps. The graph associated with such a matrix consists of different

connected directed components. Each component is interpreted as a cluster,

and has a star-like form, with one attractor in the centre and arcs going from
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all nodes of that component to the attractor. In theory, attractor systems

with more than one attractor may occur (these do not change the cluster

interpretation). Also, nodes may exist that are connected to different stars,

which is interpreted as cluster overlap, or in other words, nodes may belong

to multiple clusters (van Dongen, 2000a).

With respect to convergence, it can be proven that the process simulated

by the algorithm converges quadratically around the equilibrium states. In

practice, the algorithm starts to converge noticeably after three to ten it-

erations. Global convergence is very hard to prove; it is conjectured that

the process always converges if the input graph is symmetric (van Dongen,

2000a; van Dongen, 2000b; van Dongen, 2000c). This conjecture is supported

by results concerning the matrix iterands. For symmetric input graphs, it is

true that all iterands have real spectrum (the set of eigenvalues), and that

all iterands resulting from expansion have non-negative spectrum and are

diagonally symmetric to a positive semi-definite matrix. It can be shown

that these matrices have a structural property which associates a directed

acyclic graph (DAG) with each of them. It turns out that inflation strength-

ens (in a quantitative sense) this structural property and will never change

the associated DAG, whereas expansion is in fact able to change the associ-

ated DAG. This is a more mathematical view on the ’tidal forces’ analogy

mentioned earlier. DAGs generalise the star graphs associated with MCL

limits, and the spectral properties of MCL iterands and MCL limits can be

related via the inflation operator. These results imply that the equilibrium

states can be viewed as a set of extreme points on the set of matrices that

are diagonally similar to a positive semi-definite matrix. This establishes a

close relationship between the MCL iterands, MCL limits and cluster (DAG)

structure in graphs (van Dongen, 2000d).

The MCL algorithm also associates return probabilities (or loops) with

each node in the initial input graph. The flow paradigm underlying MCL

naturally requires this, and it can be motivated in terms of the spectral and

structural properties mentioned earlier. As for the weights that are chosen,

experience shows that a ’neutral’ value works well. In the implementation

used, ’neutral’ is chosen as a weight (in principle different for each node) that

will not change when the inflation operator is applied to the stochastic column

associated with the node. It is possible to choose larger weights (Figure 2.11),

and this will increase cluster granularity. The effect is secondary however to

that of varying the inflation parameter, and the algorithm is not very sensitive
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to changes in the loop weights.

A very important asset of the algorithm is its ‘bootstrapping’ nature,

retrieving cluster structure via the imprint made by this structure on the

flow process. Further key benefits of the algorithm are: a) It is not misled by

edges linking different clusters; b) It is very fast and very scalable; c) It has

a natural parameter for influencing cluster granularity; d) The mathematics

associated with the algorithm show that there is an intrinsic relationship

between the process it simulates and cluster structure in the input graph

(van Dongen, 2000d), and e) Its formulation is simple and elegant.

From the definition of the MCL algorithm it can be seen that it is based

on a very different paradigm than any linkage-based algorithm. One possi-

ble view of this is that MCL, although based on similarities between pairs,

recombines these similarities (via expansion) and is thus affected by similar-

ities on the level of sets (as generalising pairs). Alternating expansion with

inflation turns out to be an appropriate way of exploiting this recombination

property.

The structure of the MCL algorithm is illustrated in Figure 2.10. The

algorithm sets out by computing the graph of random walks of an input

graph, yielding a stochastic matrix. It then alternates the expansion operator

that squares a matrix using the usual matrix product with the inflation

operator. Inflation is performed by raising each matrix entry to a given power

and rescaling the matrix so that it becomes stochastic again. Alternation

continues until an equilibrium state is reached in the form of a so-called

doubly idempotent matrix.

2.4.3 Application of the MCL Algorithm to Biological
Graphs

The section above describes the MCL algorithm in a general fashion. In this

section, we describe how the algorithm relates to the clustering of proteins

into protein families. Biological graphs may be represented as follows (Figure

2.11a):

1. Nodes of the graph represent a set of proteins that we would like to

assign to families.

2. Edges within the graph represent similarities between these proteins.
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   A    B    C    D    E    F    G

A  100  50   50   45   0    0    0

B  50   100  0    60   0    0    0

C  50   0    100  40   0    0    0

D  45   60   40   100  80   70   15

E  0    0    0    80   100  70   0

F  0    0    0    70   70   100  0

G  0    0    0    15   0    0    100

   A    B    C    D    E    F    G

A 0.42 0.24 0.20 0.11 0.00 0.00 0.00

B 0.20 0.48 0.24 0.15 0.00 0.00 0.00

C 0.20 0.00 0.40 0.10 0.00 0.00 0.00

D 0.18 0.28 0.16 0.24 0.32 0.29 0.13

E 0.00 0.00 0.00 0.19 0.40 0.29 0.00

F 0.00 0.00 0.00 0.17 0.28 0.42 0.00

G 0.00 0.00 0.00 0.04 0.00 0.00 0.87
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Figure 2.11: (a) Example of a protein-protein similarity graph for seven pro-
teins (A-G), blue circles represent proteins (nodes) and lines (edges) repre-
sent detected BLASTp similarities with E-Values (also shown). (b) Weighted
transition matrix and associated column stochastic Markov matrix for the
seven proteins shown in (a).

3. Edges are weighted according to a sequence similarity score obtained

from an algorithm such as BLAST.

In order to build a protein similarity graph, a FASTA file containing all se-

quences that are to be clustered into families is assembled. Peptides within

this file are filtered using the CAST algorithm, then compared against each

other using BLASTp (Altschul et al., 1997). All similarities and associated

scores are used to build the protein-protein similarity graph. A Markov ma-

trix (Figure 2.11b) is constructed, representing transition probabilities from

any protein in this graph to any other connected protein. Each column of

the matrix represents a given protein, and each entry in a column represents

a transition probability between this protein and another protein. Diagonal

elements are set arbitrarily to a neutral value as described previously. The

entries in the Markov matrix are probabilities generated from weighted se-

quence similarity scores (e.g. from BLAST). A weight is assigned to each edge

of a protein similarity graph by taking the average pairwise −log10(E-Value)

(Altschul et al., 1997), resulting in a symmetric matrix. This simple weight-

ing scheme produces reliable results but other more complex schemes can also
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be used (e.g. length-based weighting). This Markov matrix is supplied to the

MCL algorithm. Initial expansion of the Markov matrix simulates random

walks, which allow one to measure ’flow’ in the graph. Areas of high flow in-

dicate that a large number of random walks go through this area. The MCL

algorithm uses iterative rounds of expansion and inflation (explained earlier)

to promote flow through the graph where it is strong, and remove flow where

it is weak. This process terminates when equilibrium has been reached, i.e.

further rounds of expansion and inflation leave the matrix unaltered.

In a biological sense, we expect that members of a protein family will be

more similar to each other than to proteins in another family. Experiments

using the Bio-Layout graph visualisation algorithm (Enright and Ouzounis,

2001a), described in Section 5.2. have shown this to be true for most pro-

tein similarity graphs. Because of this property of biological graphs, flow

within protein families is strong, i.e. a random walk starting at any given

protein in a family is more likely to linger within this family than to cross

to another family. Flow between protein families will be weaker than flow

within a family as there are relatively few (if any) paths that cross two dis-

tinct protein families. Intra-family paths represent either sequence similarity

relationships due to multi-domain proteins or mere false positive similarity

detections. These properties of biological similarity graphs make them ide-

ally suited to the MCL algorithm. The iterative rounds of inflation and

expansion remove this weak flow across protein families, and promote the

stronger flow within protein families. This boot-strapping procedure allows

protein families hidden in the graph to become visible by gradually stripping

the graph down to its basic components as detected by stochastic flow.

Many of the problems that normally hinder protein sequence clustering

are eliminated by the Markov Clustering approach. Proteins possessing a

promiscuous domain, that is present in many functionally unrelated pro-

teins, are normally very difficult to cluster correctly. Promiscuous domains

will connect a member of a given protein family to members of that family

and possibly to a large number of other (possibly unrelated) protein families.

Because these inter-family connections are still far fewer than intra-family

connections, the algorithm gradually eliminates these inter-family similar-

ities and detects protein families accurately. The algorithm requires no

a priori knowledge of protein domains, and clusters proteins into families

purely based on observed relationships through the entire similarity graph.

However, proteins containing different domains or sets of domains will have
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very different sequence similarity patterns, and hence we expect the MCL

algorithm to cluster proteins with different domain structures into distinct

families. We have extensively validated the performance of the algorithm in

terms of speed and accuracy. We have also assessed the performance of the

algorithm in terms of the quality of protein family descriptions, based on

database annotations.

2.4.4 Validation of the Algorithm

In order to test the effectiveness of protein family detection using Tribe-MCL,

we have performed extensive validation using the InterPro protein domain

database (Apweiler et al., 2001) and the Structural Classification of Proteins

(SCOP) database (lo Conte et al., 2000). These databases contain exten-

sive information relating to protein domains and structures. Ideally, clusters

detected by the Tribe-MCL algorithm should have similar domain architec-

tures, including sequence patterns and protein folds, based on InterPro and

SCOP, respectively.

InterPro Validation

The InterPro database (Apweiler et al., 2001) is a collection of protein do-

mains and functional signatures from multiple databases such as PRINTS

(Attwood et al., 1999), Pfam (Bateman et al., 2000) and ProSite (Falquet

et al., 2002). This well-curated database contains a vast amount of infor-

mation relating to protein domains and sequence motifs and is described in

Chapter 1. It is possible to obtain InterPro information for many entries in

the SwissProt database (Bairoch and Apweiler, 2000). In order to validate

our clustering algorithm, we took SwissProt (release 39) and clustered it into

8,332 families using the Tribe-MCL algorithm. This analysis took approx-

imately five minutes to complete on a Sun Ultra 10 workstation. Protein

family and domain information for each SwissProt protein was extracted (if

available) from the InterPro database.

Of the 8,332 families, 1,821 contain four or more members with corre-

sponding InterPro annotations. Families that do not contain four or more

annotated members are discarded. For each of these 1,821 families, we deter-

mine the domain structure of annotated members of that family, according

to InterPro domain classifications, and retain the most frequently occurring

domain combination. This analysis is performed in order to determine which
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families exhibit robust domain combinations in contrast to less well-defined

protein families which may display disparate (or even conflicting) domain

architectures. Interestingly, 1,583 families (out of 1,821 or 87%) display full

correspondence of domain structure across all annotated members. When

individual proteins are considered, we count the proportion of proteins with

identified InterPro domain combinations identical to the most frequently oc-

curring domain combination of the cluster they belong to. The number of

proteins with this property is 14,188 out of a total of 14,409 proteins consid-

ered (98%); this value can be considered as an estimate of the classification

precision according to InterPro. This result illustrates that although the

algorithm has no fixed concept of protein domains, the resulting families

have a very consistent domain structure, indicating accurate and meaningful

clustering. Although the second set was also clustered using Tribe-MCL, no

validation was possible due to the limited availability of InterPro annotations

for members of these families.

SCOP Validation

The Structural Classification of Proteins (SCOP) database (lo Conte et al.,

2000) is a collection of well-characterised proteins for which three-dimensional

structures are available in the Protein Data Bank (Sussman et al., 1998).

These proteins have been expertly classified into families based on their fold-

ing patterns and a variety of other information. Given that family informa-

tion for these PDB proteins is well understood and accurately represented

in SCOP, it was decided to cluster all proteins in the PDB (18,248 entries)

into protein families using the Tribe-MCL algorithm at multiple inflation val-

ues (corresponding to different cluster granularities). This analysis detected

1,167 families (at inflation value 1.1). With increasing inflation values of 2, 3,

4 and 5, the number of families is 1,395, 1,606, 1,672 and 1,761 respectively.

For each set of clusters (i.e. families), we determine the most frequently oc-

curring SCOP classifications, as above. We also count the number of distinct

clusters containing identical SCOP annotations in the same way. We then

calculate the total number of proteins in clusters with SCOP classifications

consistent with the cluster SCOP assignment. For higher inflation values

(i.e. tighter clustering), this precision estimate is highest: 87% for inflation

value 5 decreasing to 79% for the lowest inflation value of 1.1. These results

further indicate that the clustering obtained by Tribe-MCL is accurately and
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consistently assigning proteins into families, despite the fact that this classi-

fication relies on structural similarities, which are not always detectable at

the sequence level using algorithms such as BLAST.

2.4.5 Large-Scale Family Detection

An Analysis of the effects of Promiscuous Domains

As mentioned above, Tribe-MCL does not require any explicit knowledge of

protein domains to detect protein families. This feature can be used for the

analysis of domains that are present in many families, such as promiscuous

domains. We have decided to analyse the presence of these domains in the

SwissProt database using Tribe-MCL, and to estimate how frequently they

occur, based on the presence of InterPro (Apweiler et al., 2001) entries in the

corresponding SwissProt (Bairoch and Apweiler, 2000) sequence. In other

words, for each protein entry in SwissProt containing a detectable domain

with InterPro, we count how many different protein families we have detected

that contain this domain. A list of the promiscuous domains in SwissProt is

described in Table 2.2. It is surprising that the largest set of proteins that

are interconnected through promiscuous domains comprises of 237 protein

families (21,727 sequences in total), corresponding to 22.3% of all SwissProt

entries. These inter-related families are shown together with their functional

assignments in Figure 2.12. Although the spectacular complexity of these

interconnected families and the range of their functional properties has been

suspected before (Doolittle, 1995), this is first time that we obtain a glimpse

of this effect at this scale using clustering and visualisation. This effect

arises from a number of reasons. Firstly, the family detection is accurate but

the corresponding domain is falsely identified by InterPro (e.g. crystallin,

shared by 141 families - Table 2.2). Secondly, the presence of these domains

in unrelated families represents a meaningful biological phenomenon (e.g.

RNA-binding region RNP-1, shared by 110 families - Table 2.2). Thirdly, the

granularity of family definition is sometimes too high, resulting in distantly

related families containing similar motifs (e.g. immunoglobulin and major

histocompatibility complex domain, shared by 107 families - Table 2.2).

72



InterPro ID No. of families Domain Name
IPR001064 141 Crystallin
IPR000504 110 RNA-binding region RNP-1 (RNA recognition motif)
IPR003006 107 Immunoglobulin and major histocompatibility complex domain
IPR000531 97 TonB-dependent receptor protein
IPR003015 96 Myc-type, helix-loop-helix dimerization domain
IPR001680 76 G-protein beta WD-40 repeats
IPR000561 73 EGF-like domain
IPR000169 72 Eukaryotic thiol (cysteine) proteases active sites
IPR000255 67 Phosphopantetheine attachment site
IPR001899 65 Gram-positive cocci surface protein anchoring hexapeptide
IPR001450 60 4Fe-4S ferredoxin, iron-sulfur binding domain
IPR000130 54 Neutral zinc metallopeptidases, zinc-binding region
IPR000205 54 NAD binding site
IPR001005 54 Myb DNA binding domain
IPR001440 52 TPR repeat
IPR001356 49 Homeobox domain
IPR000822 45 Zinc finger, C2H2 type
IPR001841 43 RING finger
IPR000005 42 AraC type helix-turn-helix domain
IPR001777 42 Fibronectin type III domain
IPR001452 38 Src homology 3 (SH3) domain
IPR002290 37 Serine/Threonine protein kinase family active site
IPR000886 34 Endoplasmic reticulum targeting sequence
IPR001304 32 C-type lectin domain
IPR000194 31 ATP synthase alpha and beta subunit, N-terminal
IPR002203 29 Protein splicing (intein)
IPR000923 28 Type-1 copper (blue) domain
IPR001092 28 Helix-loop-helix dimerization domain
IPR001789 28 Response regulator receiver domain
IPR001611 27 Leucine-rich repeat
IPR001917 27 Aminotransferases class-II
IPR000063 24 Thioredoxin family
IPR002110 24 Ankyrin-repeat
IPR001220 23 Legume lectins beta
IPR003009 23 Proteins binding FMN and related compounds core region
IPR000524 22 Bacterial regulatory proteins, GntR family
IPR002114 22 Serine phosphorylation site in HPr protein
IPR000014 21 PAS domain
IPR001478 20 PDZ domain (also known as DHR or GLGF)
IPR000792 19 Bacterial regulatory protein, LuxR family
IPR001650 19 Helicase C-terminal domain
IPR002088 19 Protein prenyltransferases alpha subunit repeat
IPR000644 18 CBS domain
IPR002035 18 von Willebrand factor type A domain
IPR000047 17 Lambda and other repressor helix-turn-helix
IPR000086 17 NUDIX hydrolase domain
IPR001623 17 DnaJ N-terminal domain
IPR002223 17 Pancreatic trypsin inhibitor (Kunitz) family
IPR000437 16 Prokaryotic membrane lipoprotein lipid attachment site

Table 2.2: The top 50 promiscuous domains from InterPro occurring in
distinct SwissProt protein families identified by Tribe-MCL. Column names:
InterPro ID is the InterPro accession number, No of families is the num-
ber of families in which the corresponding domain is present and Domain
Description corresponds to the InterPro description line.
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Figure 2.12: Graph representing the largest interconnected group of protein
families from the SwissProt protein database (237 protein families, 21,727
sequences in total). Circles represent protein families, with associated family
Ids and annotations (where known). Edges show BLAST similarities between
families. Circles are coloured according to Gene Ontology (GO) (Ashburner
et al., 2000) functional class assignments (where available). This figure was
produced using BioLayout which is described in Section 5.2.



2.4.6 Algorithm Implementation and Availability

All source code for the Tribe-MCL package is freely available5. The package

consists of a number of separate algorithms written in ANSI C. The markov

program is used to generate binary markov matrix files from parsed similarity

tables generated by BLAST or other more sensitive searching algorithms.

The MCL algorithm is then applied to this matrix for iterative rounds of

matrix multiplication, inflation and clustering resulting in a binary cluster

matrix. This matrix is then post-processed by the mcl-clusters program

which interprets this clustering information into protein family assignments.

2.4.7 Conclusions

The validation results for Tribe-MCL are very encouraging. Although the al-

gorithm is an order of magnitude faster than many other methods, the results

obtained appear to be robust and highly accurate. The actual implementa-

tion of the algorithm allows the efficient and rapid clustering of any arbitrary

set of protein sequences, given a list of all pairwise similarities obtained by

another method, such as BLAST. Because the method does not operate di-

rectly on sequences but on a graph that contains similarity information, it

avoids the expensive step of sequence alignment. Instead, global patterns of

sequence similarity are detected and used to partition the similarity graph

into protein families.

The quality of the clustering is impressive, as validated using available

protein domain and structure databases, InterPro and SCOP, respectively.

Up to 98% agreement can be obtained in a comparison of the resulting classifi-

cation using Tribe-MCL and the manually curated InterPro database. Given

the speed and quality of the resulting clusters, Tribe-MCL has been used to

cluster all human genes (from the Ensembl project) into annotated protein

families (described in Section 3.2.1). This task would previously have been

prohibitively expensive to achieve in such a short period of time. We hope

that the method will become widely used by the community and find some

other interesting applications in the field of bioinformatics and computational

biology.

The two algorithms described in this chapter are complementary. The

GeneRAGE algorithm provides detailed annotated clustering and domain

5http://www.ebi.ac.uk/research/cgg/services/tribe/
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detection for prokaryotic sequences. For large-scale analyses involving eu-

karyotic protein sequences, the Tribe-MCL algorithm appears to be ideal.

The method allows hundreds of thousands of sequences to be accurately

classified in a matter of minutes. We have used both of these algorithms for

novel and interesting research into protein sequence function, evolution and

large-scale family analysis (described in the following chapter), and we hope

that both algorithms will prove useful for biological sequence analysis.
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Chapter 3

Analysis of Protein Families

Initial testing and validation of the GeneRAGE and Tribe-MCL methods

proved very successful. However, a true estimation of the performance of

these methods can only be assessed by applying these methods directly to

fundamental biological research areas. Protein families are a useful tool for

exploring many aspects of the biology and evolution of complete genomes,

and for direct genome comparison. Many possible experiments using these

methods are possible. In this chapter we shall detail a selection of research

areas where we have successfully applied these two methods to biological

problems.

The two methods presented in the previous chapter are different but com-

plementary. The GeneRAGE method represents a tool for detailed detection

and analysis of bacterial protein families and protein domains, and is firmly

grounded in conventional sequence analysis methodology. Given a clustering

result, it is possible to determine the exact process by which clusters were

assigned. This is very useful for calibrating the method for detailed protein

family analysis. The initial sections in this chapter detail the use of Gen-

eRAGE for detailed protein family analysis, in order to answer very specific

biological questions.

The Tribe-MCL method is based on a more abstract concept, and as such

is more similar of a ’black box’ approach. The method is extremely fast and

highly scalable, and lends itself exceptionally well to the task of large-scale

sequence clustering. In the final sections of this chapter we detail the use

of Tribe-MCL for large-scale sequence clustering and protein family analysis

with many hundreds of thousands of proteins.
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3.1 Exploration of Protein Families using

GeneRAGE

The first three sections of this chapter detail individual research projects

where we have applied the GeneRAGE sequence clustering algorithm. The

method is ideally suited to detailed protein family analysis of small genomes,

and this has guided our choice of experiments. The first section describes

sequence clustering and domain detection in archaeal genomes using GeneR-

AGE. The second section describes the generation of an automatic annotated

classification of protein families involved in transcription, and subsequent

evolutionary examination of these detected transcription associated protein

families. Finally in the third section an experiment is detailed in which we

attempt to automatically discover and classify proteins containing the low-

complexity SR domain within metazoan genomic sequences. Because of its

low-complexity it is generally difficult to detect and classify proteins with

these domains, and as such is an excellent test of clustering performance.

We hope that these experiments will detail the usefulness of protein family

analysis using the GeneRAGE method.

3.1.1 Detection of Novel Archaeal Domains

The Archaea were not recognised as one of the primary domains of life until

recently (Woese et al., 1978). Previously it was thought that the two ma-

jor domains of life were the Eukaryotes and the Prokaryotes. When genome

comparisons between bacteria were first performed in the 1970s it became

obvious that a group of organisms, thought to be prokaryotes, were very dif-

ferent from other bacteria (Woese and Fox, 1977). These organisms clustered

well away from both Eukaryotes and Prokaryotes in phylogenetic analyses.

These organisms live in extreme environments and many produce gases such

as methane. Due to the distance of these organisms from the two domains of

life, it was proposed that they formed another separate domain, the Archae-

bacteria. The name Archaebacteria was later shortened to Archaea as these

species have little in common with bacterial species. These organisms are

difficult to culture, and have a similar appearance to bacteria when studied

under a microscope, and hence were difficult to identify as a separate clade in

the absence of molecular information. Because the importance of Archaea as

a separate domain of life has only recently been discovered, much of their bi-
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Species Number of ORFs
Thermotoga maritima 1,849
Methanococcus jannaschii 1,773
Methanobacterium thermoautotrophicum 1,871
Archaeoglobus fulgidus 2,409
Pyrococcus horikoshii (shinkaj) 2,061
Aeropyrum pernix 2,694

Table 3.1: Complete archaeal genomes used for the experiment. The species
name and number of open reading frames (ORFs) is given for each genome
used.

ology is poorly characterised. For this reason archaeal genomics has become

a popular field for the discovery of novel functional genomics targets.

Given that protein families and protein domains in Archaea are poorly

defined, automatic detection and analysis of novel protein families, and pro-

tein domains for these species is highly desirable. Previously we have demon-

strated the accuracy of the GeneRAGE method for both protein family detec-

tion, and domain decomposition for bacterial species. We decided to employ

the GeneRAGE algorithm to the detection of novel families and domains

within Archaeal species. When this analysis was performed the complete

genomes for six archaeal species were available. These species are shown in

Table 3.1. In order to detect domains which may be novel, it was decided

that the Pfam protein families database would serve as an excellent reference

database of known protein domains (Sonnhammer et al., 1998).

The analysis was performed as follows:

• FASTA sequences of predicted proteins from each organism were ob-

tained via FTP from the laboratory which sequenced them.

• Each organism was compared to itself and the other organisms using

the BLASTp algorithm (Altschul et al., 1997), with an expectation

value threshold of E ≤ 1 × 10−10. All sequences were first filtered

for compositional bias using the CAST algorithm (Promponas et al.,

2000), which is described in Section 5.1.

• Sequence similarities obtained from BLAST were parsed and supplied

to the GeneRAGE algorithm, together with their associated FASTA
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formatted sequences.

• Clusters (families) predicted by the GeneRAGE algorithm were in-

spected for the presence of novel Pfam domains, by comparing each

cluster member with BLASTp to a FASTA database containing all

proteins with domains present in Pfam (E ≤ 1× 10−10). Proteins pre-

dicted as multi-domain by the GeneRAGE algorithm were split into

constitutive domains for this step of the analysis.

• Families (or domains) which had no detectable similarity to known

Pfam domains were selected. Multiple alignments were then automat-

ically constructed for each family or domain using the CLUSTALW

multiple sequence alignment algorithm (Thompson et al., 1994).

• Alignments were then provided to the Pfam team at the Wellcome

Trust Sanger Institute for automatic Pfam hidden markov model profile

analysis.

• Domain alignments with no detectable similarity to known domains,

using hidden markov model profile searches (Eddy, 1998), were hand

curated and added to the Pfam database.

This analysis resulted in the addition of 294 protein domains to release 5

of the PFAM database (Bateman et al., 2000). The biochemistry of 50 of

these archaeal domains (shown in Table 3.2) had already been described to

some extent, yet they were not represented in Pfam. One example domain of

this kind is Formylmethanofuran tetrahydromethanopterin formyltransferase

(Ftr; accession PF01913), a transferase enzyme involved in the formation of

methane from carbon dioxide. A multiple sequence alignment of Ftr distal

lobe domains is shown in Figure 3.1.

The remaining 224 domains represented novel archaeal domains for which

no function had yet been characterised. These domains may represent im-

portant targets for research into the underlying biology of the Archaea. A

multiple sequence alignment for one of these domains of unknown function

(accession PF01862) is shown in Figure 3.2. The addition of these novel

domains to the PFAM database will hopefully prove useful for future anal-

yses of this type, and help broaden our understanding of the biology of the

Archaea.
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PFAM ID Domain Description
Adenine deam Adenine deaminase
Adenylate cyc 2 Adenylate cyclase
Arch flagellin Archaebacterial flagellin
ArgJ ArgJ family
ATP-synt F ATP synthase (F/14-kDa) subunit
BcrAD BadFG BadF/BadG/BcrA/BcrD ATPase family
CbiD CbiD
CbiG CbiG
CbiM CbiM
CbiX CbiX
CitG CitG family
Desulfoferrodox Desulfoferrodoxin
Diphthamide syn Putative diphthamide synthesis protein
DNA primase S DNA primase small subunit
DS Deoxyhypusine synthase
eIF5 eIF2B Domain found in IF2B/IF5
eIF6 eIF-6 family
FTR ”Formylmethanofuran–tetrahydromethanopterin formyltransferase, distal lobe”
FTR C ”FTR, proximal lobe”
HD HD domain
Hydantoinase A Hydantoinase/oxoprolinase
HypD Hydrogenase formation hypA family
IMP4 Domain of unknown function
KE2 KE2 family protein
MMR HSR1 GTPase of unknown function
MoaC MoaC family
MTD ”methylene-5,6,7,8-tetrahydromethanopterin dehydrogenase”
MtrH Tetrahydromethanopterin S-methyltransferase MtrH subunit
NTP transf 2 Nucleotidyltransferase domain
PcrB PcrB family
Polysacc synt Polysaccharide biosynthesis protein
PyrI ”Aspartate carbamoyltransferase regulatory chain, allosteric domain”
PyrI C ”Aspartate carbamoyltransferase regulatory chain, metal binding domain”
RibD C RibD C-terminal domain
Ribosomal L14e Ribosomal protein L14
Ribosomal L37e Ribosomal protein L37e
Ribosomal LX Ribosomal LX protein
SRP19 SRP19 protein
SurE Survival protein SurE
TFIIE alpha TFIIE alpha subunit
Thi4 Thi4 family
ThiC ThiC family
ThiJ ThiJ/PfpI family
TraB TraB family
Translin Translin family
TRM ”N2,N2-dimethylguanosine tRNA methyltransferase”
tRNA int endo ”tRNA intron endonuclease, catalytic C-terminal domain”
tRNA int endo N ”tRNA intron endonuclease, N-terminal domain”
tRNA-synt 1f tRNA synthetases class I (K)
vATP-synt AC39 ATP synthase (C/AC39) subunit
vATP-synt E ATP synthase (E/31 kDa) subunit

Table 3.2: Novel annotated PFAM domains discovered using GeneRAGE.
The first column lists the Pfam domain identifier, and the second column the
Pfam domain description.
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Figure 3.1: Pfam Archaeal FTR domain (accession PF01913) alignment (dis-
tal lobe). This alignment was produced using CLUSTALW (Thompson et al.,
1994).
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Figure 3.2: Pfam alignment of an archaeal domain (accession PF01862)
of unknown function. This alignment was produced using CLUSTALW
(Thompson et al., 1994).
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3.1.2 Transcription Associated Protein Family
Analysis

Protein families provide an effective way of grouping proteins according to

shared function (Dayhoff, 1976). Some families will be specific to a single

strain of an organism, while some widespread families may be universally

conserved across all domains of life. Analysis of the species distribution of

families can hence be a useful tool for the investigation of functional diversity

across complete genomes. One area of intense interest is the functional diver-

sity of transcriptional machinery, as mechanisms controlling gene regulation

appear to be fundamentally different in eukaryotes and prokaryotes (Struhl,

1999).

In order to investigate this diversity computationally, it is desirable to

build a comprehensive set of protein families involved in transcription. The

species distribution of these families can then be used to explore the func-

tional diversity of proteins involved in transcription. To this end, we sought

to use the GeneRAGE sequence clustering algorithm to build a comprehen-

sive database of protein families containing proteins thought involved in tran-

scription. The initial database of transcription associated proteins (TAPs)

was constructed in the following manner:

• Transcription associated proteins were extracted from the SwissProt

and TrEMBL protein sequence databases via keyword searches (Kyrpides

and Ouzounis, 1999) using the Sequence Retrieval System (SRS) (Etzold

et al., 1996). Sequences were extracted from these two databases by

searching for occurrences of the pattern ’transcription*’ in either the

keyword (KW) or description (DE) fields. This search resulted in the

detection of 5,894 sequences, which were stored in FASTA format.

• All protein similarity relationships within this set of proteins were then

discovered using the BLASTp algorithm with an expectation value (E-

value) threshold of E ≤ 1×10−7. Prior to searching, all query sequences

were filtered for regions of low-complexity using the CAST algorithm.

• This set of proteins, and all detected sequence similarity relationships

were then supplied to the GeneRAGE algorithm for sequence clustering

and domain detection.

This clustering analysis took approximately eight weeks running on a single

Sun SPARC workstation and resulted in the detection of 985 distinct protein
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families. Because the keyword searching method may result in the detection

of many proteins which are not directly involved in transcription, only de-

tected families containing three or more members were kept for subsequent

analysis. A total of 744 families were discarded in this manner, leaving 241

protein families containing three or more members. These families contained

4,533 proteins (77% of the original 5,894). This final set of TAP families was

annotated, hand-curated and stored in a database1. The final database of

protein families predicted to be involved in transcription provided a basis for

an exploration of the functional diversity of transcription associated proteins

(Coulson et al., 2001).

Since each protein had been extracted from either SwissProt or TrEMBL,

species and taxonomic information was available for each protein sequence.

For each protein family, a full taxonomic classification for each protein within

that family was obtained. Using this information it is relatively straightfor-

ward to determine for any given family, its distribution across domains and

species. The results of this analysis are shown in Table 3.3 and in Figure 3.3.

Analysis of the species distributions of these hand-curated families showed

that 90% of these protein families are uniquely present in one of the three

primary domains (Figure 3.3a). There are only seven families that are uni-

versally present (Figure 3.3b). Two of these families contain the main RNA

polymerase subunits, while two families contain the TenA and NifL regula-

tors which are observed only in Fungi from the eukaryotic domain. Another

universal family contains SIR2 which is the only universal regulator that is

predominantly eukaryotic as it is only present in the bacterium Streptomyces

coelicolor. The remaining two universal families in this group contain se-

quences present in eukaryotes but encoded by plastid genomes of bacterial

origin (Gray, 1993). The families common between the Archaea and Bacte-

ria are all transcriptional regulators (Kyrpides and Ouzounis, 1999). Apart

from the MCM (Zhang et al., 1998) and SmuBP-2 (Mizuta et al., 1993)

families, the TAPs shared between the Archaea and Eukarya are basal tran-

scription factors and RNA polymerase subunits. Only the cold shock domain

family is shared between eukaryotes and bacteria. In Bacteria, the three ma-

jor categories (Firmicutes [gram-positive], Proteobacteria and Others [gram-

negative]) exhibit fragmentation of their transcription components (Figure

3.3c) with 13% of the families unique to gram-positive and 32% unique to

1http://www.ebi.ac.uk/research/transcription/clusters
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All Domains (Archaea, Bacteria and Eukarya)
A B E AB AE BE ABE
1.2%
(3,20)

28.6%
(69,812)

59.3%
(143,2607)

2.1%
(5,72)

4.2%
(10,175)

1.7%
(4,395)

2.9%
(7,452)

Bacterial Domains (Gram+, Gram- and Others)
G+ G- O G+/G- G+/O G-/O G+/G-

/O
13.0%
(9,41)

31.9%
(22,120)

0.0%
(0,0)

29.0%
(20,316)

1.5%
(1,4)

2.9%
(2,6)

21.7%
(15,325)

Eukaryote Crown Group (Fungi, Metazoa and Plants)
F M P FM FP MP FMP
16.1%
(23,106)

44.8%
(64,1058)

8.4%
(12,83)

20.9%
(30,631)

0.0%
(0,0)

0.7%
(1,316)

9.1%
(13,413)

Table 3.3: Percentage of TAP families present in each set of domains. The
total number of TAP families is shown in parenthesis, together with the total
number of proteins.

gram-negative bacteria. Only 22% of the bacterial-specific TAP families are

distributed across the three categories. The eukaryote crown group (Fungi,

Metazoa and Plants) exhibits a far higher level of fragmentation with only

9% of families common to all three categories (Figure 3.3d). A total of 45%

of the known eukaryotic TAP families are unique to Metazoa, 16% unique

to Fungi, 8% unique to Plants and 21% shared between Metazoa and Fungi.

Given the extensive sequence information obtained for Fungi or Metazoa

(including complete genome sequences), it appears that these unique TAP

families are confined to these domains. Less than 1% of the TAP families are

common between Plants and either one of the other two categories.

The above analysis represents the most comprehensive computational

overview of the transcriptional machinery to date and the results obtained

are in accordance with previous computational and experimental work. The

main result is that only a minority of transcriptional components are shared

between major phylogenetic taxa, which supports the hypothesis that mech-

anisms of gene activation are intrinsically different in Bacteria and Eukary-

otes (Struhl, 1999). Furthermore, because of our poor understanding of

archaeal-specific transcriptional control, known archaeal TAP families are
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RpoA
Cold shock domain

LuxR/signal transduction
Crp

TBP/TFIID
SmuBP-2

RpoN
RpoM

RpoB7
RpoK
RpoH

TFIIB/TFIIIB

MCM
RpoD

HypF
PMSR

XylR
AsnC
ArsR
TenA

RNA pol subunits II
RNA pol subunits I

SIR2
Gln nitrogen regulators

NifL
LysR

Archaeal EukaryoticBacterial

(b)

(c) (d)

(a)

AA

ABEABEABABAEAE
BEBE

BE

Figure 3.3: TAP family distribution across the three domains of life. (a) Results of the TAP clustering indicating
the number of TAP families which are shared across domains (A: Archaea; B: Bacteria; E: Eukarya). (b)TAP families
present in two or more primary domains. Hashed rectangles indicate eukaryotic TAPs encoded by chloroplast of
cyanelle genomes. The scale bar on the right-hand side indicates the four non-unique groupings shown in (a).
(c)TAP family distribution in the Gram-positive Firmicutes (G+), Gram-negative Proteobacteria (G-) and other
Gram-negative bacteria that are not Proteobacteria(O). (d)TAP family distribution across the eukaryote crown
group (F: Fungi; M: Metazoa; P: Plants).
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mostly shared with the other two domains. This complements experimental

results showing that Archaea have a basal transcriptional apparatus similar

to eukaryotes but their control of gene expression is bacterial-like (Bell et al.,

1999). Practical applications of the above observations include the identi-

fication of taxon-specific transcription factors as drug targets (Latchman,

1997).

Subsequent to this analysis, another analysis was performed by others

(Riechmann et al., 2000), on the transcription factors of Arabidopsis thaliana

and involved an similar analysis of the distribution of transcriptional ma-

chinery across three eukaryotic kingdoms (Fungi, Metazoa and Plants). This

analysis showed that approximately 45% of A. thaliana transcription factor

families are confined to plants. These data support our observations that the

majority of TAP families appear to be taxon-specific.
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3.1.3 Detection of SR-Domain Proteins

Domains rich in alternating arginine and serine residues (RS domains) are fre-

quently found in metazoan proteins involved in pre-mRNA splicing (Caceres

et al., 1997). RS domains present in splicing factors associate with each

other and are important for setting up protein-protein interactions required

for both constitutive and regulated splicing (Blencowe et al., 1999). The

prevalence of the RS domain in splicing factors suggests that it might serve

as a useful signature for the identification of new proteins that function in

pre-mRNA processing, although it remains to be determined whether RS do-

mains also participate in other cellular functions. The detection and analysis

of RS domain proteins can hence be used to identify proteins whose func-

tions are involved in pre-mRNA processing. In order to detect and catalogue

RS domain proteins within complete genomes a strategy was developed us-

ing targeted database searching, compositional analysis of peptides and se-

quence clustering using GeneRAGE. The genomes chosen for this analysis

were from the following eukaryotes: Homo sapiens Drosophila melanogaster,

Caenorhabditis elegans, and Saccharomyces cerevisiae.

To establish search criteria for identifying protein sequences based on the

presence of an RS domain, it was necessary to first establish an operational

definition of an RS domain. To this end, we compared the sequences of

several characterised SR family and SR-related splicing factors that contain

short, functionally defined RS domains, in order to determine minimal fea-

tures shared between these domains. All of the compared proteins contained

several distributed SR or RS dipeptides and at least one stretch of two or

more tandemly repeated SR/RS dipeptides. These features of known RS

domains, were used as the primary criteria for the detection of novel RS do-

main proteins. Another feature of known RS domain proteins is that there

are usually two or more of these dipeptide repeat runs and they usually occur

within a region which is compositionally biased towards serine, arginine and

other residues. The search strategy we have utilised for the identification

and classification of RS domain proteins will be described below and is also

shown in Figure 3.4.

The analysis starts by comparing an artificial peptide consisting of 30

repeated ’SR’ dipeptides against a FASTA database containing the complete

genomes of Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans

and Saccharomyces cerevisiae. This comparison was undertaken using the
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BLASTp sequence similarity searching algorithm (Altschul et al., 1997). The

top 500 sequence similarities to database sequences were stored from this

comparison. This first pass is intended to select candidate RS domain pro-

teins for more detailed analysis. These 500 candidate RS domain proteins are

analysed using regular expression searches. Proteins which possess a perfect

match to the pattern /SRSR/ or /RSRS/ are kept. This filtering procedure

eliminates many sequences that contain repeated runs of arginine and serine,

but not repeated arginine-serine dipeptides.

This search and filtering procedure identified 244 unique RS domain pro-

tein sequences. Among these, 47 proteins were from H. sapiens, 113 from

D. melanogaster, 78 from C. elegans, and 6 from S. cerevisiae. The proteins

were next clustered into related families of proteins automatically based on

their similarity outside of regions containing compositionally biased regions

(such as RS dipeptide repeats). This was achieved by filtering each of the

244 sequences using the CAST algorithm, and comparing all 244 sequences

against each other with BLAST. The sequence similarity results and filtered

sequences were then supplied to the GeneRAGE algorithm for sequence clus-

tering.

The clustering process detected a total of 159 RS domain protein families.

Of these families, 44 contained more than one protein and the remaining 115

contained only a single protein. The largest family (cluster 7) contained 36

distinct members, predominantly representing RS domain proteins with one

or more RNA recognition motif (RRM). Of the 244 RS domain proteins in

the data set, 87 (11 from H. sapiens, 48 from D. melanogaster, and 28 from

C. elegans) were represented in more than one family due to overlapping

domain relationships.

In order to enrich this set of proteins a full BLASTp search of the non-

redundant protein sequence database (NRDB) with each of the 244 protein

sequences identified the closest relatives, although not necessarily containing

an SR/RS-repeat sequence. This identified numerous human homologues of

D. melanogaster and C. elegans RS domain proteins that were absent from

the H. sapiens Ensembl data set. The same RS domain criteria and two-step

search procedure applied above was therefore used to determine which of the

human protein homologues identified from searching the NRDB database

contain an RS domain. This identified 127 human RS domain proteins, of

which 82 match at least one of the entries from the initial H. sapiens data

set and 45 match at least one entry from D. melanogaster and/or C. ele-
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>Artificial SR peptide

SRSRSRSRSRSRSRSRSRSRSRSRSRSRSR

SRSRSRSRSRSRSRSRSRSRSRSRSRSRSR

All Peptides From:
H. sapiens, 

D. melanogaster, 
C.elegans and 
S. cerevisiae

BLASTp

High-Scoring Peptides
Predicted

RS Domain Proteins

All-vs-All BLAST
and

GeneRAGE

RS Domain Protein
Families

Compositional
Bias Filtering with

CAST

Domain
Analysis using

SMART

Annotated RS Domain
Families

RS domain RRM Domain RS domainDEAH-Box Domain

Regular Expression
matches to:

SRSR or RSRS

Figure 3.4: Strategy for the detection of RS domain proteins from the com-
plete genomes of H. sapiens, D. melanogaster, C. elegans, and S. cerevisiae.
The protocol is fully described in the accompanying text.
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gans. All classified SR domain proteins were subsequently hand curated,

and analysed for known domains using SMART (Schultz et al., 1998). This

curation process was performed by our collaborators in the Blencowe labo-

ratory in Toronto. The full set of curated SR domain proteins was stored in

a database2 for further analysis by our collaborators (Boucher et al., 2001).

This survey, besides identifying previously identified SR family and SR-

related proteins involved in splicing, has uncovered many new RS domain

proteins that are associated functionally with different cellular processes.

The results demonstrate a useful strategy for the identification of RS do-

main proteins, and illustrate the versatility of the GeneRAGE algorithm.

The analysis has provided a database of new factors that are candidates for

forming interactions involved at different steps in the expression of RNA

polymerase II transcripts, as well as in other cellular functions. We hope

that the SR family database will provide some useful information for RNA

processing research.

2http://www.maine.ebi.ac.uk:8000/sr/
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3.2 Large-Scale Detection of Protein Families

using Tribe-MCL

The Tribe-MCL method proved very successful in our initial validation pro-

cedures in the previous chapter. The method is exceptionally fast which

makes it ideally suited to large-scale protein family analysis. In the following

sections of this chapter we shall describe the application of this method to

protein family detection and analysis within very large genomic databases.

The first application of Tribe-MCL involved the detection and annotation

of protein families within the draft human genome (Lander et al., 2001).

Tribe-MCL was relatively untested when this research was carried out, yet

it performed accurately, robustly and more importantly was able to process

very large amounts of sequence data in a very short period of time.

Due to the success of this initial application, we have applied Tribe-MCL

to another even larger undertaking. This project involves the generation of a

large protein families resource which contains sequence and family informa-

tion for all publicly available complete genomes and sequence databases such

as SwissProt. The current version of the database contains over 64 complete

genomes. This resource represents a huge collection of functional and evolu-

tionary data for protein sequences and is, to our knowledge, the largest of its

kind in existence. It is possible to conduct large-scale functional and evolu-

tionary research using this database. In order to illustrate this, a variety of

experiments have been carried out, using the database, and have produced

some interesting results concerning genome evolution, functional genomics

and phylogeny. These initial results will also be fully described within this

section.

3.2.1 Family Annotation of the Draft Human Genome

The release of the publicly sequenced draft human genome necessitated that

protein family analysis and functional annotation, of these predicted human

protein sequences, be performed and made available to researchers (Hubbard

et al., 2002). This type of information can be very useful for locating similar

genes to a gene of interest or for assigning function to previously unknown

genes. To achieve high-quality annotation automatically, functional descrip-

tions for all human genome sequences might be obtained from curated Swis-

sProt proteins, based on detected sequence similarities and the subsequent
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family assignment. To this end, Tribe-MCL was applied to a full set of pep-

tides from the Ensembl 0.80 release (29,691 proteins) of the draft human

genome along with a vertebrate subset of proteins from the SwissProt and

TrEMBL databases (73,347 entries). The protocol used is shown in Figure

3.5, and can be described as follows:

• All protein similarities within these 103,038 proteins were detected us-

ing BLAST (Altschul et al., 1997).

• This information (over 15 million protein similarities), was used by

the Tribe-MCL algorithm to detect protein families within these three

datasets. The Tribe-MCL inflation value parameter was set to 4.0 in

this case to allow the detection of highly conserved (closely related)

protein families, as these families are more accurate for annotation

transfer (Enright et al., 2002). The calculation took approximately 15

minutes on a single CPU of a Compaq ES40 server.

• Finally, the RLCS algorithm (described in Section 5.4) was used to de-

termine a consensus annotation for each detected protein family based

on curated SwissProt annotations.

In all, 13,023 protein families were detected, of which 11,481 families (88%

of the total) are human-specific. On average, each human protein family

contains 2.5 members, while there are only 1,110 single-member families (3%

of the total number of families). The family size distribution has an expo-

nential shape, with hundreds of protein families with more than 20 members

(Figure 3.6) and 347 families with more than 50 members, indicating a high

degree of paralogy. Some well-known families that are detected are zinc-finger

containing proteins, olfactory receptors, members of the RAS superfamily of

GTPases, myosin, actin, keratin, immunoglobulin, certain ribosomal proteins

and multiple kinase types (Table 3.4). The procedure has detected many

well-known families and a number of large families in the human genome

whose functions are either unknown or predicted. As an example, we show

that the TFIIB family of proteins (Tan and Richmond, 1998) has been iden-

tified correctly, containing the human, rat and Xenopus homologues (Figure

3.7). Despite the fact that the quality of clusters is very high, some of the

largest families (with more than 1,000 members) may contain a number of

unrelated members. This usually arises from the presence of multiply re-

peated sequence patterns and not the presence of individual promiscuous
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Figure 3.5: Pipeline for protein family detection and annotation for the
Ensembl draft human genome. A full description of the protocol is detailed
in the accompanying text.
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Figure 3.6: Distribution of protein family sizes within the human genome.
The x-axis represents family size and the y-axis (blue bars) indicates the
number of paralogous protein families.

domains. Future improvements to the Tribe-MCL method will attempt to

solve this problem by using multiple levels of protein family classification,

and extensive post-processing of the initial clusters.

The largest family identified (in release 080 of Ensembl) is a class of zinc-

finger containing transcription factors, while the largest unannotated family

contains 355 members (Table 3.4). All detected protein families were subse-

quently made available as part of the Ensembl 0.80 release. The clustering is

fully accessible from the Ensembl website3 and is continually being updated

with new versions of the Ensembl database. It is worth mentioning that the

annotations derived from the families detected by Tribe-MCL play a role in

the Ensembl gene annotation system. The entire protocol for Ensembl family

annotation has now been transferred to the Ensembl group so that family

analysis can be performed automatically with each new Ensembl release.

3http://www.ensembl.org/
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Ensembl Family ID Consensus Annotation No. of Members
ENSF00000002017 ZINC FINGER PROTEIN 1743
ENSF00000002558 CLASS II HISTOCOMPATIBILITY ANTIGEN, BETA CHAIN 1497
ENSF00000004397 CYTOCHROME B 1231
ENSF00000004396 CYTOCHROME B 1122
ENSF00000002016 OLFACTORY RECEPTOR 975
ENSF00000002557 CLASS I HISTOCOMPATIBILITY ANTIGEN, ALPHA CHAIN PRECURSOR 814
ENSF00000004395 CYTOCHROME B FRAGMENT 782
ENSF00000004394 CYTOCHROME B 731
ENSF00000004718 CYTOCHROME C OXIDASE POLYPEPTIDE I EC 1.9.3.1 648
ENSF00000002556 HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, B ALPHA CHAIN PRECURSOR 526
ENSF00000006350 NADH UBIQUINONE OXIDOREDUCTASE CHAIN 4 EC 1.6.5.3 456
ENSF00000002015 MYOSIN HEAVY CHAIN, 455
ENSF00000004393 CYTOCHROME B 447
ENSF00000004392 CYTOCHROME B FRAGMENT 435
ENSF00000006349 NADH UBIQUINONE OXIDOREDUCTASE CHAIN 2 EC 1.6.5.3 419
ENSF00000002555 CLASS II HISTOCOMPATIBILITY ANTIGEN, ALPHA CHAIN 398
ENSF00000002013 PROTEIN TYROSINE PHOSPHATASE, NON RECEPTOR TYPE EC 3.1.3.48 PROTEIN

TYROSINE PHOSPHATASE
381

ENSF00000002645 HEMOGLOBIN CHAIN 375
ENSF00000002014 RECEPTOR PRECURSOR EC 2.7.1.112 368
ENSF00000002012 UNKNOWN 355
ENSF00000002009 CADHERIN RELATED TUMOR SUPPRESSOR HOMOLOG PRECURSOR FAT PRO-

TEIN HOMOLOG
349

ENSF00000004391 CYTOCHROME B 341
ENSF00000002554 HLA CLASS II HISTOCOMPATIBILITY ANTIGEN, BETA CHAIN PRECURSOR 341
ENSF00000002010 PROTEIN EC 2.7.1.- 341
ENSF00000002644 HEMOGLOBIN ALPHA CHAIN 338
ENSF00000006348 NADH UBIQUINONE OXIDOREDUCTASE CHAIN 2 EC 1.6.5.3 328
ENSF00000002011 EC 3.4.21.- 327
ENSF00000002553 CLASS I HISTOCOMPATIBILITY ANTIGEN, ALPHA CHAIN PRECURSOR 317
ENSF00000002007 IG CHAIN V REGION 314
ENSF00000002008 RECEPTOR 307

Table 3.4: The 28 largest protein families in the draft human genome recorded in Ensembl 0.80 together with
their automatically derived consensus annotations and the total number of sequences (from Ensembl, SwissProt and
TrEMBL) that they contain.
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Figure 3.7: Protein sequence alignment of the eukaryotic TFIIB family of
proteins detected using Tribe-MCL, including three members from SwissProt
(accession numbers given) and the human TFIIB (Tan and Richmond, 1998).
This alignment was constructed using CLUSTALW (Thompson et al., 1994).

98



3.3 Tribes: A Database of Protein Families

Initial validation of the Tribe-MCL algorithm and its application to the draft

human genome, proved that the algorithm could be applied to protein se-

quence datasets containing hundreds of thousands of proteins in a robust

manner (Enright et al., 2002). The rate limiting step for the detection of

protein families with Tribe-MCL is now the initial similarity detection step

using BLAST (Altschul et al., 1997). The availability of powerful compu-

tational resources, such as high-performance computing clusters, allows ex-

haustive all-against-all BLAST analyses such as this to be performed in a

matter of hours, rather than weeks or days.

While the source code for the Tribe-MCL algorithm is freely available,

many biologists interested in protein family analysis will not have access to

such high-performance computing resources. For this reason we have un-

dertaken to generate a comprehensive database of protein families from all

publicly sequenced genomes, and databases such as SwissProt (Bairoch and

Apweiler, 2000). Publicly available protein domain databases, and small

scale protein family databases have proved very popular with the biological

community (Sonnhammer et al., 1998; Tatusov et al., 1997). We believe that

an exhaustive database of functional protein families would be of enormous

benefit to the scientific community. The speed of the Tribe-MCL algorithm

allows for this database to be automatically updated (and completely reclus-

tered) every few weeks.

To facilitate the construction of a comprehensive protein family database,

a number of issues need to be addressed. The first issue concerns the ini-

tial input data for the database. While the SwissProt database is updated

and maintained in a regular manner, no such resource exists for publicly

sequenced genome data. These data are published by the initial sequenc-

ing laboratory, yet there is no public repository for complete genome se-

quence data. Sequences from complete genomes will eventually be deposited

in databases such as the EMBL and SwissProt databases, but this process

takes a considerable amount of time. The next important issues are how the

analysis will be performed, and how the database will be updated. The final

issue involves the intelligent storage of these results in a searchable resource

that may be accessed by users. In this section we will discuss each of these

issues individually, and describe the construction of release 0.1 of the Tribes

database.
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3.3.1 A Complete Genomes Database

While resources have been developed to monitor sequencing projects (Bernal

et al., 2001), no resource had been developed to store predicted proteins from

these genomes in a unified manner. Construction of the Tribes database re-

quires such a resource. For this reason, we have developed the Complete

Genomes Database (CGD). This database has been developed to provide

a single resource containing predicted peptides from all publicly available

fully sequenced genomes. Complete genome sequences are being released at

an unprecedented rate by the multiple sequencing centres. These centres

provide different information for each genome in question and the naming

schemes they use for the component proteins are varied, sometimes complex

and in many cases uninformative. CGD stores each genome in a fixed ontol-

ogy within the database and implements a novel and more intuitive naming

scheme for proteins. The underlying database has been developed using the

MySQL4 relational database system. Due to the relational schema used, the

database is consistent and redundancy is at a minimum. As new genomes

are released, predicted peptides from these genomes are added automatically

to the database through a simple Perl update script called addgenome. This

Perl script is designed to process a FASTA file containing a list of peptides

from a complete genome and represent it in the fixed ontology for the CGD

database. This script requires minimal human intervention from a curator

and adds data to two relational tables within the database (genomes and

proteins). CGD is a concise, easily manageable central resource of fully se-

quenced genomes. The complete schema for the CGD database is shown in

Appendix B, together with the add genome Perl script required for adding

newly sequenced genomes to the database.

Genomes Schema

The genome table contains information regarding each sequenced genome in

the CGD database. Unique genome identifiers are generated automatically

within the database when a new genome is added using the add genome

script. Information regarding a genome is added manually by a curator using

the add genome interface. This information includes the full name of the

genome being added, its taxonomic classification and information regarding

the location and date of its sequencing (Appendix B). Failure to provide any

4http://www.mysql.org/
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of this information in the controlled format required, prevents the addition

of the genome to the database.

Proteins Schema

Once a genome has been accepted into the database, the proteins from the

FASTA file are loaded. CGD generates a unique and novel naming scheme

for all proteins. This key feature of the database is that it is designed to

unify protein identifiers across all complete genomes in a meaningful man-

ner. The unique protein identifier string is automatically generated for each

protein. This identifier has the form 4(letter)-3(letter/number)-6(numbers).

The first part of the identifier (4 letters) is generated automatically from the

full species name of the genome being entered. The first letter of the Genus

and the first three letters of the Species are taken for each genome. This

clearly identifies proteins from a given genome in an intelligent and obvious

manner for users. For example, Haemophilus influenzae has a species code

of HINF.

The second part of the identifier describes the strain. The default value

is ’XXX’ (meaning no stain given). This is designed for cases where the

strain is not obvious or not given. This is used for cases such as the human

genome, where a strain identifier is not meaningful. All bacterial and ar-

chaeal genomes have been sequenced from recorded strains of an organism.

In these cases, the curator must specify a combination of 3 letters/numbers to

represent each strain uniquely. For example, Haemophilus influenzae strain

KW20 has a species code of HINF-KW2. The last part of the code (6 num-

bers) is used to identify each distinct protein from any given genome. The

proteins are added to the database from a FASTA file sequentially by the

add genome script. The script is designed to strip non-standard amino-acid

characters and symbols such as ’*’ and ’\’ from sequences. The protein

identifier code is then generated in an automatic manner assigning ’-000001’

to the first protein processed and so on, until the final protein. The upper

limit is 999999 proteins, significantly greater than the number of proteins

we expect to be present in any given genome. Examples of these unique

identifiers are : DMEL-XXX-000302 is the 302nd protein in the FASTA file of

the Drosophila melanogaster genome. The XXX symbolises that it is not a

strain. ECOL-MG1-000107, ECOL-EDL-000107 and ECOL-RIM-000107 are the

107th proteins from three different strains of Escherichia coli. The strains
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represented are EDL933, RIMD0509952 and MG1 respectively. The original

identifiers for each protein are also stored within the database ensuring that

the new protein identifiers can be mapped to the original identifiers in an

automatic manner. This novel identification scheme ensures that every pro-

tein within the CGD database has a unique identifier and in addition it also

gives the user clear information about the genome and strain from which a

protein originates. If the FASTA file contains annotations for its constituent

proteins, these are also stored.

Availability of the Database

Since the development and initial testing of the database, it has been brought

up to date with the addition of 75 complete genome sequences5 (February

2002). The current list of indexed CGD genomes is shown in Appendix

B. When a genome is sequenced and made available to the public, it is

obtained via ftp from the sequencing centre and added to the database by a

curator. Draft genomes such as the Ensembl human genome and the complete

genome of D. melanogaster are updated in the database when updated gene

predictions are released. This database has already proved invaluable for the

Tribes protein family database, and it should also prove useful to the wider

scientific community for similar research.

5http://maine.ebi.ac.uk:8000/services/cgd/
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3.3.2 Construction of the Tribes Database

The Complete Genome Database (CGD) represents the initial data for the

Tribes database of functional protein families. In order to produce and anno-

tate protein families for all peptides in the CGD database, it is useful to in-

clude reference peptides whose functional annotations are well characterised

and curated. For this reason the SwissProt database of protein sequences

and annotations is also taken in addition to the complete set of peptides

from CGD. Sequence clustering of the CGD and SwissProt databases com-

bined facilitates the functional annotation of protein families (Enright et al.,

2002). The annotation strategy is two-fold. First, any detected protein family

containing a large number of SwissProt protein sequences can be annotated

with high accuracy based on the detection of a common consensus annota-

tion from SwissProt proteins within that family. If this fails, an attempt

is made to annotate any given family based on the annotations of peptides

from the CGD database that occur in that family. This section will describe

the computational protocol used for Tribe-MCL sequence clustering of the

CGD and SwissProt databases, and the automatic annotation and represen-

tation of protein families detected by the Tribe-MCL clustering algorithm.

The protocol used to generate version 0.1 of the Tribes database may be

described as follows, and is shown in Figure 3.8.

• All peptide sequences are obtained from the CGD database and the

SwissProt database, and stored in FASTA format. The initial analysis

performed for Tribes version 0.8 involved 312,682 peptide sequences in

total. Of these sequences 213,158 originate from the CGD database

and 99,524 are obtained from SwissProt release 39.

• Each sequence is filtered for low-complexity regions using the CAST al-

gorithm. Sequences is then compared against every other sequence us-

ing the BLASTp algorithm with an expectation value (E-value) thresh-

old of E ≤ 1×10−5. This analysis was performed in parallel on a cluster

of 300 Compaq Alpha ES10 (EV5/6) machines using lsfblast (described

in Section 5.5). These machines were kindly made available for this

analysis by the Ensembl group and the Sanger Centre systems group.

The analysis generated over 22 million protein-protein similarities, and

took a little over 7 hours to complete.
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Figure 3.8: Pipeline for protein family detection and annotation for the
Tribes database. The protocol is fully described in the accompanying text.
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• All protein-protein similarities are loaded into a MySQL relational

database of similarities which is linked to the original CGD database.

• A Markov matrix is constructed automatically from the BLAST simi-

larity table by weighting each similarity according to −log10(E-value),

and then transforming each weight into a column-wise probability value.

• This Markov matrix is then supplied to the MCL algorithm for protein

sequence clustering according to stochastic flow patterns detected in the

Markov matrix at varying levels of inflation (1.1, 2.0, 3.0 and 4.0). This

analysis took approximately one hour on a single Sun Microsystems

UltraSparc 10 workstation.

• Each cluster detected by the algorithm is interpreted as a protein fam-

ily. For each family all annotations are obtained for all sequences within

that family from the CGD database. A consensus annotation is gen-

erated from all CGD and SwissProt annotations, that is descriptive,

and covers the majority of proteins within that family. This consen-

sus annotation is generated automatically using the RLCS algorithm

(described in Section 5.4).

• All families, and associated consensus annotations are loaded into a

MySQL relational database which is linked to the CGD database using

the addfamilies Perl script. The schema of this database together with

the associated addfamilies script is shown in Appendix B.

• An alignment was automatically generated for each family using the

CLUSTALW multiple sequence alignment algorithm (Thompson et al.,

1994). Multiple sequence alignments in MSF format were subsequently

stored in an alignments table in the relational database.

• The final Tribes database is fully linked to the CGD and SwissProt

databases (Appendix B). This database may be queried seamlessly

across the world wide web using multiple Perl CGI scripts which ac-

cess the database and return HTML formatted web pages containing

relevant information. Screenshots of the Tribes interface are shown at

the end of this chapter in Figures 3.12 to 3.17.
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Inflation Value No. Families No. Singletons No. Families > 2 members
1.1 48,045 30,139 17,906
2.0 60,322 30,203 30,119
3.0 65,798 32,230 33,567
4.0 70,215 34,974 35,241

Table 3.5: The number of families, ’orphan’ families and families with two
members or more generated by the Tribe-MCL clustering algorithm with
inflation values of 1.1, 2.0, 3.0 and 4.0.

3.3.3 Protein Family Analysis using the Tribes Database

The Tribes database of protein families, constructed as described above,

represents a novel resource for functional protein family information. This

database should be of enormous benefit for functional and evolutionary anal-

ysis of protein families in complete genomes. In this section we will discuss

initial research carried out using release 0.1 of the Tribes database. One as-

pect of this research involves the analysis of how many protein families are

present in total and for each genome. Other interesting research areas involve

the discovery of protein families which are universal (i.e. contain members

from all genomes analysed), and families which are specific to a particular

species or strain. The results from these analyses will be described in the

following sections.

General Statistics

The total number of families produced varies significantly according to pa-

rameters supplied to the Tribe-MCL algorithm. With increasing inflation

operator values, we expect Tribe-MCL to produce smaller ’tighter’ protein

family classifications. At the smallest value of inflation (I = 1.1) a total

of 46,045 protein families are detected, while at the highest inflation value

(I = 4.0) 70,215 protein families are detected. This information is shown

in Table 3.5. The most significant difference in the number of families pro-

duced is observed when the inflation parameter is changed from 1.1 to 2.0.

The number of singletons (i.e. families containing a single peptide sequence)

increases very slightly, but not significantly as the inflation value increases.

For more detailed statistical analysis, we have concentrated on the broad-

est most informative protein family classifications (I = 1.1 and I = 2.0).

Some general statistics of Tribes families generated at these two levels of

granularity are illustrated in Table 3.6. A significant difference is observed
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I = 1.1 I=2.0
Number of Families 48045 60322
% Families with ”UNKNOWN” annotation 21.45% 43.8%
% SP specific families 9.7% 8.64%

Table 3.6: The total number of families is shown together with a breakdown
of the total number of families with an ’unknown’ consensus annotation and
the number of SwissProt specific families generated using the Tribe-MCL
clustering algorithm using inflation values of 1.1 and 2.0.

in the success rate for the generation of consensus family annotations for

the resultant families. Some 78.55% of the families generated at level 1.1

were successfully annotated while 56.2% of those at level 2.0 achieved a sim-

ilar result. This result is counter intuitive as one might expect that it is

harder to deduce a consensus annotation for larger protein families, such as

those detected with inflation value 1.1. It appears that this effect is observed

because this level of granularity matches protein superfamily information,

which is easier to automatically annotate using the RLCS algorithm. Table

3.7 (columns 4 & 7) reveals that families specific to the eukaryotic domain

achieve the greatest success rate for generating consensus family annotations

at 85% for those observed at level 1.1 and 70% for those observed at level

2.0 (well above the average across all the families generated). Families spe-

cific to the bacterial and archaeal domains exhibit poorer performance than

average for the generation of consensus annotations. This effect appears to

originate from biases within the SwissProt database, as eukaryotic proteins

are present in larger numbers, and may have better (or more descriptive)

functional annotations.

The number of protein families specific to SwissProt proteins (i.e. those

containing no proteins from the CGD database) is very similar for both levels,

with 9.7% of families being SwissProt specific at level 1.1 and 8.64% at level

2.0. The distribution of the number of component proteins for the families

generated at both levels is illustrated in Figure 3.9. At both levels, a similar

number of orphan families were produced (30,139 at level 1.1 and 30,203 at

level 2.0). The spread of data points along the x-axis in Figure 3.9a compared

to Figure 3.9b illustrates clearly that families produced at level 1.1 tend to

be significantly larger than those produced at level 2.0. The largest family

at level 1.1 consists of 2,775 members while at level 2.0 the largest family

consists of 1,130 members.
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I = 1.1 Number of
Families

I = 1.1 % families I = 1.1 Number
families with ”UN-
KNOWN” annotation

I = 2.0 Number of
Families

I = 2.0 % families I = 2.0 Number
families with ”UN-
KNOWN” annotation

Total Families 48045 60322
A 5462 11.37 1379 6342 10.52 4360
B 18847 39.23 4748 23217 38.48 13178
E 19449 40.49 2975 24985 41.41 7452
V 2054 4.29 47 2250 3.74 49
AB 505 1.06 357 1154 1.92 639
AE 111 0.23 47 161 0.27 48
AV 5 0.01 2 7 0.01 1
BE 615 1.28 300 1161 1.93 427
BV 182 0.38 83 229 0.4 61
EV 57 0.19 20 85 0.14 19
ABE 650 1.36 298 657 1.1 165
ABV 12 0.03 6 12 0.03 2
AEV 6 0.02 2 5 0.02 0
BEV 29 0.07 15 30 0.05 12
ABEV 55 0.12 29 21 0.03 7

Table 3.7: The distribution of families generated (using inflation values of 1.1 and 2.0) across the 15 combinations
of domain categories. The number of families, percentage of total families and number of families with an ’unknown’
annotation in each combination of domain category at both levels are displayed. (Code: A - Archaea, B - Bacteria,
E - Eukaryota, V - Viruses)
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Phylogenetic Analysis

In order to study the phylogenetic distribution of protein families within the

Tribes protein family database, families were classified into 15 mutually ex-

clusive categories according to their observed species distributions. A protein

family is hence assigned to a category according to which taxonomic domains

are represented by the members of that family. The domains used for this

analysis were Archaea (A), Bacteria (B), Eukaryotes (E) and Viruses (V).

All viral proteins are SwissProt entries as there are no viral genomes present

in CGD.

The breakdown of the families into these 15 categories is almost identical

at the two different levels of granularity (Inflation values 1.1 and 2.0), and

is shown in columns 3 & 6 of Table 3.7 and graphically in Figure 3.10a &

3.10b. The eukaryotic specific category (i.e. families whose members are only

eukaryotic proteins) is the largest (40% of all families at inflation level 1.1

and 41% at level 2.0). The second largest category is the bacterial specific

category of families (39% of all families at inflation value 1.1 and 38% at

2.0). The number of families specific to Archaea is significantly smaller (11%

and 12% of all families).

The bacterial specific families are especially interesting. Over 90% of phy-

logenetic diversity occurs in the microbial world, as does a large proportion

of metabolic, molecular and ecological diversity (Olsen et al., 1997). Only

0.02% of families at inflation level 2.0 are found to be universal among the

41 species and strains of bacteria within the CGD database. This extremely

small percentage highlights the large degree of biological diversity present in

the bacterial domain. This category of bacterial specific families could be fur-

ther broken down in search of families that are universal among pathogenic

bacteria. These families may provide targets for broad spectrum antibiotics.

All domain specific families were further analysed to determine the num-

ber of families within each domain that are universal across that domain

(Table 3.8). For example, an archaeal specific family is considered univer-

sal among Archaea if it contains a member from each of the 10 archaeal

genomes. The largest number of domain universal families was observed for

Eukarya, with Archaea second and Bacteria displaying an extremely small

number of universal bacterial families (Table 3.8). These results may be due

to sampling biases, as only five complete eukaryotic genomes were present

(and mostly represent Metazoa) in the release of CGD used for the analysis.
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I = 1.1 I = 2.0
Total number of archaeal specific families 5462 6341
Number of universal families across the archaeal domain 12 34
Percentage of universal families across the archaeal domain 0.22% 0.50%
Total number of bacterial specific families 18847 23213
Number of universal families across the bacterial domain 6 5
Percentage of universal families across the bacterial domain 0.03% 0.02%
Total number of eukaryotic specific families 19449 24977
Number of universal families across the eukaryotic domain 445 605
Percentage of universal families across the eukaryotic domain 2.28% 2.42%

Table 3.8: The number of families specific to each of the three domains
Archaea, Bacteria and Eukaryota. The number (and percentage) of universal
families across each of the domains is also illustrated. Results are generated
using the Tribe-MCL clustering algorithm at inflation levels of 1.1 and 2.0.

The number of families composed of members representing two domains

reveals some interesting results. Similar numbers of families fall into the AB

and BE categories at both levels with the AE intersection being approxi-

mately five-fold smaller at inflation level 1.1 and seven-fold smaller at 2.0

(Table 3.7). Similar results have previously been obtained (Kyrpides et al.,

1999), showing that the archaeal methoanogen Methanococcus jannaschii,

contains four times as many bacterial-type than eukaryotic-type proteins.

The number of families containing at least one member from each of the

three domains of life is extremely small (1.48% at level 1.1 and 1.13% at level

2.0). These results are illustrated in Figure 3.10a & 3.10b. These universal

protein families are extremely interesting, and will be analysed further below.

Species specific families and proteins

Species specific proteins are those proteins that are unique to a particular

organism. They display no significant similarity to proteins from any other

genome and consequently cluster into individual species specific protein fam-

ilies. These proteins are interesting as they possibly possess functions highly

specific to the life style, host or habitat of a particular species. For this rea-

son the detection of protein families specific to a single strain or species of

organism can provide functional insight into the underlying biology of that

organism. The analysis presented here represents 53 complete genomes from

the CGD database. This set is incomplete and biased, and hence it is not

possible to fully determine whether a family specific to a single genome is
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truly species specific in all cases. In this analysis we only consider species

specific proteins, (i.e. proteins specific to a single species of micro-organism).

Proteins and families specific to a single strain of multiple micro-organisms

are also interesting (Janssen et al., 2001), but are not considered in this anal-

ysis. Genomes present in multiple strains in the CGD database are discarded

for this reason (16 genomes). It also possible of course, that a rapidly evolv-

ing family may be detected as being species specific, because its sequence

similarity to other families may no longer be detectable using BLAST.

The number of detected species specific proteins was calculated for every

one of the 40 genomes considered. A Tribes family is detected as species

specific if it contains a protein or proteins from only one of the 40 genomes

considered, and does not contain SwissProt proteins from any other genome.

Some detected species specific families are orphan sequences containing a

single member. However, the majority of species specific proteins are found

in families containing more than one member. These families usually contain

multiple paralogues of a species specific gene, and are most probably the

result of large-scale gene duplication within a particular genome.

The analysis was carried out on the families generated at both levels of

family granularity (Inflation values of 1.1 and 2.0). The results obtained differ

significantly with a greater percentage of proteins being found to be specific

to each species at level 2.0. However, the relative pattern of species specific

proteins observed between genomes at the two levels is very similar. These

results show a large difference in the percentages of proteins being specific

to the different genomes (Figure 3.11a & 3.11b). This result is supported by

a previous analysis of 31 fully sequenced genomes (Iliopoulos et al., 2001b).

The analysis of species specific proteins is fundamental for our under-

standing of the underlying biological diversity of organisms. A greater num-

ber of species specific proteins are found for each genome at inflation level

2.0. This effect is observed because families produced at level inflation 2.0

have been further broken down into their component subfamilies.

At the larger inflation level (I = 2.0), the aerobic hyperthermophilic

crenarchaeon Aeropyrum pernix has the greatest number of species specific

proteins (56.09% of its genome). This supports previous work (Kawarabayasi

et al., 1999) which reported that 57.1% of this genome did not show any sig-

nificant similarities to other sequences. This number may decrease with the

sequencing of more archaeal genomes. Similarly, 55.77% of Borrelia burgdor-

feri proteins are detected as species specific. It has been previously reported
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Figure 3.11: The number of species specific proteins for each of 40 genomes
determined from the families generated from Tribe-MCL. a) shows the dis-
tribution at inflation level 1.1, b) shows the distribution for inflation level
2.0. Genome codes are shown in Appendix B.
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that the plasmids in this genome which account for over 600 kbp of its 1230

kbp genome, carry very few genes with homology to genes outside the Bor-

relia Genus (Casjens, 2000).

At the other end of the scale, our results indicate that not one of the 575

predicted proteins of the Buchnera genome is unique (at both levels 1.1 and

2.0). This result supports previous studies (Shigenobu et al., 2000), which

have suggested that that the Buchnera genome is a subset of the E. coli.

genome.

The minimal genome of Mycoplasma genitalium, composed of just 479

proteins is shown to have six unique proteins at level 2.0 and two proteins

specific to itself at inflation level 1.1. This result is surprising as previous

work indicates that the M. genitalium genome is a subset of its close relative

Mycoplasma pneumoniae (Himmelreich et al., 1997) and that every protein

found in M. genitalium is found in M. pneumoniae, which is composed of

689 proteins.

Of the eukaryotes, four out of five species (Caenorhabditis elegans, Ara-

bidopsis thaliana, Drosophila melanogaster and Saccharomyces cerevisiae)

display a very high proportion of species specific proteins (Figure 3.11). This

is to be expected considering the under-representation of sequenced eukary-

otic genomes in this analysis. Interestingly, Homo sapiens is shown to have

significantly less species specific proteins than the other eukaryotes at 22.88%

of its genome at level 2.0. This is possibly due to the fact that it is the only

vertebrate eukaryotic sequence analysed. One might expect it to contain a

higher number of species specific proteins for this reason. The smaller value

observed may be explained by the fact that a large number of proteins from

the closely related mouse genome (Mus musculus) are present in SwissProt

entries.

It is interesting that the majority of species with few unique proteins

are bacterial thus indicating that many protein families in their phylogenetic

neighbourhood have been detected. Those proteins unique to pathogenic

bacteria are of great interest as they may provide suitable targets for antibi-

otics against a particular pathogen (Galperin and Koonin, 1999). Given the

rapid progress in the field of genome sequencing, it is likely that a significant

decrease in the number of species specific proteins for each organism will be

observed in the coming years.
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Universal Protein Families

The number of families that are ubiquitous, i.e. that are present in all 56

genomes, were determined at both levels of inflation. A total of 53 families

contain members from all 56 genomes at inflation level 1.1 and 11 families at

level 2.0 (shown in Table 3.9). ’Nearly’ universal families are those containing

a representative from 50 or more genomes. Certain genomes may be absent

from the ’nearly’ universal families for a number of reasons. The missing

protein may have been predicted incorrectly, or not at all, in the missing

genome, or perhaps they are absent due to unusual evolutionary phenomena

such as non-orthologous displacement of a nearly ubiquitous gene.

The 53 universal families found at level 1.1 contain ribosomal proteins,

amino-acyl transferases, translation initiation, elongation factors, metabolic

enzymes, RNA polymerase, DNA polymerase III, topoisomerase, SRP, ATP

synthase, GTP binding proteins and three families with no consensus anno-

tations. The 11 universal families at level 2.0 are a subset of these families

and hence have similar functions. A small number of the universal families

represented in this table have no consensus annotation. These families were

analysed further to determine if they were potentially new and unexplored

ubiquitous families or simply families that had failed to achieve a signifi-

cant annotation score. This was achieved by analysing the annotation of

the SwissProt members of the family. If the SwissProt families contained

many ’hypothetical’ protein annotations, the family could be a novel univer-

sal family and should be subjected to further analysis. These possible novel

universal families are shown in Table 3.10.

The number of universal families discovered in this research is extremely

small. This highlights the incredible diversity present among living organ-

isms. As expected, a greater number of universal families are found among

the broader families generated at level 1.1. These universal families can be

classified into three functional superfamilies, energy, information and com-

munication. These three superclasses reflect the involvement of proteins

in small-molecule, nucleic acid and protein-protein interactions respectively

(Ouzounis et al., 1995). The majority of the universal families fall into the

information category with a large number also populating the energy class.

Very few universal families are found in the communication class. These

results are similar to those found from comparison of the Methanococcus

jannaschii genome to the NRDB database (Kyrpides et al., 1999). The hy-
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pothesis was that metabolic enzymes and translation components are present

but replication components, transcription factors and cell division factors are

sparse among universal families. This finding is supported by the results pre-

sented here.

The novel uncharacterised protein families detected by this study (shown

in Table 3.10) are interesting. These families will require a very detailed

analysis in order to determine their widespread functional role. For a family

to be present and conserved in all currently sequenced genomes, it must play

a vital role in the fundamental biology of organisms, as the list of known

families in Table 3.10 illustrates. These families clearly represent important

targets for high-throughput proteomics, gene expression analysis and gene

knockout analysis, so that their function might be determined.

Discussion

The Tribes database represents one of the largest collections of protein se-

quence families ever assembled. The analysis described in this section is

intended to describe the types of analyses possible using these data. Of

course, many such experiments are possible using these data. We intend

to release version 1.0 of Tribes which will provide this exhaustive collection

of sequence information to researchers. The full release will be automati-

cally updated to take into account recently published genome sequences. We

have provided a comprehensive web based interface to allow users to search

protein family data and annotations and easily obtain important functional

and evolutionary information. Screenshots of the current Tribes interface are

shown in Figures 3.12 to 3.17. We hope that Tribes will be of benefit to the

wider scientific community and aid the functional and evolutionary analysis

of protein function in complete genomes.
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Tribe Family ID Consensus Annotation No. of Members No. of Genomes
TR-0000040447 THREONYL TRNA SYNTHETASE EC 6 1 1 3 103 56
TR-0000040459 TRANSLATION INITIATION FACTOR IF 2 120 56
TR-0000041608 METHIONYL TRNA SYNTHETASE (74%) 118 56
TR-0000043530 VALYL TRNA SYNTHETASE EC 6 1 1 9 VALINE TRNA LIGASE VALRS (44%) 108 56
TR-0000044833 RIBOSOMAL (90%) 153 56
TR-0000045033 SIGNAL RECOGNITION PARTICLE (62%) 190 56
TR-0000045043 GTP BINDING (70%) 72 56
TR-0000046718 ALANYL TRNA SYNTHETASE (83%) 117 56
TR-0000048632 PHENYLALANYL TRNA SYNTHETASE.... (43%) 105 56
TR-0000052934 DNA TOPOISOMERASE (73%) 153 56
TR-0000060221 ELONGATION FACTOR (64%) 232 56
TR-0000040579 ENOLASE EC 4 2 1 11 2 PHOSPHOGLYCERATE DEHYDRATASE....(49%) 159 55
TR-0000042065 ISOLEUCYL TRNA SYNTHETASE EC 6 1 1 5 ISOLEUCINE TRNA LIGASE ILERS (43%) 108 55
TR-0000042497 PHOSPHOGLYCERATE KINASE EC 2 7 2 3 (68%) 167 55
TR-0000043294 SERINE HYDROXYMETHYLTRANSFERASE EC 2 1 2 1 SERINE METHYLASE SHMT (48%) 133 55
TR-0000043513 RIBOSOMAL PROTEIN (93%) 111 55
TR-0000041228 CYSTEINYL TRNA SYNTHETASE (74%) 107 54
TR-0000044950 O SIALOGLYCOPROTEIN ENDOPEPTIDASE (65%) 85 54
TR-0000046709 SERYL TRNA SYNTHETASE EC 6 1 1 11 SERINE TRNA LIGASE SERRS (42%) 100 54
TR-0000058806 CTP (86%) 83 54
TR-0000042108 REDUCTASE (86%) 130 53
TR-0000043682 DIMETHYLADENOSINE TRANSFERASE (68%) 77 53
TR-0000040937 ENDONUCLEASE III (69%) 74 52
TR-0000041609 RIBONUCLEOSIDE DIPHOSPHATE REDUCTASE CHAIN EC 1 17 4 1....42%) 112 52
TR-0000043287 SYNTHASE (52%) 141 52
TR-0000044519 TRNA PSEUDOURIDINE SYNTHASE EC 4 2 1 70 (41%) 105 52
TR-0000046891 URIDYLATE KINASE (80%) 72 52
TR-0000058399 HISTIDYL TRNA SYNTHETASE (83%) 97 52
TR-0000043703 UNKNOWN / NO CONSENSUS ANNOTATION (100%) 88 51
TR-0000045050 UNDECAPRENYL DIPHOSPHATE SYNTHASE (43%) 94 51
TR-0000045834 THIOREDOXIN (85%) 242 51
TR-0000058559 ATP BINDING (82%) 441 51
TR-0000020863 TRNA PSEUDOURIDINE SYNTHASE A EC 4 2 1 70....(40%) 82 50
TR-0000041699 ADENYLATE KINASE EC 2 7 4 3 ATP AMP TRANSPHOSPHORYLASE (50%) 182 50
TR-0000042344 CHAPERONE PROTEIN DNAK HEAT SHOCK PROTEIN 70....(51%) 205 50
TR-0000045020 RIBOSE PHOSPHATE PYROPHOSPHOKINASE (62%) 95 50
TR-0000058354 TRANSKETOLASE (86%) 96 50
TR-0000058423 DNAJ (52%) 329 50

Table 3.9: The universal and ’nearly’ universal families from the Tribes database detected with an inflation value
of 2.0. The consensus annotation, number of members, and the number of genomes in each family are shown.
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Universal Families at Inflation Level 1.1
Tribe Family ID Consensus Annotation No. of Members No. of Genomes
TR-0000038098 UNKNOWN / NO CONSENSUS ANNOTATION 138 56

Universal Families at Inflation Level 2.0
Tribe Family ID Consensus Annotation No. of Members No. of Genomes
TR-0000046415 UNKNOWN / NO CONSENSUS ANNOTATION 199 53
TR-0000033573 UNKNOWN / NO CONSENSUS ANNOTATION 107 52
TR-0000043703 UNKNOWN / NO CONSENSUS ANNOTATION (100%) 88 51

Table 3.10: Novel universal and ’nearly’ universal families from the Tribes
database which contain proteins whose functions have not yet been charac-
terised.
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Figure 3.12: Tribes database entry page.
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Figure 3.13: Tribes database search page.

Figure 3.14: An example Tribes search for ’Histone’ families.
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Figure 3.15: Tribes database family view page.

122



Figure 3.16: Tribes species specificity pie-charts.
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Figure 3.17: Tribes genome view and protein view pages.
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Chapter 4

Genomic Analysis of Protein
Interaction

Currently a large-scale effort to measure detect and analyse protein-protein

interactions using experimental methods is underway (Mendelsohn and Brent,

1999; Blackstock and Weir, 1999). These methods come from a wide variety

of areas, including biochemical techniques such as co-immunoprecipitation

or crosslinking, molecular biology approaches such as two-hybrid or phage

display, and genetic approaches such as unlinked noncomplementing mu-

tant screening. Recently it has also been shown that it is possible to de-

tect protein-protein interactions using protein chip experiments (MacBeath

and Schreiber, 2000). Some of these methods are being applied in a high-

throughput manner for the detection of whole-genome protein interaction

networks. These approaches are currently labour intensive and ultimately

inaccurate. Detection of protein-protein interactions using computational

approaches in a rapid, accurate and automatic manner would complement

these approaches and allow more detailed analysis of whole genome protein

interaction networks. From a computational perspective the question is: How

do we predict that two proteins interact solely based on their sequence or

structure ? In this chapter an algorithm for the computational detection

of protein-protein interactions via the detection of gene-fusion events within

complete genome sequences will be described (Enright et al., 1999), together

with further research into the applicability and accuracy of this method for

protein-protein interaction detection (Enright and Ouzounis, 2001b).
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4.1 Computational Detection of

Protein-Protein Interactions

The problem of predicting protein-protein interactions computationally has

been tackled by a number of groups in different fields of structural and func-

tional genomics. From a structural perspective, protein-protein interface

studies have perhaps been the most successful computational approaches.

Structural analysis of the interfaces of known protein-protein interactions al-

lows common structural interaction motifs to be identified. These motifs can

be used to predict whether it is possible for two proteins of known structure

to physically interact.

Functional genomics approaches are more recent and are based around

a growing set of methods called genomic context approaches (Enright and

Ouzounis, 2001c). These methods transcend conventional pure-homology

based methods as they take into account the genomic context of proteins and

genes within complete genomes. Examples of such approaches are gene co-

localisation analysis, gene-fusion analysis and phylogenetic profiles of protein

sequences (Enright and Ouzounis, 2001c). These methods can determine

whether proteins, which are not necessarily homologous, are functionally

associated or possibly, that they physically interact.

4.1.1 Structural Biology Approaches

Computational prediction of protein-protein interaction has been undertaken

by structural biologists for quite some time. Most of these studies are based

on analysis of protein-protein interfaces (Jones and Thornton, 1995) on the

basis of structural and sequence motifs within the protein-protein interface

of a known interaction that can allow the construction of general rules for

protein interaction interfaces. Properties such as solvent accessible surface

area (∆ASA measured in Å
2
), surface complementarity, residue interface

propensity, hydrophobicity, hydrogen bonding and accessible patch analysis

are widely used for this type of analysis (Lee and Richards, 1971; Lawrence

and Colman, 1993; Janin et al., 1988). These rules can then be used to

examine the structures of candidate pairs of proteins for possible protein

interaction interfaces1 (Jones and Thornton, 1996). These methods are suc-

cessful for many well known proteins but are hampered by the rather sparse

1http://www.biochem.ucl.ac.uk/bsm/PP/server/
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amount of three-dimensional structure data for many known proteins. These

methods can also be very computationally intensive, and hence less useful

for high-throughput detection of protein interactions in complete genomes.

4.1.2 Sequence and Genomic Context Approaches

Phylogenetic Profiles

The most general form of genomic context is the co-occurrence of orthologous

genes in complete genomes. The context of genes in this case represents a

phylogenetic or evolutionary context, i.e. genes that are functionally related

tend to be inherited together through evolution (Pellegrini et al., 1999). In

more general terms this means that if two proteins are functionally associ-

ated, then their corresponding pair of orthologues will tend to occur together

in a given genome. The reverse of this argument is also true, if an orthologue

of one gene is absent in a given genome, then it is likely that an orthologue

of its associating partner will also be absent. In order to study the con-

cept of an evolutionary genome context, a phylogenetic or ’phyletic’ profile

is constructed. Such a profile lists genes or families of genes, followed by a

binary representation of the presence or absence of its orthologue in different

genomes (Figure 4.1). It is then possible to predict a functional association

between two genes that possess very similar profiles.

This method becomes much more powerful with an increasing number of

genomes, as this allows larger more accurate profiles to be constructed. How-

ever, while elegant this method suffers from a number of drawbacks. Firstly,

the presence of many paralogues of a given gene in a genome makes detection

of a corresponding orthologue for a specific function very difficult. Secondly,

the detection of members of orthologous families reliably is hampered by

evolutionary processes such as non-orthologous gene displacement, gene loss,

and horizontal gene transfer. These evolutionary mechanisms confound the

construction of phyletic profiles by making the detection of a member of an

orthologous gene family in a given genome very difficult. However, given

the number of available complete genomes, the fidelity of these predictions

should increase.

127



O

rth
ologue Cluster 1

O

rth
ologue Cluster 3

O

rth
ologue Cluster 2

 Genome 1  Genome 2  Genome 3 Genome 4  Genome 5  Genome 6  Genome 7

Cluster 1     1   1   1   1   1   0   0   0

Cluster 2     0   1   0   1   0   1   1   0 

Cluster 3     1   0   0   1   0   0   1   0

Cluster 4     1   1   1   1   0   0   0   0

O

rth
ologue Cluster 4

Genome:

Genome Legend

Clusters of Orthologues within Genomes

Corresponding Phylogenetic Profile

Figure 4.1: Cartoon depicting the construction of a phylogenetic profile for
orthologue clusters from seven different genomes. Each orthologue is rep-
resented by a coloured circle according to the genome legend shown, and
the resulting phylogenetic profile for each of the four orthologue clusters is
shown. Orthologue clusters with very similar phylogenetic profiles, contain
proteins which may be functionally associated.
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Gene Co-Localisation

The first widely used method for exploring the genomic context of genes is

the idea of co-localisation, or gene neighbourhood. This explores the notion

that genes which interact or are at least functionally associated will be kept

in physical proximity to each other on the genome (Dandekar et al., 1998).

The most apparent case of this occurs with bacterial and archaeal operons,

where genes that work together are generally transcribed on the same poly-

cistronic mRNA (Blumenthal, 1998). Although this is generally not the case

in eukaryotic systems, it is possible to infer functional association of pro-

teins in a genome without operons. This involves detecting orthologues of

these genes contained in an operon in other (most likely bacterial) genomes

(Galperin and Koonin, 2000). This procedure has the inherent advantage

that operon structures tend to vary considerably between species, providing

yet more cases that can infer functional association of genes in genomes lack-

ing operons. However, because it still remains difficult to predict operons, the

amount of data available for this kind of functional inference is limited. The

lack of operons in most higher eukaryotic species (Blumenthal, 1998) also

means that information is limited to bacterial operons containing ortholo-

gous gene families that span both prokaryotic and eukaryotic domains. This

may provide little or no information about orthologous families limited to the

eukaryal domain. This method is however, not limited to studies of genes

that occur in operons. It is also possible to predict functional association of

a pair of genes if their orthologues tend to be in close physical proximity in

many genomes (e.g. <300bp). A cartoon example of gene co-localisation is

shown in Figure 4.2.

This method has been successfully used to detect missing members of

metabolic pathways in a number of species (Overbeek et al., 1999). The

power of this method becomes more apparent as more complete genomes

become available. This method is also complementary to the analysis of

gene fusion, which represents the ultimate form of gene proximity, complete

fusion of two genes into one single unit. The use of gene-fusion events for the

prediction of functional association and physical interaction between proteins

is described in this chapter.
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Neighbouring Close (< 300bp)

Neighbouring Neighbouring

Composite (Gene Fusion)

Component 1 Component 2

A) Co-localisation of Genes

B) Gene Fusion Events

Genome 1

Genome 2

Genome 2

Genome 1

Close (< 300bp)

Figure 4.2: Cartoon depiction of (a) gene co-localisation and (b) gene-
fusion events. Genes which are neighbouring or close (within 300bp) in many
genomes may be functionally associated or physically interact. This is also
true for genes which are deemed to be components of a fused gene in another
organism.
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4.2 Prediction of Protein Function and

Protein-Protein interaction using

Gene Fusion events

Previously, the only computational approach to the problem of predicting

protein-protein interactions has been the computational structural analysis

of subunit interfaces of proteins known to physically interact. These ap-

proaches suffer due to their computational complexity, and the relatively

small number of available three-dimensional protein structures. Recently

gene co-localisation studies have been successful in predicting physical in-

teractions for many proteins (Dandekar et al., 1998; Overbeek et al., 1999)

using genomic context. These analyses however result in a number of false

predictions, because the constraint of proximity is not strong, and interac-

tions between products of distantly located genes are not identifiable. In

addition, this approach may not be applicable to eukaryotes, because the

co-regulation of genes is not imposed at the genome structure level.

Clearly other modes of genome context can be used to infer functional

association and physical interaction between protein sequences. One such

method is the detection and subsequent analysis of gene-fusion events in

complete genomes. Many genes in complete genomes become fused through

the course of evolution due to selective pressure. Fusion of two genes may

decrease the regulatory load in the cell, or allow metabolic channelling of

substrates. The fusion of two genes in this manner provides evidence that

the protein products of these genes are either closely functionally associated,

or that they physically interact. The situation is comparable to experimen-

tal approaches that make use of artificial constructs of fused genes for bio-

chemical analysis and protein-purification technology (Bulow, 1990; Wales

and Wild, 1991). The gene-fusion process has been observed frequently in

evolution, perhaps the most widely known example being the fusion of tryp-

tophan synthetase α and β subunits from bacteria to fungi (Burns et al.,

1990). Another well known gene-fusion is that of the TrpC and TrpF genes

in the complete genomes of E. coli and H. influenzae (Ross et al., 1990), the

three-dimensional structure of this bi-functional fusion protein (PDB acces-

sion 1PII) from E. coli is shown in Figure 4.3. A sequence alignment between

the fused E. coli protein and its unfused counterparts in other organisms is

shown in Figure 4.4.
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Figure 4.3: Three-dimensional structure of the E. coli fusion protein
1223.PRO (PDB accession 1PII). The blue section of this structure corre-
sponds to the unfused TrpC protein in Synechocystis sp. and Thermotoga
maritima. The green section corresponds to the unfused TrpF protein from
these genomes. The region of the structure coloured white represents a re-
gion of this protein which is not homologous to the unfused component pro-
teins from these genomes. The corresponding alignment of these proteins is
shown in Figure 4.4. This structure was drawn using MolScript and Raster3D
(Kraulis, 1991; Merritt and Murphy, 1994).
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Figure 4.4: Alignment illustrating the fused E. coli protein (1233.PRO) which is a result of the fusion of TrpC and
TrpF genes. Unfused TrpC and TrpF proteins from the complete genomes of Thermotoga maritima, Synechocystis
sp. and Bacillus subtilis are aligned to the fused E. coli protein. Unfused TrpC proteins align to the N-terminal
end (blue alignment region) of the E. coli fusion protein, while TrpF proteins align to the C-terminal end (green
region). The inset figure shows the positions of these two alignment regions on the 3-dimensional structure of this
E. coli fusion protein (PDB accession 1PII). The white regions on both the alignment and the structure show the
unaligned linker peptide between these two regions. This alignment is generated from BLAST results using the
Mview program (Brown et al., 1998).
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Accurate detection of gene-fusion events in complete genomes can hence

be used to infer functional links and direct physical interaction between pro-

teins whose genes are not proximal, and is also applicable to eukaryotic

genomes (Enright et al., 1999). Clearly this method possesses many advan-

tages over conventional gene co-localisation methods. The term ‘interaction’

is used henceforth to imply either direct physical interaction or an indirect

functional association (for example, involvement in the same biochemical

pathway or similar gene regulation).

In order to exploit this concept of protein interaction prediction through

gene-fusion, an accurate algorithm for the detection of these fusion events

was developed. This algorithm (DifFuse) detects fused composite proteins in

a reference genome with domains that correspond to individual full-length

component proteins in other genomes. The underlying assumption is that if

a composite protein is uniquely similar to two component proteins in another

species (which may not necessarily be encoded by neighbouring genes) the

component proteins are most likely to interact. Complete genome sequences

are used for the identification of these fusion events because this allows the

detection of orthologous proteins across species.

4.2.1 An Algorithm for the Detection of Gene Fusion
Events

The most reliable prediction of protein-protein interactions is that within

complete genomes, and only databases that have this property are consid-

ered. The initial input for the algorithm is two such genomes. The genome

containing unfused component protein sequences is termed the query genome

and the genome in which corresponding full-length fused composite protein

sequences are sought is termed the reference genome. Generalisations of

this formalism are possible and query and reference databases may be inter-

changeable. The advantage of performing this analysis only within complete

genomes is that these data are both comprehensive (no better candidate

may be identified) and unbiased (no cases occur in which more fusions will

be detected because of experimental sampling).

In order to accurately detect gene-fusion events in complete genomes the

algorithm was designed to identify a full length composite protein sequence in

a reference genome, that corresponds to two separate (unrelated) component

proteins in a query genome. This situation is shown in Figure 4.5 (inset). A
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flow chart of the algorithm is shown in Figure 4.5 and the algorithm can be

described as follows.

• The query database is compared against itself using BLASTp (v 2.0)

(Altschul et al., 1997), after masking compositionally biased regions us-

ing the CAST algorithm, which is described in Section 5.1 (Promponas

et al., 2000), and all pairwise sequence similarities are recorded in a

binary matrix T (Figure 4.5).

• The matrix is symmetrified (Rivera et al., 1998; Enright and Ouzounis,

2000), using a Smith-Waterman (Smith and Waterman, 1981) dynamic-

programming alignment algorithm (Pearson and Miller, 1992), which

is executed only for non symmetrical pairs.

• The query database is also compared against the reference database,

as above, and similarities are recorded in binary matrix Y (Figure 4.5).

• For all entries C in the reference database, entry pairs (A,B) from the

query database deemed to be similar to reference entry C are collected

(Figure 4.5).

• Every pair (A,B) similar to C is looked up in the self-comparison matrix

T . If dissimilar, it is further checked for similarity using a second

dynamic programming alignment pass to eliminate the possibility that

it was a false-negative case during the initial self-comparison phase.

All Smith-Waterman runs are executed an additional 25 times, with

randomisation of the sequences, and a Z-score is obtained:

– If this Z-score is lower that a certain threshold, then this situation

represents a false-negative BLAST similarity assignment which is

ignored.

– If this Z-score is higher than a certain threshold, the similarity is

accepted as significant. In this case A and B in the query database

are candidates for a fusion event and can be predicted to interact.

The key abstraction is that a candidate pair (A,B) of query proteins can

either represent a false-negative similarity assignment, or a component pair

matching the composite protein C, and representing components of a gene-

fusion event. This is very similar to the multi-domain detection strategy
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Figure 4.5: Flowchart of the DifFuse algorithm. This protocol is fully
described in the accompanying text.
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Figure 4.6: The dependence of the number of true and false positive hits with
respect to the Z-score threshold used. Dashed line indicates the threshold
used. True positives are ’unrelated’ genes that are involved in a fusion event
and are candidates for pairwise interactions; false positives are ’related’ genes
that are also accepted. The decision of whether two genes are related or not
(in terms of sequence similarity) depends on the Z-score value: the higher
that value is, the more permissive the criterion becomes for two related genes
to be considered. True positives are all cases listed in Table 4.1. False
positives were eliminated manually by inspection of the alignment overlap
between the two component genes. For Z-scores < 10, all cases have been
manually and automatically verified. For Z-scores > 10, all cases have been
only automatically checked; therefore, these values represent an upper bound
for true positives.

of GeneRAGE (described in Section 2.3.3). It is apparent that, although

the coverage of the query database may strongly depend on the reference

database, the precision can be very high. Unfortunately, no pertinent data

set exists to estimate precision accurately. Precision and coverage of the

algorithm are controlled by the Z-score parameter setting (Figure 4.6).

4.2.2 Application and Validation of the Algorithm us-
ing Four Complete Genomes

In order to test the effectiveness of the DifFuse algorithm it was applied sys-

tematically to the complete genome sequences of Saccharomyces cerevisiae,

E. coli, H. influenzae and M. jannaschii. Analysis of these four genomes al-
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lows the effectiveness of the algorithm for the detection of gene-fusion events

and protein-protein interaction to be assessed. The algorithm was applied as

described above, by comparing the complete genomes of E. coli, H. influenzae

and M. jannaschii against S. cerevisiae as a reference genome. Subsequently

each of the three query genomes were compared against each other as both

query and reference genomes. The total number of such analyses is hence:

(3 × 4) + (3 × 3) = 21.

These 21 analyses identified a total of 215 component proteins in the 3

query genomes that are involved in 88 fusion events (of which 64 are unique)

(Figure 4.7; triangles in Table 4.1). There are 39 fusion events in E. coli, 24

in H. influenzae and 25 in M. jannaschii, with 2.44 proteins per fusion event

on average due to both multiple-fusion events (for example: case 8 in Table

4.1), and paralogous genes (for example: case 21 in Table 4.1). Also detected

were 94 composite proteins in the 4 reference genomes, representing 77 fusion

cases or protein families (circles in Table 4.1). This is due to the presence

of 17 paralogous composite proteins. The E. coli genome contains only 24

composite proteins (18 fusion-protein families) with reference to the compo-

nent proteins, as opposed to the much smaller H. influenzae genome which

contains 25 composite proteins (23 fusion-protein families). In contrast, the

M. jannaschii genome has only 9 composite proteins (8 fusion-protein fam-

ilies). The remaining 36 composite proteins (28 fusion-protein families) are

detected in the genome of Saccharomyces cerevisiae. Because query genomes

were in turn used as reference genomes, there are eight cases detected as

shared between them: E. coli and H. influenzae share six; E. coli and M.

jannaschii none; and H. influenzae and M. jannaschii share two (Table 4.1).

There are only three multiple-fusion events: case 8 deriving from the

yeast ARO1 gene (Duncan et al., 1987; Duncan et al., 1988), case 15 deriv-

ing from the yeast URA2 gene (Denis-Duphil, 1989) and case 39 based on

the E. coli gene B2282, of unknown function (Table 4.1). The total num-

ber of possible pairwise interactions can be as many as 122 (column N in

Table 4.1), depending on the degree of paralogy for certain proteins, which

introduces some uncertainty in the prediction. Paralogy in the component

proteins increases the number of possible interactions (for example, case 45),

thereby decreasing the certainty of the prediction. Conversely, paralogy in

the composite proteins increases the certainty that the component proteins

interact, because the fusion event is repeatedly observed within (or even

across) genomes. Notably, as many predicted interactions occur between
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Case Component Component Composite EC HI MJ SC N
.............................................. .............................................. ................................... ...................................................... .............................................. ........................... .............................................................. .......................................
1 GalE GalM GAL10 ��

2 AccC B0712-hypothetical DUR1,2
3 Hypothetical Hypothetical PYC2,PYC1
4 HisH HisF HIS7
5 HisI(E) HisD HIS4
6 RpoA 9 RpoA 0 RPO21,RPO31,RP A190
7 GltB GltD GLT1
8 AroB/AroA/AroK/AroD/AroE Multiple fusion ARO1
9 Aconitase subunit Aconitase subunit LYS4
10 ArgA ArgC ARG5,6
11 LeuC LeuD LEU1
12 TrpA TrpB TRP5
13 PurD PurM ADE5,7
14 PurL PurQ ADE6
15 CarA/CarB/PyrB Multiple fusion URA2
16 B1378 Cysl ECM17
17 TrpG TrpC TRP3
18 AgaG AgaF HyuA,HuyB
19 IlvG_1 IlvG_2 ILV2
20 GmpA GmpB GUA1
21 GyrB,ParE GyrA,ParC TOP2
22 FolK FolP Folate biosynthesis (probable)
23 PabA PabB ABZ1
24 PurK PurE ADE2
25 RpoB 0 RpoB 9 RPB2,RET1,A135
26 ThiE ThiM THI6
27 ThiD TenA thi21,thi20,thi22
28 TklA TklB TKL1,TKL2
29 LysC hom ThrA,MetL
30 ABC transporter Hypothetical B0879
31 Hypothetical Putative methyltransferase B0948
32 TrpG TrpD TrpD
33 FumA FumB FumA
34 Hypothetical tkt PheA PheA
35 FprA Rubredoxin B2710
36 TrxM Hypothetical B0492
37 Hypothetical Hypothetical B1816,B2063
38 CpxR,YgiX TyrR AtoC,YfhA,Gl nG,HydG
39 Hypothetical Multiple fusion B2324
40 Hypothetical Hypothetical B2474
41 Hypothetical Hypothetical Su¯
42 HemX Hypothetical HemX
43 TrpC TrpF TrpC
44 CitX CitG CitG
45 SbmA Hypothetical ABC transporter/ATP-bindi ng
46 B3777 B3776 Hypothetical
47 B2612 YfjD Hypothetical
48 YgfQ YgfR Hypothetical
49 YabK B0263 Hypothetical
50 YhaQ YhaP SdaA
51 YbfH YbfG Hypothetical
52 PurF YhfN GlmS
53 FrwB,FrwD FrwC,B2386 FruA
54 UgpC YtfS RbsA,MglA
55 B1515,B1899 AraH RbsC,MglC
56 NrfF NrfG NrfF
57 MsrA B1778 MsrA
58 SbmA Hypothetical ABC transporter/ATP-bindi ng
59 YhgK YhgJ Probable RNA cyclase
60 FrdB GlpC Iron-sulfur-binding reductase
61 RffH,RfbA,GalF,GalU B0359 Glucose-1-P thymidyltransferase
62 B3016 B3015 Hypothetical
63 LeuS YgjH MetS
64 TopB YrdD TopA

.............................................. .............................................. ................................... ...................................................... .............................................. ........................... .............................................................. .......................................
The component gene/protein names (or identifiers)and the composite (fusion) gene/protein names (or identifiers)are listed. Columns EC, HI, MJ and SC correspond to E. coli, H. influenzae, M. jannaschii
and S. cerevisiae , respectively; N lists the maximum number of possible pairwise interactions taking into account paralogy in the query genomes (multiple-component cases are counted as a single
interaction). Symbols represent a corresponding component or composite genes/proteins: trianglepairs, ��, a pair of component proteins in the query genome predicted to interact based on theirsimilarity
to a composite proteinin the reference genome; alternatingtriangles, ��� / ����� , multiple-component genes/proteins (cases 8, 15 and 39); open squares, �, absence of a component from a multiple-
fusion event (case 8); consecutive triangles, ��... /��... , the exact number of detected paralogous component genes/proteins in the query genome; filledcircles, composite genes/proteins, the number
represents the number of paralogous composite genes/proteins in the reference genome. The sort order follows the three species against the composite-protein sequence identifiersfor the yeast genome,
and then the other three species in succession. Genes are named where possible; where none is available, the sequence identifieris used instead. All fusions were confirmed by reverse BLAST searches
using the composite proteinas query, which identifiedall the component proteins. Note that functionalannotationis not necessary but frequentlyuseful in resolving paralogous cases (forexample, case 21).
Predictions imply functional associations and not necessarily direct molecular interactions.
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1
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1
4
3
2
3
1
1
1
1

Table 4.1: Summary of the 64 detected gene fusions. A detailed description
and legend is given at the bottom of the table.
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Figure 4.7: Representation of protein interaction maps for the most likely
interactions predicted for E. coli, H. influenzae and M. jannaschii. In the
large blue circles, which represent the three genomes, 0◦ corresponds to the
first base pair, and 360◦ the last base pair of the genome. Predicted interac-
tions are indicated by linking the circular map positions of the genes involved.
In cases of neighbouring genes (< 5◦), a small circle indicates the predicted
interaction between two genes at that region; otherwise, an arc links the two
genes in question. Multiple interactions are not cross-labelled. Some par-
alogous cases are resolved and only the most likely case is indicated by an
arc. All cases are numbered according to Table 4.1. Predictions are colour
coded: black, pairwise interactions; blue, multiple interactions; red/purple,
cases where, due to paralogy, more than one pairwise interaction is possible
(red, two possibilities; purple, more than two possibilities); green (marked
by asterisk), because of a large number of paralogues, no interaction can be
easily resolved. The source of the prediction (composite protein from a given
species) is not indicated.
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products of distant genes as between products of neighbouring genes (Figure

4.7): there are only 8 interactions between products of neighbouring genes in

M. jannaschii, 14 in H. influenzae and 18 in E. coli (Figure 4.7). This under-

lines the potential of this method to identify interacting proteins in complete

genome sequences beyond the simple proximity constraint (Dandekar et al.,

1998; Overbeek et al., 1999). Some of the interactions between products

of neighbouring genes are cases of well-known gene pairs (for example, case

6, the DNA-dependent RNA polymerase A’/A” pair in M. jannaschii), al-

though there are also cases that may be sequencing artefacts (for example,

case 19 in Table 4.1, which is intact in all species except E. coli).

The predicted interactions display some complex patterns of distribution

along the genome sequences (Figure 4.7). For example, certain regions seem

to contain a disproportionate number of genes or proteins involved in fusion

events (for example, cases 12, 17 and 32 representing the tryptophan biosyn-

thesis gene cluster). Also, some intricate symmetries occur, deriving from

multiple-fusion events or paralogous proteins (for example, cases 8 and 61 in

E. coli, respectively).

The method identifies a number of well-known interacting partners (for

example, cases 4 and 13). In total, 26 out of the 64 cases (40%) listed in

Table 4.1 are involved in the same protein complex or biochemical process.

A number of unconfirmed cases (for example, cases 31, 57 and 60 from Table

4.1) constitute some interesting, testable predictions; for example, case 60

represents a predicted interaction between gene products FrdB (fumarate

reductase) and GlpC (heterodisulfide reductase) in E. coli. In total 85 fusion

events were detected of which 64 are unique and 21 are false positives (Figure

4.6); thus, the precision of the method can be estimated as 75% (64/85) with

the parameter settings used for this analysis.

Coverage cannot easily be estimated, as it is not known in advance how

many proteins potentially interact within the query genome. A standard set

of fusion events to estimate coverage for the given query genomes is also not

available. An attempt to estimate coverage was made by counting the num-

ber of false negatives. The maximum estimate for the coverage is as high

as 95% (215/226) with the current parameter settings and the above as-

sumption. Another false-negative case, fatty acid synthase (and its bacterial

homologues) (Smith, 1994), is not detected due to low sequence similarity

relationships. Precision and coverage can be controlled by modifying the

cut-off scores in the post-processing of the homology searches as described
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previously.

From a total of 7,768 protein sequences in the 3 complete query genomes,

the minimum number of components involved in a multidomain-fusion event

is 215, or 2.8%. Most of these proteins of known function appear to be

metabolic enzymes, an effect possibly due to metabolic channelling of sub-

strates (Welch and Easterby, 1994). These results, together with another

study (Marcotte et al., 1999a), provided the first estimates for the frequency

of gene-fusion events based on complete-genome comparisons. The exactness

and high efficiency of the method makes it applicable to proteomics research,

and complementary to continuing experimental approaches for the identifica-

tion of protein interactions. This initial experiment proved the effectiveness

of the method for the prediction of functional associations and interactions

between proteins. In order to fully test the power of the method, a more

ambitious experiment was required. The next section of this chapter details

the use of the method for exhaustive detection of gene fusion events in many

complete genomes.
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4.3 Exhaustive Detection of

Protein-Protein Interactions

The use of gene-fusion events to predict interactions and functional associa-

tions of proteins proved successful in our initial experiment (Enright et al.,

1999; Sali, 1999). This experiment illustrated that the DifFuse algorithm was

correctly predicting gene-fusion events with high accuracy, and that these

gene-fusion events could be used to infer functional links between proteins in

the absence of direct homology. Given the accuracy of the method and the

availability of large numbers of completely sequenced genomes, we decided

to employ our method exhaustively to much larger datasets. Such an anal-

ysis allows the exploration of the predictive power of the method, and the

evolutionary prevalence of the gene-fusion phenomenon. In order to perform

this exhaustive analysis a database of 24 complete genome sequences was

assembled from public sources. These genomes are shown in Table 4.2. For

an exhaustive analysis, each genome is taken as a query (i.e. the genome in

which unfused component proteins are present) and compared against each

one of the remaining 23 genomes as a reference (the genome containing fused

composite proteins).

For this exhaustive analysis a number problems need to be addressed.

One issue which became apparent from the initial analysis, was that paral-

ogy in either the query or reference databases, can make an estimation of

the number of fusion events difficult. A fusion event in an organism leads

to the creation of a single fusion protein, yet through the process of gene

duplication, multiple instances of this fusion protein may become apparent.

Our method will hence detect multiple fusion events. In order to tackle

this problem, we employed the GeneRAGE sequence clustering algorithm

(Enright and Ouzounis, 2000), which is described in Section 2, to both fused

(composite) and unfused (component) proteins predicted to be involved in

fusion events by the DifFuse algorithm. This analysis detects component

and composite protein families, and allows multiple paralogues from a single

fusion event to be combined into a single fusion family or class. The analysis

of the distribution of these gene fusion classes among genomes allows us to

investigate the dynamics and distribution of this evolutionary process and to

assess the extent of the predictive power of the approach.

Another problem with exhaustive analysis is the computational cost of

applying the DifFuse algorithm to 24 complete genomes. This necessitates
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Organism name (strain) Number of ORFs ID
Aeropyrum pernix(K1) 2,694 aerpe
Aquifex aeolicus(VF5) 1,522 aquae
Archaeoglobus fulgidus (DSM4304) 2,409 arcfu
Bacillus subtilis(168) 4,100 bacsu
Borrelia burgdorferi (B31) + plasmids 1,639 borbu
Caenorhabditis elegans 19,099 caeel
Chlamydia pneumoniae (CWL029) 1,052 chlpn
Chlamydia trachomatis (serovar D) 894 chltr
Drosophila melanogaster 13,710 drome
Escherichia coli (K12- MG1655) 4,290 escco
Haemophilus influenzae(KW20) 1,707 haein
Helicobacter pylori (26695) 1,577 help2
Helicobacter pylori(J99) 1,495 helpj
Methanococcus jannaschii (DSM 2661) 1,773 metja
Methanobacterium thermoautotrophicum (delta) 1,871 metth
Mycoplasma genitalium (G-37) 479 mycge
Mycoplasma pneumoniae (M129) 677 mycpn
Mycobacterium tuberculosis (H37Rv) 3,924 myctu
Pyrococcus horikoshii (shinkaj OT3) 2,061 pyrho
Rickettsia prowazekii (Madrid E) 837 ricpr
Saccharomyces cerevisiae (S288C) 6,305 sacce
Synechocystis sp. (PCC 6803) 3,168 synsp
Thermotoga maritima(MSB8) 1,849 thema
Treponema pallidum (Nichols) 1,030 trepa

Table 4.2: The species/strain names, the number of ORFs and the species
name abbreviation used in all figures are given. References for each genome
can be found elsewhere (Bernal et al., 2001).
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that every genome is compared to every other genome with the BLAST

algorithm, then these results are processed by the DifFuse algorithm. The

total number of separate analyses at each stage is hence 23× 24 = 552. The

computational cost of applying the BLAST and Smith-Waterman algorithms

to these complete genomes is by no means trivial, and requires a robust and

parallel computational protocol (Figure 4.8).

4.3.1 Computational Protocol for Exhaustive Detec-
tion of Gene Fusion Events

The computational protocol developed for exhaustive detection of gene fu-

sion will be described in this section. The protocol was designed to be as

automatic and robust as possible, and requires no manual intervention from

the user. The system takes genomes sequences as input, and produces an-

notated HTML output. This protocol is shown in Figure 4.8, and will be

described in detail in this section.

Genome sequences

Complete genome sequences for the 24 species (Table 4.2) were obtained

from their original sources (Bernal et al., 2001). The species names, number

of ORFs and the identifiers used throughout this study are shown in Table

4.2. All sequences were stored in FASTA format for use as both query and

reference genomes.

Genome comparison

All 24 genomes were filtered using the CAST compositional bias filtering

algorithm (Promponas et al., 2000), which is described in Section 5.1, then

compared against themselves and each of the other 23 genomes using the

BLASTp (Altschul et al., 1997) sequence similarity searching algorithm with

a cut-off E-value of E ≤ 1 × 10−10. The DifFuse algorithm was then ap-

plied automatically to each genome in turn as a query against the other

23 (reference) genomes. Using other protein databases as reference yields

fewer composite cases. For example, the well-known case of the TopA/TopB

pair appears multiple times in such analyses, showcasing the extreme bias

of annotated databases, such as SwissProt. Performing the same compu-

tation using the non-redundant sequence database (NRDB) is prohibitively
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Figure 4.8: Protocol for the exhaustive detection of gene fusion events. This
protocol is explained fully in the accompanying text.
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expensive in terms of computation time for an analysis of this size. The

detected gene fusion results for each of the 552 comparisons were further

automatically filtered for significant overlap of the BLAST alignments of the

component proteins. In this case, component proteins that overlap by more

than 10% of their total length when aligned together with the composite

protein. This step avoids the detection of promiscuous domains (Marcotte

et al., 1999a; Enright et al., 2002) and gene prediction errors, which result in

false-positive fusion detection cases. The detected component and composite

proteins are far fewer in number than for the two previous reports regarding

E. coli (Marcotte et al., 1999a) and S. cerevisiae (Marcotte et al., 1999b),

due to the much stricter criteria employed in the present analysis and the

multi-step protocol we have developed (Figure 4.8). This analysis was fully

automatic and carried out in parallel over a period of four weeks on eleven

SUN UltraSparc CPUs running Solaris 7.

Sequence clustering

All proteins involved in gene fusion events as either component or composite

proteins were identified automatically from the results of the fusion analysis.

From these data we obtain raw counts of the number of gene fusion events

detected and the number of proteins involved in these events as either com-

posite or component proteins. These figures are skewed however, due to the

presence of paralogy in both the query and reference sets. Proteins involved

in gene fusion events as either component or composite genes are then assem-

bled into two lists. These lists are used to generate two sequence databases,

the first one containing all component sequences from the 24 genomes and

the second containing all composite sequences. These sequence databases

of component and composite proteins are then compared against themselves

using BLAST version 2.0 (Altschul et al., 1997) with a cut-off E-value of

E ≤ 1 × 10−10). Sequences are then clustered according to their detected

similarity using the GeneRAGE algorithm. GeneRAGE lists all composite

and component proteins in clusters according to their detected similarity and

domain structure. Homologous proteins with similar domain structure were

clustered together. Each cluster in this case indicates a distinct class of fu-

sion event and cluster members indicate which proteins are involved in this

type of event from different genomes. These clusters are used to calculate

the number of unique fusions detected within and across genomes. This is
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done by examining how many distinct types of fusion are present in any given

genome.

Data Storage

All results from this analysis are automatically processed and composite with

component fusion alignments are constructed. All information is then stored

in a MySQL database which is accessible via Perl scripts locally or using a

world wide web interface2.

4.3.2 Results

The detection of gene fusion events yielded 132,812 component and 66,406

composite proteins in an all-against-all genome comparison. The three-

dimensional structures of four of these detected composite proteins are shown

in Figures 4.9 & 4.10. Many detected fusions represent multiple occurrences

of the same proteins across species. After sequence clustering with GeneR-

AGE, there are 7,224 component and 2,365 composite fusion families across

the 24 species (an 18 and 28 fold reduction respectively). The multiple de-

tection of these cases within or across genomes signifies that the majority of

components and composites are observed more than once and therefore rep-

resent genuine cases (as opposed to sequencing artefacts, which are usually

isolated cases).

The high precision of the method allows the prediction of 39,730 unique

pairwise functional associations (or possibly physical interactions) of the com-

ponents with reference to the composite protein set. Eighty six percent of the

66,406 predicted associations obtained from the total number of composite

proteins yield a Z-score value of less than 3 (Figure 4.11), previously shown

to result in virtually no false-positive cases (Enright et al., 1999). This in-

creased precision is due to the introduction of an additional constraint that

does not permit any overlap between the component proteins. All the above

results are available on the world wide web. Some of these interactions are

known, but we estimate that more than half of them are newly detected cases,

testable with functional genomic and proteomics techniques (Ito et al., 2000).

2http://maine.ebi.ac.uk:8000/allfuse/
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Figure 4.9: Three-dimensional structures of two example composite proteins which are present in PDB. The first
structure (1C7J Chain A) represents the B. subtilis triple fusion protein PnbA (Paranitrobenzyl esterase). The
blue and green regions of the structure are unfused (component) proteins in C. elegans and M. tuberculosis, the
orange region is also a separate protein in M. tuberculosis. The second structure (1FUG Chain A) represents an E.
coli fusion protein (2877.PRO; S-adenosylmethionine synthetase; MetR). The blue and green regions correspond to
separate unfused component proteins in C. elegans. Figures are produced using MolScript and Raster3D (Kraulis,
1991; Merritt and Murphy, 1994).
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Figure 4.10: More examples of three-dimensional structures of composite proteins which are present in PDB.
The first structure (1IGW Chain C) is of the E. coli AceA protein (3910.PRO; Isocitrate lyase) The blue and red
regions correspond to unfused component proteins in M. tuberculosis. The second structure (1MH1) is a small G-
Protein in H. sapiens, which is almost identical (93% identity) in sequence to the D. melanogaster composite protein
(FBan00002248). The red and blue regions correspond to unfused proteins in C. elegans. Figures are produced using
MolScript and Raster3D (Kraulis, 1991; Merritt and Murphy, 1994).
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Figure 4.11: The graph illustrates the Z-score (blue bars) distribution and
its cumulative sum (step function, with red rectangles) between components,
for all detected fusion events (66,406 in total). The Z-score is a statistical
measure of similarity for each pair of components. Components that have
a Z-score similarity of less than 10, and both exhibit similarity to the same
composite protein are detected as fusion events. In general, fusion events
where the Z-score between components is less than 3 (marked by a vertical
line) result in fewer false-positive fusion detections.
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Validation

Currently, the only species for which predictions can be extensively vali-

dated is the yeast Saccharomyces cerevisiae, given the ongoing work on tran-

script profiling (DeRisi et al., 1997) and two-hybrid technology (Uetz et al.,

2000). For yeast, there are 440 distinct component cases (predicted by all

other genomes as reference, excluding some highly paralogous Drosophila

melanogaster homologues) involved in 706 predicted interactions, most of

which are detected by their homology to composite proteins from Caenorhab-

ditis elegans and D. melanogaster. Two examples of predicted protein pairs

that are known to interact are CPA1 (YOR303w) with CPA2 (YJR109c)

(Lim and Powers-Lee, 1996) and MET3 (YJR010w) with MET14 (YKL001c)

(Blaiseau et al., 1997), both derived from C. elegans homologues.

We have attempted to test the validity of our predictions by comparing

this set of components to a list of potentially interacting gene products, using

results from a large-scale two-hybrid experiment (Uetz et al., 2000). How-

ever, there is only one case shared between the 1,004 proteins involved in 957

putative interactions detected by the two-hybrid system and the complete set

of 706 pairs in this analysis: YIL033C (SRA1) and YKL166C (TPK3) match-

ing the C. elegans protein C09G4.2 and D. melanogaster protein CT10911.

This very low count of common pairs may be expected by the sampling biases

of the two rather independent methodologies, given that each approach can

only detect a very small subset of the total number of actual interacting pairs

in yeast. Interestingly, based on a simple conditional probability calculation,

an estimate for the total number of detectable interactions in the yeast cell

may be of the order of 675,000.

Another validation procedure for the S. cerevisiae predictions was ob-

tained by comparing all 706 component pairs against their expression profiles

from publicly available gene expression data. For each of the pairs, a profile

from 87 experiments involving cell cycle (Cho et al., 1998), sporulation (Chu

et al., 1998) and diauxic shift (DeRisi et al., 1997) was used to determine

whether expression data corroborated our predictions for the association of

the component proteins. The analysis was carried out as follows:

• Gene expression ratios for all experiments were transformed into log-

odds values so that induction and repression measurements are directly

comparable (positive and negative values, respectively).
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• The log-odds values were then normalised across all time points for

each experiment, using Z-score values. The Z-score values for all time

points of each experiment thus allow cross-comparison of gene expres-

sion across separate experiments (DeRisi et al., 1997). Our predicted

functional associations for S. cerevisiae with available expression data

represent 536 component pairs in total.

• For each pair of proteins, a Pearson correlation coefficient was calcu-

lated between two corresponding experiments and averaged over all

experiments. To estimate noise in these data, a control set of 536 ran-

domly selected S. cerevisiae proteins was taken and treated as above

(Figure 4.12).

• The distribution of averaged Pearson correlation coefficients for the

predicted functional associations was compared against the distribution

of coefficients for the control set using a t-test for mean values (where

the null hypothesis is that the two means are equal). The test results in

a t-value of 3.6 (critical t-value is 1.64), which is highly significant (P-

value is 0.000173), indicating that there is a higher average correlation

of expression profiles for the predicted functional associations against

the background.

These results indicate that at least 20% of our predictions exhibit very strong

correlations across gene expression experiments. The detected pairs of com-

ponents from fusion analysis clearly exhibit similar patterns of expression

for the above mentioned experiments (Figure 4.12 inset). Despite the noise

level present in this gene expression data (a result of the limited number of

experimental conditions available), there are twice as many predicted associ-

ations than random, above the threshold of average correlation value of 0.5.

With a higher threshold of 0.55, precision is increased, with four times as

many predicted associations over the random background. Above this value,

92 predicted functional associations (20% of 536 available pairs) exhibit high

correlation across all experiments (Figure 4.12). Below that threshold, it is

very difficult to estimate the precision rate of our predictions, because of the

high level of noise and the rather limited number of publicly available gene ex-

pression data sets. This comparison between fusion detection and transcript

profiling contrasts with previous approaches (Marcotte et al., 1999b), where
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Figure 4.12: The graph illustrates the distributions of average correlation
values of gene expression between component pairs (blue bars) and randomly
selected pairs (grey bars), above a threshold value of 0.5. Inset: Distributions
of average correlation values for both predicted and random associations
(vertical line indicates the cut-off value of 0.5).

expression data were used as a filtering step for the detection of functional

associations, and not as a validation criterion.

Novel Interaction Predictions

We have analysed the S. cerevisiae predictions and detected many interest-

ing cases, which appear to be hitherto undetected functional associations

or interactions between yeast proteins. Two of these interesting and novel

predictions are discussed in some detail here.

First, MXR1 (peptide methionine sulfoxide reductase, involved in antiox-

idative processes) (Moskovitz et al., 1997) and YCL033C (function unknown)

are predicted to be functionally associated by virtue of gene fusion in three

other species - Helicobacter pylori (both strains), Haemophilus influenzae and

Treponema pallidum. This observation is supported by experimental results

(Lescure et al., 1999). MXR1 is 39% identical to the amino terminus of the
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H. pylori composite proteins and YCL033C is 38% identical to the carboxyl

terminus of these proteins. It appears that YCL033C is a selenoprotein, also

homologous to the human SelX protein, which may be involved in scavenging

reactive oxygen species (Lescure et al., 1999). These two proteins may be

associated to protect the yeast cell from oxidative damage.

The second example is another interesting observation involving the yeast

proteins MSS4 (phosphatidylinositol 4-phosphate kinase), which is involved

in a signalling pathway responsible for the cell cycle dependent organisation

of the actin cytoskeleton (Helliwell et al., 1998), and CCT3 (cytoplasmic

chaperonin subunit gamma) which is involved in microtubule and actin as-

sembly (Stoldt et al., 1996). A central domain of CCT3 is 25% identical to

a large domain of C. elegans protein VF11C1L.1 and the carboxy-terminal

domain of MSS4 is 29% identical to its carboxyl terminus. Thus, these two

proteins are predicted to cooperate in cell cycle dependent cytoskeleton or-

ganisation and assembly.

Phylogenetic Distribution and Analysis of Fusion Events

The distribution of components and composites differs dramatically between

species. There are 7,224 component cases, with an average of 350 cases

per genome, exhibiting significant variation (Figure 4.13a, blue bars). The

query genome sequences detected 2,365 composite cases, with an average of

115 cases per genome (Figure 4.13b, blue bars). Interestingly, we have ob-

served some relatively small genomes containing composite proteins, which

may yield predictions for components of higher organisms. For instance,

there are 71 proteins (forming 30 families) in the C. elegans genome that

match a fused protein in Mycobacterium tuberculosis. Two such examples are

the component pair T06C10.1/C49H3.7 matching composite Rv0957 and the

component pair W04C9.1/Y65B4B 12.b matching both composites Rv1272c

and Rv1273c. Another clear prediction is the S. cerevisiae component pair

YER052c/YJR139c (encoding HOM3/HOM6 respectively) matching com-

posite MetL (3847.PRO) from Escherichia coli and other species. This has

been a key observation that dictated the all-against-all genome comparison

in this analysis. In other words, when species A is used as a query against

species B, the resulting set of component and composite proteins is different

from that with the reverse comparison, when species B is used as a query

against species A. The three principal factors in gene fusion during evolution
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Figure 4.13: Absolute and relative numbers of component and composite
proteins: Absolute number of (a) component and (b) composite proteins as
individual cases (blue bars) and protein families (green bars), by species.
Data for C. elegans and D. melanogaster are clipped (1,973 and 1,981 com-
ponents, 567 and 559 composites, respectively). Relative numbers of (c)
component and (d) composites per species, as individual cases (blue bars)
and protein families (green bars), normalised by total genome size (number
of ORFs). Average values per genome are 9% for components and 4% for
composites. Species name abbreviations as in Table 4.2.
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appear to be paralogy, genome size and phylogenetic distance. For instance,

larger genomes have more composite, possibly paralogous, proteins. At the

same time, closely related species evidently show similar patterns of gene

fusion. The results below address each of these factors in turn and exam-

ine their relative contribution to the gene fusion process and their effects on

the prediction of functional association of proteins. For every genome, both

sets of component and composite proteins were subsequently clustered using

GeneRAGE, to detect the degree of paralogy for these proteins (Figure 4.13,

green bars). There are 2,534 component families, with an average of 105

families per genome (Figure 4.13a, green bars) and 1,323 composite families,

with an average of 55 families per genome (Figure 4.13b, green bars). Com-

paring these numbers with the number of unique cases, it is evident that

there is a paralogy level of two to threefold per genome for the composite

and component proteins, respectively. As mentioned above, this effect con-

tributes to the confidence of the predictions, depending on whether paralogy

is observed in the query or the reference genome.

Another characteristic of this process is the redundancy of both sets of

component and composite cases: the number of instances of these may be

high but they are widely present across species, falling into well-defined pro-

tein families. When all components and composites are clustered as a single

set (as opposed to within species, above), sequence clustering results in 1,287

single component families and 621 single composite families (as represented

in the current analysis for the 24 species). Comparing these numbers with the

number of families per species, it is apparent that there is a further two-fold

reduction for both sets. This result indicates that gene fusion is widespread

in evolution but forms a finite set. Different species may contain a common

core of composite families, but also provide new families that are used to pre-

dict functional association. For instance, D. melanogaster provides far more

composite families (more than 200) compared to C. elegans (fewer than 100)

(Figure 3b, green bars). Genomes with unique composite families, such as D.

melanogaster, contribute strongly to the majority of predicted interactions.

It may also be that only certain classes of proteins are involved in gene fusion

and that there is an upper limit for the predictive power of this approach ob-

tainable from these 621 (currently available) families. Evidently, the number

of component and composite proteins detected in each species is also depen-

dent on genome size (Figure 4.13). When the above numbers for unique cases

and families of components (Figure 4.13c) and composites (Figure 4.13d) are
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normalised by the number of open reading frames (ORFs) for the species

examined, the patterns of distribution are significantly altered. For instance,

Aquifex aeolicus and Thermotoga maritima appear to have a large number

of components involved in gene fusion (more than 12% of their genes are

involved in this process) (Figure 4.13c), whereas the absolute numbers are

low (Figure 4.13a). This is also the case for composites, where, for example,

S. cerevisiae yields as many cases as D. melanogaster in relative terms (4%

of the genome) (Figure 4.13d), while the absolute counts are dramatically

different (Figure 4.13b). Finally, when the factors of paralogy and genome

size are removed by sequence clustering and normalisation, respectively, the

effect of phylogenetic distance between species can be detected. A distance

measure based on the sharing of composite families between genomes has

been devised and was used to identify relationships between the 24 species

examined as follows:

• All composite proteins were clustered into 621 families and a distance

measure was derived according to the sharing of clusters between the

24 species examined.

• This pairwise distance measure is calculated as:

δ = (1 − SA,B/TA,B) × 100

where SA,B is the number of shared composite clusters and TA,B is the

average of the composite cluster counts from the two species. This

measure is reminiscent of a recent genome-wide orthologue analysis

(Snel et al., 1999).

• This measure was used to calculate a distance matrix representing the

distance between every pair of genomes when measured in terms of

fusion events shared.

• The PHYLIP package (Retief, 2000) was used to construct an unrooted

nearest neighbour dendrogram for the 24 species. Bootstrap values were

generated using the consensus program and a ’delete-half’ jack-knife

procedure.

The tree produced by this analysis is shown in Figure 4.14. The fact that

the tree based on this distance measure does not significantly contradict
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other trees based on sequence alignments is a strong indication that our

hypotheses about the factors involved in gene fusion are valid. This result

also indicates that certain types of fusion events appear to be confined to

specific phylogenetic groups, such as the Archaea, various bacterial clades

and the Eukarya (Figure 4.14).

4.3.3 Data Storage & Availability

All results of this present analysis are stored in a MySQL database, which is

accessible over the world wide web through Perl CGI scripts. This website3,

called AllFuse, contains all predicted gene fusion events, and their associated

alignments. This resource is easily searchable, and all data are available from

the site. A screenshot of the main page and an example fusion alignment

are shown in Figures 4.15 & 4.16. A number of research groups have al-

ready started the use these data for comparison to other experimental and

computational techniques.

4.3.4 Discussion

The exhaustive detection of gene fusion events in entire genome sequences

allows the prediction of functionally associated components based merely on

genome structure. The all-against-all species comparison is a necessary step

because we have repeatedly observed fused, composite proteins in taxonomi-

cally lower organisms. The landscape of gene fusions appears to be a complex

one, affected by paralogy, genome size and phylogenetic distance.

Although gene fusion is widely present across various phylogenetic groups,

it is a process that may involve only certain types of proteins (Tsoka and

Ouzounis, 2000a). Yet, this approach for the prediction of functional as-

sociations of proteins results in robust predictions for physical interactions,

pathway involvement, complex formation and other types of functional asso-

ciations of protein molecules.

With the present analysis, we delineate the available universe of fusion

events and detect a set of 621 composite protein families from which predic-

tions may be obtained. This approach results in 39,730 pairs of functionally

associated proteins across 24 species, with high precision and coverage. This

novel set of predictions is made available to the scientific community for

3http://maine.ebi.ac.uk:8000/allfuse/
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Figure 4.14: Neighbour-joining dendrogram representing the phylogenetic
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The distance measure is derived from the count of composite families. Scale
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the first time, and we believe that many of these cases can be subsequently

verified by experimental methods.

This research together with related research (Marcotte et al., 1999b) has

generated an enormous amount of interest in genome context approaches to

the prediction of protein function and protein interaction (Sali, 1999; Huynen

et al., 2000; Eisenberg et al., 2000). A number of separate research groups are

now using very similar approaches to predict functional associations between

proteins and explore the underlying evolutionary events (Yanai et al., 2001;

Mellor et al., 2002).
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Figure 4.15: Screenshot of the AllFuse main page.
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Figure 4.16: Example fusion alignment from the AllFuse web server.
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Chapter 5

Methods for Genome Analysis
and Annotation

The research detailed in this thesis involves the computational comparison of

complete genomes for the prediction of protein function and protein-protein

interaction. This research required the development of many novel sequence

analysis tools and methods. Some of which represent interesting research

projects in their own right.

A selection of novel algorithms and tools which have been used as the

backbone for most research described in this thesis will be presented in this

chapter. These methods are diverse, yet explore fundamental issues within

bioinformatics research such as visualisation of data, high-performance com-

puting and fundamental sequence analysis issues. Some of these methods

(such as document clustering of Medline abstracts) are rapidly becoming

separate fields of research within bioinformatics and computational biology.
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5.1 CAST: Detection of Compositionally

Biased Regions in Protein Sequences

5.1.1 Introduction

Probably the most commonly used bioinformatics tools are those which build

local and global sequence alignments between protein sequences. An intro-

duction to these methods is given in Chapter 1. One such tool in common

use is BLAST (Altschul et al., 1997). These methods allow one to determine

the degree of similarity between any two peptide sequences according to a

scoring function. These sensitive algorithms are commonly used to detect

the function of a protein by comparing it to a database of proteins whose

functions are known. In general these methods use dynamic programming

techniques (Smith and Waterman, 1981) to detect the highest scoring align-

ment between two sequences. Many sequences however, contain regions of

low-complexity (Wootton, 1994). These regions tend to contain biases to-

wards certain residue types. Two proteins which are functionally unrelated,

may contain regions of bias towards the same amino acid, and hence will

obtain a high-scoring alignment for these regions with a sequence similarity

search tool.

These low-complexity regions need to be filtered out of protein sequences

so that accurate similarity scores can be generated when comparing these

sequences. Algorithms have been developed to filter peptide sequences for

low-complexity regions. Typically these algorithms find regions of composi-

tional bias and filter the region by replacing the biased amino acids with the

’X’ character which is ignored by most sequence similarity search tools when

an alignment score is being generated. This ’X’ character is commonly used

to denote an amino acid of undefined type.

Two such methods are XNU and SEG. The first method XNU identifies

amino acid repeats on the basis of a self comparison of the query sequence

(Claverie and States, 1993), while SEG (Wootton and Federhen, 1993) de-

tects low-complexity regions based on an information-content measure. Both

methods replace biased or low-complexity regions with ’X’ characters. These

methods focus on a specific region or window of a peptide sequence and filter

iteratively across the peptide sequence removing regions which are deemed

to be of low-complexity. While these methods are effective at detecting and

removing regions of low-complexity with high efficiency, they are not without
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flaw. Due to the implementation of these algorithms it is possible that the

region filtered out of the input sequence may contain both low-complexity

amino acids, and also possibly amino acids representing a functional motif

that occurs close to or within a low-complexity region.

For this reason it was decided to develop a novel algorithm for the filtering

of low-complexity amino acids in protein sequences, which was sensitive yet

highly specific. Such an algorithm should accurately detect low-complexity

regions and filter out only these regions, without affecting the rest of the

amino acid sequence. One method of doing this is to examine the query

sequence for bias of each amino acid type separately. This idea was originally

developed to a certain extent for use in the GeneQuiz project (Scharf et al.,

1994).

Because sequence similarity searching is at the core of much of the re-

search described in this thesis, it was decided to redevelop and reimplement

the original algorithm (BIASDB) as a general algorithm written in C for the

complexity analysis and filtering of peptide sequences. This accurate and

sensitive filtering algorithm is used for practically every similarity analysis

described in this thesis.

5.1.2 Algorithm Concept

In contrast to previous approaches, low-complexity regions in protein se-

quences shall be defined as those regions that score highly in homology

searches with degenerate sequences composed of a single amino acid type (i.e.

homopolypeptides). A similar definition has been used previously (Robison

et al., 1994). This description is a sensible one, as even the most degener-

ate sequences can achieve high-scores in database searches. This definition

of low-complexity sequences can be reformulated into a general method for

detecting low-complexity regions. If one compares a homopolymeric pep-

tide sequence of a specific length and residue type, against another query

sequence and a high scoring similarity is detected, then this region may be

compositionally biased. These concepts have been implemented in the CAST

algorithm for the general detection and filtering of compositionally biased

residues in protein sequences.

If one supposes that the fractions of different residue types a and b in

a search and test sequence respectively are statistically unrelated, then it

follows that the probability of finding a match of residue types a and b can
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be calculated from the independent residue frequencies as:

Pab = faPb

where fa, Pb are the fractions of amino acid types a and b in the search and

test sequences respectively. If one scores all the possible a-b matches with

a comparison matrix M composed of elements Ma,b, the average expected

score over a region of length l will be:

l
∑
a,b

(PabMab) = l
∑
a,b

(faPbMa,b)

High scores reflect similar sequence patterns. As we admit any local region

of length l in both of the proteins, we can ignore the factor l. Consequently,

the frequencies fa and Pb correspond to the local residue frequencies in the

two compared regions of the search protein. The residue composition is

invariant and the sum score over all residue types can be performed. The

only remaining variable is the composition of the search sequence fab and

can be written as:

∑
a,b

(faPbMa,b) =
∑
a

fa

∑
b

(PbMa,b) =
∑
a

(faCa)

where Ca is a parameter related only to the residue type a in the search

sequence.

The residue frequencies fa naturally lie between the values 0 and 1, and

sum to 1. Therefore the last part of the previous equation is an interpolation

between the 20 possible values Ca and can only result in scores between the

smallest and largest value of Ca. The maximum sum that can be obtained

is the case where the sum is equal to the largest Ca, arbitrarily sorted as C1.

The maximum score will always be obtained when the corresponding residue

frequency f1 equals 1, which corresponds to the homopolymer. Therefore

one of the 20 homopolymers will always have the highest score obtainable by

any unrelated sequence.

This argument does not apply if the two complex sequences share more

than just a similar composition. In these cases, the complex sequence can

have much higher scores that reflect real sequence similarity. However, there

is a well-developed statistical theory that allows the estimation of the likeli-

hood that such similarities have arise by chance (Karlin and Altschul, 1990),

these statistics are described in Chapter 1.
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5.1.3 Detection of Low-Complexity Residues

Using the ideas above, one can define a method for detection of composition-

ally biased residues, as comparing a query sequence against a database of 20

degenerate protein sequences of arbitrary length. Each of these 20 sequences

being a homopolymer of a different natural amino acid. Any homologue de-

tected by such a search will allow one to identify both the amino acid type

and the exact region of low-complexity sequence in the query sequence.

Because we are searching a query sequence against an artificial bias-

database of 20 homopolymeric sequences, we can simplify the problem of

similarity detection. In this case the Smith-Waterman algorithm (Smith and

Waterman, 1981) can be optimised because the position in the homopoly-

meric sequence is irrelevant. A single pass over this sequence is all that is

required for any given residue type, to find high-scoring regions in the query

sequence.

If one takes a biological peptide sequence r of length n:

r1, r2, r3, . . . , ri, . . . , rn

A score at position i(1 ≤ i ≤ n) is derived by adding the value counted at

the previous position and the score given in a mutation matrix for a match

of residue type a with the amino acid type r in the sequence at position i.

sα
i = Ma,ri

{
sα

i−1, sα
i−1 ≥ 0

0, sα
i−1 < 0

Areas of maximal score can be identified as stretches in the resulting run

of values that have positive scores and range from the first positive score to its

maximum. Applying the algorithm for all 20 possible residue types a, allows

detection of each individual type of bias. The score at the maximum allows

one to quantify the bias detected with a bias score. Hence, it is possible with

this algorithm to identify a region of bias, the type of bias and a score for

the biased region.

In order to reduce complexity, gaps are not allowed with this implementa-

tion. Effectively this algorithm is equivalent to 20 passes of Smith-Waterman

for each query sequence against the homopolymers of equal length with infi-

nite gap open and extension penalties.

168



5.1.4 Filtering Procedure

One of the most important features of this algorithm is that filtering is applied

iteratively to detected regions of amino acid bias. Instead of replacing each

amino acid in the biased region of the query sequence with ’X’ characters,

only the amino acids of the detected bias type are replaced. Other biased

amino acids of different types in this region, may however be later replaced

with ’X’ characters in subsequent passes of the Smith-Waterman algorithm.

Amino acids that are not detected as biased by any of the 20 passes will

be left intact in the query sequence. This is advantageous as functional or

structural motifs, within or near a biased region will be preserved. This

iterative detection and filtering procedure is the key advance represented by

the CAST algorithm.

5.1.5 Implementation

The algorithm has been implemented as described above and in Figure 5.1.

An input sequence is iteratively scanned against a homopolymeric sequence

for each of the 20 amino acid types. If any of these comparisons detects a

similarity score above a threshold value, then amino acids of that type are

replaced with ’X’ characters in that region of the input sequence. This process

continues until no pass detects a significant similarity to a homopolymeric

sequence.

Previously some of these ideas had been implemented as a simple Perl

program for use within the GeneQuiz project (Scharf et al., 1994). In order to

improve the performance and extend the algorithm, it was decided to rewrite

the algorithm using the C programming language. By default the algorithm

uses a 40 half-bit threshold and a variant of the BLOSUM62 scoring matrix,

for the detection and scoring of biased regions. We calculate the scores for

’X’ amino acids as the mean value of the similarity scores in each row or

column as proposed by Altschul (Altschul et al., 1994). This eliminates the

effect of the neutral masking character in subsequent iterative rounds of bias

detection. The threshold and also the mutation matrix may be modified by

the user if required.

Usage of the program is straightforward, one supplies a query sequence,

and the CAST algorithm returns the query sequence filtered with ’X’ charac-

ters and optionally, a list of biased regions sorted by residue. Implementing

the algorithm in C increased the performance of the algorithm substantially,
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Input Sequence(s)

Compare Input Sequence
against homopolymer of
specific amino-acid type

Max Score > ThresholdMax Score > Threshold

Replace each high-scoring
residue of correct type 
within region with 'X'

YES

NO

Terminate Algorithm
Report Results

Figure 5.1: Flowchart of the CAST algorithm.
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as the language is ideally suited to this type of iterative processing.

In addition to the basic CAST program, a web-based service has also

been developed1. This is shown in Figure 5.2 and allows users to submit

sequences across the internet. Each request is queued on the server, and

when complete, returns the filtered sequence and statistics for the filtering

process.

The CAST algorithm has been extensively tested with genomic protein

sequence data and its performance has been shown to be superior to that

of the previously mentioned algorithms (SEG & XNU) (Promponas et al.,

2000).

1http://maine.ebi.ac.uk:8000/services/cast
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Figure 5.2: A screenshot of the CAST web-server.
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5.2 BioLayout: A Visualisation Algorithm for

Protein Sequence Similarities

Accurate visualisation of complex data is important in many fields. Bioinfor-

matics has become a data-intensive field and many bioinformatics research

projects routinely generate vast quantities of data. Many of the analyses de-

scribed in this thesis involve the use of protein similarity information such as

that obtained using the BLAST (Altschul et al., 1997) similarity search tool.

Aside from merely listing protein similarities as a text or HTML document,

no tool exists for simple and accurate graphical visualisation of such similar-

ity information. Ideally such a visualisation tool would allow one to quickly

identify salient features within a set of similarity results. Such features would

include: related families of proteins, multi-domain protein relationships, out-

lier and protein fragments. One possible visualisation is as a simple graph

where nodes represent proteins and edges represent similarities. While these

graphs are simple to construct, no data usually exists for the coordinates of

each node within the graph. Assigning coordinates to each node is essential

in order to produce a visually appealing graph. This problem is known as the

graph layout problem and has been extensively studied in the fields of math-

ematics and computer science. We sought to implement some of these ideas

for use in the field of bioinformatics visualisation and graph layout (Enright

and Ouzounis, 2001a).

5.2.1 Graph Layout Theory

The graph layout problem for simple undirected graphs can be formulated

as follows (Fruchterman and Rheingold, 1991):

A graph G = (V,E) consists of a set V of vertices (nodes) and

a set E of edges. Each edge joins a pair of vertices. For an

undirected graph with straight edges an ideal graph layout should

conform to the following criteria.

• An even distribution of vertices within the graph space.

• A minimal number of edge crossings.

• Uniform edge lengths.

173



• Inherent symmetry with the initial data should be conserved.

• The graph should conform to the boundaries of the graph space.

These criteria are specified in order to efficiently produce an aesthetically

pleasing graph layout. Such a graph should be easier to interpret than graph

layouts that do not satisfy the above criteria.

5.2.2 Graph Layout Algorithms

One of the first methods for the layout of simple undirected graphs is called

force directed placement (Eades, 1984). This method introduces the concept

of mathematically modelling a graph as a physical system of rings and springs

in order to generate a graph layout. If one replaces the vertices of a graph

with steel rings, and the edges with springs that connect these rings, then

model this as a physical system of mechanical forces, one will obtain a graph

layout. This is because the physical system will strive to assume a minimum

energy state which we can consider a graph layout. In other words vertices

that share many connections (springs) will be placed closer together in order

to reduce the total energy of the system. While in principle these algorithms

are simple, they become computationally intensive for large graphs. The

time complexity of such algorithms (commonly called n-body algorithms) is

Θ(E2 + V 2). This means that, for any iteration of such an algorithm, forces

must be calculated for every node against every other node, and similarly for

each edge (vertex).

However modelling a physical system to produce a graph layout does

not require one to model each force with physical accuracy. Application of

physical forces in an unrealistic manner should also produce a reasonable

graph layout (Fruchterman and Rheingold, 1991). Another approach called

the spring embedder algorithm (Kamada and Kawai, 1989) deviates from

these specific laws of physics and Newtonian mechanics in two important

ways. Firstly, the use of Hooke’s Law for calculating the forces on each

spring, is abandoned in favour of a more simple force. Secondly, forces of

attraction between nodes are only calculated for neighbouring nodes, and

not for distant inter-node interactions. While this method deviates from

physical reality, the graph layout produced is almost identical to that of
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force directed placement yet the time-complexity is reduced substantially to

Θ(E + V 2).

This idea of applying unrealistic forces in an unrealistic manner for graph

layout was extended further by Fruchterman and Rheingold (Fruchterman

and Rheingold, 1991). Their system resembles particle physics, where nodes

represent protons and neutrons. In this system nodes exert an attractive force

on each other (similar to the strong nuclear force). However, once nodes be-

come too close to each other, this attractive force becomes repulsive. These

forces will hence separate nodes at an optimal distance that balances repul-

sion and attraction.

The Fruchterman & Rheingold algorithm behaves as follows (Figure 5.3):

• Vertices in the graph repel other vertices within a radius r with a

distance d dependent force of repulsion fr(d).

• Vertices connected by an edge are attracted to each other with a dis-

tance d dependent force of attraction fa(d).

• The optimum distance k between two vertices is a result of both at-

tractive and repulsive forces.

The optimum distance k between any two nodes is calculated as follows:

k = C

√
total graph area

total vertices

The attractive and repulsive forces at distance d are hence:

fa(d) = d2/k

fr(d) = −k2/d

5.2.3 The BioLayout Algorithm

The BioLayout algorithm extends the approach of Fruchterman & Rheingold

to the problem of sequences similarity graph layout (Enright and Ouzounis,

2001a). Vertices in such a graph represent proteins while edges represent

detected similarities between these proteins. Proteins have different degrees

of similarity, so each edge is weighted according to a similarity score. The
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weighting scheme chosen for BioLayout is W = − log10(E), where E is an

Expectation value for protein similarity obtained from BLAST (Enright and

Ouzounis, 2001a). In order to place similar proteins closer together, we mod-

ify the Fruchterman & Rheingold algorithm to use these weights by automat-

ically adjusting the optimum distance k between any two nodes according to

their degree of similarity.

The attractive and repulsive forces, taking into account similarity weights

W , for a pair of nodes at distance d are now calculated as follows:

fa(d) = Wd2/k

fr(d) = −(
k

W
)2/d

This new weighting scheme should place nodes representing proteins with

high degrees of similarity close together in the resulting graph layout. The

modified algorithm is described in pseudocode in Figure 5.3. A graph G

representing all nodes (proteins) and edges (similarities) is created, with each

node in a random position in a layout area (or frame) of size W ×L. A finite

number of iterations (typically 60) is chosen for the layout algorithm. At each

iteration, attractive forces are calculated between all nodes connected by an

edge according to fa(d). Repulsive forces are then calculated between all

pairs of nodes closer than a set distance r according to fr(d). A displacement

vector is calculated for each node based on observed attractive and repulsive

forces on that node. The displacement is limited by a cooling function to a

maximum value t called temperature. Displacement is also limited where a

node would leave the graph space (frame). Each node is then moved to a new

position according to its displacement vector, and the algorithm continues

its next iteration.

The cooling function is used to generate more optimal layouts (Fruchterman

and Rheingold, 1991). The basic idea of cooling is to allow large movement

of nodes in the initial iterations of the algorithm, as nodes strive to leave

their random starting positions. Lowering the temperature gradually refines

the graph, as nodes assume more optimal positions within the graph. The

maximum displacement of each node is controlled by the t parameter as pre-

viously described. The cooling function f(c) is applied at each iteration to

modulate the temperature through each iteration. When the algorithm is

reaching completion, the temperature is such that only small adjustments

are allowed in the layout.
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Protein 1 Protein 2 E-Value
LEVR BACSU ATOC ECOLI 5 × 10−17

AFQ1 STRCO ATOC ECOLI 1 × 10−11

ALGB PSEAE ATOC ECOLI 1 × 10−83

BASR ECOLI ATOC ECOLI 4 × 10−11

BASR SALTY ATOC ECOLI 7 × 10−13

YGIX ECOLI ATOC ECOLI 5 × 10−13

YGIX HAEIN ATOC ECOLI 1 × 10−11

CHVI AGRTU ATOC ECOLI 7 × 10−11

CHVI RHIME ATOC ECOLI 1 × 10−11

CIAR STRPN ATOC ECOLI 9 × 10−11

Table 5.1: BioLayout Input Format

Work carried out previously (Fruchterman and Rheingold, 1991) has

shown that the best performing cooling functions start with a linear decrease

in temperature, then assume a constant low temperature phase for final ad-

justment. The BioLayout cooling function also performs in this manner.

5.2.4 Implementation and Usage

The layout algorithm has been implemented as described (Enright and Ouzou-

nis, 2001a). The input for the algorithm is a set of sequence similarities

obtained from an algorithm such as BLAST. The input format is shown in

Table 5.1. These similarities and associated similarity scores are read and

transformed into an internal graph structure. The layout algorithm then

produces a graph layout through 60 iterations. A graphical user interface

to this engine has been written in C using the Sun Microsystems OpenWin-

dows toolkit2. This interface is shown in Figure 5.4. The interface allows

the user to select and search for proteins or sets of proteins in the graph,

move nodes, label nodes and save the final graph layout as a postscript file

(an example is shown in Figure 5.5). In addition, the user can select groups

of proteins from the graph, and request information about these proteins

(based on their identifiers) automatically using the ’Sequence Retrieval Sys-

tem’ (SRS) (Etzold and Argos, 1993) server at the European Bioinformatics

Institute3. A non-graphical C implementation is built from the same source

2http://www.sun.com/
3http://srs.ebi.ac.uk/
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begin for i := 1 to iterations do
{calculate repulsive forces}
for u in V do

{each vertex has two vectors: .pos and .disp}
v.disp := 0;
if (u �= v) then
{∆ is short hand for the difference}
{vector between the positions of the two vertices}
∆ := v.pos − u.pos;
if (∆ ≤ r) then
{nodes only repel if closer than distance r}
v.disp := v.disp + (∆/|∆|) ∗ fr(|∆|);

end
end

end
{calculate attractive forces}
for e in E do

{each edge is an ordered pair of vertices .v and .u}
∆ := e.v.pos − e.u.pos;
e.v.disp := e.v.disp − (∆/|∆|) ∗ fa(|∆|);
e.u.disp := e.u.disp + (∆/|∆|) ∗ fa(|∆|)

end
{limit the maximum displacement to the temperature t}
{and then prevent from being displaced outside of the frame}
for u in V do

v.pos := v.pos + (v.disp/|v.disp|) ∗ min(v.disp, t);
v.pos.x := min(W/2,max(−W/2, v.pos.x));
v.pos.y := min(L/2,max(−L/2, v.pos.y));

end
{reduce the temperature as the layout approaches a good configuration}
t := cool(t)

end

Figure 5.3: BioLayout Pseudocode.
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Figure 5.4: The BioLayout graphical user interface.

code and also produces postscript output files containing the graph layout

produced.

This two-dimensional graph visualisation of proteins and similarities proves

to be remarkably useful for sequence analysis. Interestingly, as the method

is general, it can also be applied many types of similarity information. One

such example is graph generation and layout for relationships between terms

in Medline documents (Iliopoulos et al., 2001a).

It is very easy to visually interpret each graph for features such as protein

families and multi-domain proteins. Closely related proteins in a family will

form distinct clusters within the graph. Multi-Domain proteins tend to lie be-

tween large protein family groups, and outlier proteins or fragment peptides

appear towards the edges of each graph. Figure 5.4 represents similarities

between transcriptionally related proteins from different protein families. Al-

though there is significant similarity between the separate families, it is very

easy to visually determine that there are five main protein families within

these similarities.

Another implementation for 3-Dimensional visualisation of highly com-

plex datasets has also been written (Figure 5.6). The implementation de-

scribed above is two-dimensional, but extending it to three dimensions is a

trivial procedure, yet slightly more computationally intensive. The same C

code is reused for the core engine of the algorithm, but a new 3D visualisa-
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tion module was written using the Silicon Graphics ’Open Graphics Library’

(OpenGL4). This visualisation proves to be an exceptionally useful way of

examining highly complex datasets. The viewer interface allows one to inter-

actively rotate, translate and zoom through highly complex representations

of protein sequence space. An example graph layout is shown in Figure 5.6.

In this case promiscuous protein family relationships within SwissProt are

shown (see also Figure 2.12).

4http://www.sgi.com/software/opengl/
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BioLayout v1.0

© EMBL-EBI June 2000  Anton Enright anton@ebi.ac.uk
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Figure 5.5: An example PostScript graph generated by the BioLayout al-
gorithm. This graph shows five protein families involved in transcription,
which are connected together due to similarity relationships arising from
promiscuous and multi-domain proteins.
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Figure 5.6: A three-dimensional graph layout generated using BioLayout3D. This is a 3-Dimensional layout of the
graph shown in Figure 2.12, and shows promiscuous protein family relationships in the SwissProt database. The
graph is colour coded according to the functional class of each family.
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5.3 TextQuest: Automatic Classification of

Medline Abstracts

5.3.1 Introduction

Much of the work we have undertaken involves the prediction of protein

function from genome sequences. While we have been primarily concerned

with functional prediction based on sequence analysis, there are other useful

methods available. Many proteins and nucleotide sequences deposited in

sequence databases are associated with an article published in a scientific

journal. The U.S. National Library of Medicine (NLM), Medline database5

stores information pertaining to over 16 million published articles. While

Medline does not seek to explicitly store functional information for proteins,

it does contain abstracts for each article. Careful analysis and data-mining of

Medline abstracts has been shown to be a reliable method for the detection

of terms and phrases which can indicate the functional role of a protein

or gene. Text mining and more specifically document clustering can prove

very useful for the automatic annotation of genome sequences. Abstracts

are easily obtainable using the query based retrieval system of the Medline

database (PubMed).

Used directly, Medline is of little use for large-scale textual analysis. The

query system expects the user to already know the exact type of information

that is required. Abstracts are generally searched on the basis of specific

information such as keywords. In order for the user to obtain meaningful

information, the user needs to have some understanding of the subject area,

and select useful keywords (Salton, 1970).

Within the field of bioinformatics, there has been a move towards ex-

ploiting the vast accumulation of textual information in databases such as

Medline. It was decided to implement concepts from the fields of text analysis

in order to exploit this information. To this end a system called TextQuest

was developed for text-mining of the Medline database (Iliopoulos et al.,

2001a).

5http://www.nlm.nih.gov/pubmed/
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5.3.2 Text-Mining Approaches

The most extreme form of textual analysis is information extraction. This

form of analysis seeks through syntactic and semantic analysis to actually

understand a document (Allen, 1994). Using statistical and algorithmic ap-

proaches a document is scanned, and the information required is simply ex-

tracted from the text. Such methods have been shown to work on a variety

of different datasets. Biological free text is however very different to text

extracted from public sources such as newspapers, and requires a completely

different understanding of grammar and sentence structure. These methods

are also very computationally intensive and generally require very complex

software and database systems to be successful (Thomas et al., 2000).

An intermediate form of text analysis is that of document clustering

(Willet, 1988). This statistical approach seeks to identify key terms in a

document and group documents together based on their sharing of sets of

these terms. This approach is much simpler than information extraction, as

it requires no knowledge of syntax and grammar. For a given set of docu-

ments this method should return a set of document clusters which share a

large number of their key terms. The mechanics involved in the clustering

process are straightforward, but the accuracy of the method relies heavily

in the statistical recognition of these key terms. Poorly selected terms will

produce very poor document clusters.

Recently there has been growing interest in applying these techniques to

biological document databases such as Medline (Andrade and Bork, 2000).

These approaches have focused on two areas: extraction of relationships

within text, such as protein interactions (Blaschke et al., 1999; Thomas

et al., 2000), and keyword discovery (Andrade and Valencia, 1998; Fukuda

et al., 1998). It was decided to tackle the problem of biological text analy-

sis from a different angle using a document clustering approach. The only

document clustering attempted for biological documents so far has been the

NLM ’neighbors’ utility (Wilbur and Yang, 1996). Given that this method

relies heavily on the quality of biological term recognition, a new method was

developed for the detection of significant terms in biological documents. Doc-

ument clusters are then generated using an unsupervised machine learning

approach based on the co-occurrence of these automatically detected terms.
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5.3.3 The TextQuest Algorithm

The TextQuest algorithm (Iliopoulos et al., 2001a) is a well-defined ten step

protocol. An input set of biological abstracts is taken from the Medline

database, processed and restructured to obtain an optimal number of terms

that will associate large numbers of biological documents into meaningful

groups that will represent the biological roles of the genes/proteins described

within.

The TextQuest protocol can be described as follows:

1. A set of K abstracts is extracted from Medline using query-based re-

trieval. This set is saved in Medline standard format, or alternatively

in other formats such as XML.

2. The selected abstracts are parsed in order to extract only the ’UID’

(Unique Medline Identifier) and ’AB’ (Abstract Body) fields. Other

information such as MeSH terms are not used, as they can frequently

be misleading. The parsing process also removes any non-alphanumeric

characters, which can produce misleading results.

3. Because the key terms will almost certainly be biological words such as

’kinase’ or ’cell-cycle’, common English words (such as ’the’ and ’and’

etc.) are removed. Many previous methods used a predefined stop-list

containing words that were deemed non-informative (Voorhees, 1998)

to filter these words from document text. Given the complex nature of

biological text, it was not possible to generate such a stop-list. In order

to automatically remove words that occur at high-frequency in the En-

glish language, without a stop-list, the TF.IDF (TF = Term Frequency,

IDF = Inverse Document Frequency) metric is used (Rocchio, 1971).

This is a well known system for weighting words in text based on their

frequency in a given document and their frequency in a reference set.

The reference set used is the British National Corpus (BNC) collection,

which details the frequencies of English words in common usage. Terms

that appear frequently in a document, but rarely in the reference set,

are more likely to be specific to that document. Terms are scored using

the following variant of the TF.IDF system: wi = log2(Ni/ni). In this

variant wi is the weight of term i in the document, Ni is the frequency
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of term i in the reference set L and ni is the number of documents in

L that the term i occurs in.

4. Terms with a high TF.IDF value (typically, greater than 15) are se-

lected. These terms represent words occurring at relatively high fre-

quency in a document, but rarely or never within the BNC reference

set. This cut-off value ρ = 15 was picked after experiment and evalua-

tion with multiple biological document datasets.

5. These detected terms from each document in the set K are combined.

Frequencies of each term are calculated across all documents in the set

K. Terms which occur frequently and specifically are retained. The

cut-off threshold σ for this step is defined as: σ = K/100. For a set

where K = 1000, this step will only keep terms which occur at least

10 times, even if their TF.IDF score from the previous step is high.

At this stage common English terms and infrequent terms have been

eliminated. The remaining set of terms U from this procedure we term

the go-list.

6. A stemming algorithm written in Perl processes each term from the

go-list U with a stemming procedure. This method is commonly used

in the text analysis field, and seeks to reduce the complexity of terms

by reducing them to a common stem. For example, words such as

’transcriptional’ and ’transcriptionally’ would be stemmed to ’tran-

scription’. This procedure merges highly similar words in the go-list,

and reduces the complexity of the subsequent analysis. The stemming

algorithm used was not the common ’Porters Stemming Algorithm’

(Porter, 1980), but a novel recursive method that we have developed

specifically for document clustering. Porter’s stemming algorithm uses

a dictionary of word endings (such as ’-ly’,’-ing’ and ’-ion’ etc) to detect

word stems. This method did not prove satisfactory when applied to

complex biological terms. Instead a regular expression matching algo-

rithm was used to detect pairs of terms with a common word stem but

word endings differing by a set number of letters (typically 3-4). This

algorithm is applied recursively until no more stemming is possible, and

appears to work extremely well for biological terms.

7. This stemmed go-list is used to generate a term occurrence array for

each document in the set. This is a simple bit-vector Γ showing the
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presence (1) or absence (0) of each term from the go-list in a given

document. The length of this vector is equal to the size of the go-list,

and a total of K vectors are generated, representing each document in

the set. The total number of terms in the stemmed go-list has been

reduced significantly when compared to set of all terms in the original K

documents (term reduction for a control experiment is shown in Table

5.2). This set of selected terms should be highly reliable for document

clustering techniques.

8. The fixed-length bit-vector representation of each documents abstract

is used as input for a clustering procedure. The MineSetTMdata min-

ing software package from Silicon Graphics was used for the clustering

procedure. The k-means unsupervised clustering algorithm was used

to detect clusters of documents sharing highly similar term bit-vectors.

The MineSetTMpackage was chosen because it allows many different

clustering and statistical algorithms to be performed on a single source

of data, and has a useful interactive 3D visualisation engine. When

clustering is complete, a list of document clusters is generated along

with significance values for each term used to generate that clustering.

This is a very useful by-product of the clustering as it allows one to

quickly determine the biological significance of each detected document

cluster.

9. In order to generate a final set of terms that describe each cluster, a

log-odds formula is applied to the resulting clusters and terms. This

formula can be described as: Θij = log2(fijfi), where Θij represents

the preference of term i in a document cluster j, fij represents the

frequency of term i in cluster j and fi represents the frequency of term

i in the total set of abstracts. If fij = fi (i.e. term i is as frequently

found in cluster j as in the total set), then Θij is zero. Values of Θ that

are positive represent terms that are specific to a cluster and vice-versa.

Terms are selected with a positive Θ value above a cut-off threshold τ .

10. Visualisation of the results allows one to quickly and intuitively analyse

the results of the algorithm. For this reason the BioLayout algorithm

(see Section 5.2) was used to visualise the results of the TextQuest

algorithm when applied to a variety of datasets.
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The algorithm reduces the complexity of the problem significantly due to its

statistical detection of terms within abstracts which are biologically relevant.

The algorithm is relatively fast as minimal processing of these data is re-

quired. Most of the processing involved is term-parsing and term-stemming,

two steps which are extremely fast. The three threshold values described

in the algorithm (ρ, σ, τ) have been optimised empirically by experiment.

These parameters can however be modified from the default values by the

user. While the method is relatively simple, it appears to be a highly robust

algorithm for the document clustering of biological abstracts.

5.3.4 Document Clustering Results

In order to test the performance of the algorithm, a number of test cases

were selected. These test cases involved the selection of specific sets of docu-

ments relating to different biological phenomena, mixing them together and

clustering this mixed dataset. If the TextQuest method is performing well,

then each biologically distinct set of documents should be separated again

into their constituent clusters.

The first test-case used involved two sets of 830 articles relating to differ-

ent biological areas. The first set of 830 articles were selected from Medline

with the following query: ”(escherichia AND pili)”. The second set were

selected using: ”(cerevisiae AND cdc*)”. Clearly the first set of documents

should relate to bacterial processes involved in pili formation and function,

while the second set relate to eukaryal cell division and cell cycle. This set

of 1,660 documents was processed using the TextQuest algorithm in order to

test the ability of the method to separate these two clearly distinct sets of

documents. The term reduction (shown in Table 5.2) reduced the number of

terms within these 1,660 abstracts from 162,499 to only 471 terms included

in the go-list.

As hoped, the algorithm did indeed produce two distinct clusters from

the input document set. These two clusters corresponded with the two initial

input sets of 830 documents. Because the algorithm also generates log-odds

scored clustering terms, it is also possible to list the key terms used in the

separation of these two distinct document classes. Some of these words are

listed in Table 5.3.

Clearly some of the these selective terms relate to species names such as

”melanogaster”, or experimental techniques such as ”elisa”, but the majority
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Set of Terms Step No. Number of Terms
S 2 162,499
T 4 56,057
U 5 868
V 6 633
W 9 471

ρ = 17 σ = 0.01K τ = 0.8

Table 5.2: Term reduction during the control experiment.

Cluster 1 Cluster 2
alphafactor adherence

budding agglutination
centromere antigenic
chromatin bacteriophage

cln1 chloroform
cytoskeleton conjugative

defines diarrhoea
diploid elisa
fission fimbrial

gtpbinding glycoproteins
meiosis klebsiella

melanogaster morphologically
microtubules operons

nucleus pfimbriae
phosphorylation plasmidencoded

rad9 precipitation
rescues pyelonephritis
spindle serogroup
telomere shigella
tumor susceptible

ubiquitin uropathogenic
uv vaccination

Table 5.3: Most representative terms detected for each cluster.
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of these terms appear to correlate well with the subject matter of the papers

within a cluster. It is also evident that gene names are readily selected by

the algorithm which is very encouraging. Terms such as ”cln1” and ”rad9” in

cluster one clearly relate to genes involved in the cell-division and cell-cycle of

eukaryotes. Some other informative terms include ”nucleus” which is highly

represented in the yeast documents, and ”operons” which occur with high

frequency in the E. coli set.

This first analysis using TextQuest provided validation for the method,

and highlighted the importance of not only the document clustering pro-

cedure, but the detection of key terms that produce the clustering. Many

clustering methods are black-box techniques which give very little information

about why and how clusters are formed.

Given the accuracy of the method for the relatively easy task of separating

articles from very different fields, it was decided to tackle a much more chal-

lenging problem. A set of 525 abstracts related to two separate Drosophila

melanogaster developmental pathways were selected from Medline (Rongo

et al., 1997). The query used to select this input set was: ”(anterior-posterior

AND drosophila) AND (dorsal-ventral AND drosophila)”. Clearly these two

developmental pathways are distinct, yet very closely related, and would

provide much more of a challenge to the TextQuest system.

This analysis produced a final go-list of 409 terms, with the following pa-

rameter settings: ρ = 19, σ = 0.01K, τ = 0.5. The unsupervised clustering

of each 409 element bit-vector produced three distinct clusters from the 525

abstracts. This result was unexpected as we had provided two distinct docu-

ment classes to the algorithm. Inspection of log-odds scores of key clustering

terms showed clearly why three separate clusters had been obtained. The

first cluster (206 abstracts) clearly described genes involved the development

of the anterior-posterior axis of the D. melanogaster embryo (for example,

bithorax, engrailed, hunchback, etc). The second cluster (251 abstracts) re-

lated clearly to words and genes associated with the dorsal-ventral pathway

(dorsalizing, ventral-specific, pelle, notch, cactus, etc). The third unexpected

cluster contained 68 abstracts labelled with terms such as ’oocyte’, ’maternal-

effect’, ’germline’ and ’polarized’. Close inspection of this cluster indicated

that these abstracts were related to egg chamber development and oocyte

patterning (van Eeden and Johnston, 1999), these processes occur before

dorsal-ventral and anterior-posterior development, yet affect both of these

pathways significantly. The third detected cluster hence contains abstracts
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related to the early development of the D. melanogaster egg and embryo,

while the other two clusters describe subsequent and separate events of D.

melanogaster embryo development.

The ability of the TextQuest system to automatically detect these subtle

differences between very closely related articles is reassuring. Indeed, the

detection of a third and not obvious set of abstracts relating to egg-chamber

patterning was impressive. We hope to extend the current TextQuest system,

and perhaps to use the automatic term recognition of TextQuest with the

rapid MCL clustering algorithm (Section 2.4) for clustering of the entire

Medline database. Given the encouraging results we have obtained so far, a

full clustering of Medline, may detect large quantities of accurate functional

information concerning genes and proteins.

5.3.5 Implementation

The TextQuest system is composed of a set of routines6 written in Perl

and Awk. An input set of documents in Medline format is supplied and

is processed sequentially by each of the routines. A matrix file containing

bit-vectors for each document is produced. This matrix file may be clustered

with any conventional clustering technique, not just the MineSetTMsystem.

6http://www.ebi.ac.uk/research/cgg/projects/mining/textquest/
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5.4 Consensus Annotation of

Protein Families

A large proportion of this thesis details the analysis and detection of protein

families. Frequently protein families are used for annotation purposes. In

these cases a protein whose function is unknown may be annotated with

respect to other proteins in the same family whose functions are known.

The problem involves the generation of a consensus annotation for a set of

proteins in a protein family, based on any annotation information available

for proteins within that family.

5.4.1 Formulation of the Problem

Given a set of proteins (P ) and their corresponding annotations (A), the

problem is to generate a consensus annotation which will describe as many

of these proteins as possible. An example set of such proteins and annotations

is shown for a ’cytochrome c oxidase’ family in Table 5.4.

Ideally these consensus annotations should be as descriptive as possible

(longer) and cover as many proteins in the input set as possible (highly

specific). In order to generate consensus annotations one needs a method

for detecting common words or phrases shared by each annotation in the

set. After experimenting with different pattern matching algorithms and

regular expression systems. It was decided to use longest common substring

detection to generate this information. This analysis is rapid and can be

easily adapted for matching words or phrases. When used for word matching

this method will return the longest set of words that two annotations share,

in an order dependent manner. An example of this for two annotations is:

1) CYTOCHROME C OXIDASE POLYPEPTIDE IV, MITOCHONDRIAL PRECURSOR (EC 1.9.3.1)
2) CYTOCHROME C OXIDASE POLYPEPTIDE VB-LIVER (EC 1.9.3.1) (FRAGMENT)

The longest common substring between these two sets of annotations (at the

word level) is:

CYTOCHROME C OXIDASE POLYPEPTIDE (EC 1.9.3.1)

The method can return a relatively meaningful consensus annotation of two

different annotations. When two annotations have no words in common, then

no consensus can be generated. Formally the problem of detecting longest

192



Protein ID Genome Annotation
ATHA-XXX-002421 Arabidopsis thaliana cytochrome c oxidase subunit, putative similar to cytochrome c oxidase subunit Vb GI:1841354 from [Oryza sativa]
ATHA-XXX-011980 Arabidopsis thaliana putative cytochrome c oxidase subunit Vb similar to cytochrome oxidase IV GB:223590 [Bos taurus];
CELE-XXX-006559 Caenorhabditis elegans CE09693 cytochrome C oxidase (HINXTON) TR:P90849 protein id:CAB03002.1
DMEL-XXX-007306 Drosophila melanogaster last updated:000321 (translated)
DMEL-XXX-007307 Drosophila melanogaster last updated:000321 (translated)
HSAP-XXX-016135 Homo sapiens
SCER-S28-002187 Saccharomyces cerevisiae S288CCOX4, Chr VII from 149708-150175, reverse complement
P00428 Bos taurus CYTOCHROME C OXIDASE POLYPEPTIDE VB (EC 1.9.3.1)(VI)
P04037 Saccharomyces cerevisiae CYTOCHROME C OXIDASE POLYPEPTIDE IV, MITOCHONDRIAL PRECURSOR (EC 1.9.3.1)
P10606 Homo sapiens CYTOCHROME C OXIDASE POLYPEPTIDE VB, MITOCHONDRIAL PRECURSOR (EC 1.9.3.1)
P12075 Rattus norvegicus CYTOCHROME C OXIDASE POLYPEPTIDE VB, MITOCHONDRIAL PRECURSOR (EC 1.9.3.1) (VIA*)
P19536 Mus musculus CYTOCHROME C OXIDASE POLYPEPTIDE VB, MITOCHONDRIAL PRECURSOR (EC 1.9.3.1)
P29505 Dictyostelium discoideum CYTOCHROME C OXIDASE POLYPEPTIDE V (EC 1.9.3.1)
P79010 Schizosaccharomyces pombe CYTOCHROME C OXIDASE POLYPEPTIDE IV, MITOCHONDRIAL PRECURSOR (EC 1.9.3.1)
P80330 Oncorhynchus mykiss CYTOCHROME C OXIDASE POLYPEPTIDE VB-LIVER (EC 1.9.3.1) (FRAGMENT)

Table 5.4: A set of proteins and annotations from a cytochrome c oxidase family.
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common substrings is defined as follows:

A subsequence is defined as a subset of the characters of a sting S arranged

in their original ”relative” order . A subsequence of the string S of length n

is specified by a list of indices i1 < i2 < i3 < . . . < ik, for some k ≤ n. The

subsequence specified by this list of indices is the string Si1 , Si2 . . . , Sik .

Given two strings S and T , a common subsequence is a subsequence that

appears both in S and T . The longest common subsequence problem is to

find the longest subsequence common to both S and T .

5.4.2 Longest Common Substring (LCS) Detection

Many methods have been explored for solving the longest common subse-

quence problem (Hirschberg, 1977). The algorithm described here is the

common dynamic programming approach (Hirschberg, 1975) with memorisa-

tion. While not as fast as some optimal methods using suffix trees (Gusfield,

1997), the algorithm implementation is straightforward and fast enough for

the purposes of protein family annotation. When given two arrays filled

with words (from protein annotations), the algorithm returns the size of the

longest common subsequence (number of shared words), and the common

subsequence of words from both annotations.

5.4.3 An LCS Algorithm for Automatic
Consensus Annotation

The algorithms described above compute the longest common subsequence

of pairs of strings. In order to annotate a protein family, all common subse-

quences between all annotations need to be computed. To this end a recursive

algorithm has been developed which processes calculates longest common

subsequence annotations between all pairs of annotations. At each iteration,

common subsequence annotations from previous iterations are reprocessed

to find a maximal set of subsequence patterns which cover all annotations

within the input set.

Each detected subsequence annotation i from the covering set of all com-
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mon subsequences is then assigned a score Si according to:

Si = CLi + (fi × 100)

Where Li is the length of the annotation i counted in words, C is a constant

and fi is the frequency of this subsequence annotation in the original input

set of protein annotations.

This scoring scheme attempts to score subsequence annotations in terms

of their descriptiveness and specificity. Consensus annotations which are

longer, are generally more descriptive, while subsequence annotations which

occur frequently in the input set of original annotations are more specific to

that family. A good example of this is the word ”protein” which occurs at

very high frequency in almost all protein annotations, while highly specific,

it is by no means a descriptive annotation. The C constant is hence used

to weight the scoring scheme between longer (less specific) annotations and

shorter (more specific) annotations. Empirically a value of C = 12 has been

chosen for most analyses using this algorithm. A score S is hence generated

for each subsequence annotation generated by the algorithm, the highest

scoring subsequence is then chosen as the consensus annotation for the input

set of protein families.

Testing with data from SwissProt (Bairoch and Apweiler, 2000) protein

families has shown that the algorithm is very accurate at producing meaning-

ful consensus annotations for related proteins within families (Enright et al.,

2002). Care must be taken however to filter out sets of words that are com-

monly used in sequencing projects. This is reminiscent of compositional bias

filtering for amino acid sequences. Phrases such as:

"HYPOTHETICAL PROTEIN SEQUENCE"

can generate high scores. For this reason a pre-processing step eliminates

words such as ”predicted”, ”hypothetical”, ”putative” and ”fragment”, which

are of little use in a consensus annotation.

This method has been used extensively for the annotation of protein

families in the Ensembl database (Hubbard et al., 2002), and the Tribes

database (described in Sections 3.2 & 3.3). The method represents a rapid

and general method for assembling consensus annotations for sets of protein

or nucleotide sequences.
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5.5 High-Throughput Tools for Sequence

Analysis

Working with complete genomes requires an enormous amount of computa-

tion. For protein family analysis, frequently all-against-all BLAST (Altschul

et al., 1997) comparisons need to be performed. The analyses described

in Sections 3.2 & 3.3, each performed sequence comparisons for more than

500,000 protein sequences, a total of 2 × 1011 individual BLAST compar-

isons. Obviously this computation was performed on a large supercomputer,

but even single genome analyses can require more computation than can be

provided by a single workstation, to run in a realistic time.

The computational genomics group has a single Sun Microsystems four

CPU Enterprise server and eleven Sun UltraSparc workstations. This repre-

sents a total of fifteen CPUs which, as they are not constantly in use, can

be utilised for sequence comparisons. To this end, we have extended con-

ventional sequence analysis methods to operate on parallel multi-processor

environments. This speeds up large-scale sequence analysis and exploits the

processing power of multiple machines available within the computational

genomics group. The most important of these tools (Table 5.5) will be de-

scribed in the following sections.

5.5.1 htBLAST.pl and Parse.pl

The BLAST algorithm (from NCBI and Washington University) is designed

primarily to take a single query sequence in FASTA format and compare

it to a reference database of sequences. For many bioinformatics analyses

a database of these query sequences needs to be compared against such a

reference database. In the case of protein family analysis, all-against-all

comparisons are usually undertaken. This involves searching a database of

sequences against itself. Because BLAST is designed primarily for single se-

quence comparisons, it is possible to greatly improve performance by correct

handling of sequences and databases.

A wrapper script called htBLAST was developed for high-throughput

BLAST comparisons of multiple sequences. This small script improves the

performance of large BLAST analyses by as much as 30% and works as

follows:

1. Read in a set of FASTA formatted query sequences into memory.
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Program Language Function
htBLAST.pl Perl Wrapper script for BLAST analyses

parallel.pl Perl Wrapper script for parallel analyses (such as:
BLAST, CLUSTAL, GeneRAGE, etc.).

parse.pl Perl Rapid parsing of BLAST results.

fetcher.pl Perl Rapid fetching of FASTA sequences from a
database.

chopper.pl Perl Division of a BLAST query file into sensible
pieces.

queue C A Queuing system with file-locking for web
based services (such as: CAST and BLAST).

lsfBLAST.pl Perl An lsf (load sharing facility) wrapper for super-
computer analyses.

Table 5.5: A listing of all tools written for high-throughput sequence anal-
ysis.
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2. Start an individual BLAST run for the first query sequence.

3. While a BLAST query is being run, load the next sequence into a

buffer.

4. When a BLAST query completes, send the next query sequence from

the buffer.

5. Store all BLAST results in memory while this procedure takes place.

6. When the last sequence has been compared, dump all BLAST results

to a file.

Another small Perl script called parse.pl uses standard regular expressions to

detect key information from a standard BLAST output file and display only

desired information. This reduces the size needed to store BLAST results by

approximately 10 times, yet does not result in any loss of information.

5.5.2 Parallel.pl

The fifteen processors available to us are reasonably powerful and fast. Given

that users infrequently utilise their workstation processors fully, it makes

sense to develop software to use these wasted CPU cycles for performing

large-scale sequence analysis. All of these SUN machines use the same version

of UNIX (Solaris 7) and have access to the same filesystems. During the night

most group machines are inactive, it is be possible to start an individual

set of BLAST procedures on each machine, then once finished, collate the

individual results into a final result. This should result in something close to

a 15× speedup. In principle the UNIX operating system is well designed to

handle this procedure automatically.

Many commercial applications exist to perform this type of function in

an easy and transparent fashion (for example the ’Load Sharing FacilityTM’

package from Platform Computing r©7). However these applications are

prohibitively expensive for a single research group to purchase. For this rea-

son, the parallel.pl script was developed to automatically distribute sequence

analysis tasks to each of the 12 machines and 15 processors in the group.

The parallel.pl script is written using Perl and its action can be described as

follows:

7http://www.platform.com
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1. Prompt the user for a list of hosts to use, or read from a file.

2. Briefly connect to each host using UNIX system calls to make sure the

host is up and not busy. Store a list of these hosts and the total number

of hosts available (N).

3. Read in a set of Q query sequences to be processed.

4. Use the chopper.pl (Table 5.5) script to divide this set Q into a set of

S subsets of equal or near to equal size in bytes.

5. Use the UNIX fork system call to start N slave copies of the parallel.pl

script, one on each of the N host machines. Record the PID identifier

for each forked process in the master script. Each slave process is given

one of the S subsets to process by the master script as they are forked.

6. The master copy of the script adopts a wait loop and monitors each

slave process to detect when it has terminated. When a slave process

finishes its job, the master script gives the slave another set of sequences

from the set S of all sequence subsets.

7. The master script waits until all S subset jobs have been distributed,

then terminates when all N hosts report completion.

8. When all slaves have finished, they self-terminate, and the master script

collates results from each of the S jobs into a single results file for the

whole analysis.

This small and useful script can be adapted to perform BLAST (Altschul

et al., 1997), FASTA (Pearson and Lipman, 1988), Smith-Waterman (Smith

and Waterman, 1981) and many other types of sequence analysis algorithms.

In practice it is being used daily by members of the computational genomics

group, and has allowed group members to perform very large analyses with-

out having to adapt their scripts for working on large supercomputers or pro-

cessor farms. The most common form of the script is called blast-parallel.pl

and is a combination of the parallel.pl, htBlast.pl and parse.pl scripts. This

allows the user to perform a large parallel BLAST analysis by typing in a

simple one line command in UNIX that is very similar to the command-line

invocation of simple single-sequence BLAST.
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5.5.3 lsfBlast.pl

The comparison described in Section 3.3 involved a total of 2×1011 individual

BLAST analyses. An analysis of this size would take over a year on a typical

workstation, and weeks or months using the parallel.pl script described ear-

lier. A powerful 400 node Compaq Alpha cluster (used for Ensembl human

genome assembly) was used in this case for rapid parallel BLAST analysis.

Due to the number of machines involved, the commercial ’Load Sharing

Facility’ (LSF) package was installed on this machine. This package consists

of a central daemon which allocates jobs, and a job management daemon on

each of the 400 nodes. It is possible using lsf commands to submit a job

or jobs to a queue on any machine. These queued jobs will eventually be

started on one of the 400 machines by the master daemon.

Even using a commercial job scheduling and distribution package, it is

still non-trivial to perform a BLAST analysis of this size. For this reason

a separate script called lsfBlast.pl was written to perform very large-scale

analyses on large supercomputers using the LSF package. The lsfBlast.pl

program is written in Perl and works as follows:

1. We begin with a database of 500,000 protein sequences in FASTA for-

mat

2. A copy of this database is formatted for BLAST and distributed to

local storage on each of the 400 machines (nodes) using the UNIX rdist

tool.

3. Another local copy of the database is split into 400 pieces using the

chopper.pl script.

4. Each of these 400 query sets is then filtered for compositional bias using

the CAST package, which is described in Section 5.1 (Promponas et al.,

2000).

5. A call is made to LSF using the bsub command to start 400 separate

jobs on the machine. Each LSF job submitted can be described as

follows:

(a) Copy one of the 400 subsets to a free node.

(b) Call the BLASTp program to search this subset against the database

copied previously to local storage.

200



(c) Automatically parse the output from BLASTp using the parse.pl

script, then compress the final result with gzip.

(d) Finally, copy this results file back to the submission machine.

6. The final step is to concatenate each of the resulting output files from

each separate LSF job and check these results for errors.

7. The final parsed output file for all BLAST runs is then ready for de-

compression and analysis.
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Conclusions

The enormous quantities of biological sequence data being produced repre-

sent a wealth of information. In this thesis I have described a number of

approaches which seek to make use of these data for the large-scale func-

tional and evolutionary analysis of proteins. The guiding philosophy for this

research has been the development of tools which are as robust and auto-

matic as possible. The quantities of data now available for biological research

necessitate that methods should not require manual intervention in order to

work successfully.

At one level, I have presented two novel algorithms for the classification of

proteins into related evolutionary groups, or protein families. These families

are useful tools for assigning function to proteins, and for conducting funda-

mental research into genome evolution. The GeneRAGE algorithm provides

detailed and accurate clustering, tailored for bacterial genomes, while the

Tribe-MCL algorithm is designed to handle much larger (and more complex)

eukaryotic genomes. The success of these methods has allowed many inter-

esting experiments to be performed which seek to explore the evolution of

protein function in complete genomes.

On another level, the DifFuse tool was developed to determine functional

associations or even direct physical interactions between proteins which ex-

hibit little or no sequence similarity. This method relies on the detection

of gene-fusion events in complete genomes to infer functional links between

proteins. The method belongs to a family of approaches which have recently

proved successful for computational genome research. These methods detect

functional links between proteins by analysing the genomic context of genes

and proteins in complete genomes. This method has proved very successful

for prediction of protein-protein interaction networks and I am very much

looking forward to validating these results more fully, when accurate high-

throughput experimental and computational technologies for the prediction
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of protein-protein interactions reach maturity.

During this work some novel and potentially interesting results were pro-

duced. I have striven to make this information freely available and easy to

access by others. While the goal has not explicitly been to create computa-

tional services for the biological community, I intend to maintain and help

curate a number of projects that have been described in this thesis.

The Tribes database represents and important and potentially very useful

resource for the scientific community, and it is my intention to maintain,

improve and update this database over the coming years. Other projects

such as the Complete Genomes Database, were developed specifically for this

work, but also represent potentially very useful projects that will hopefully

be maintained.

I would like to believe that some of the other smaller tools and methods

developed, such as BioLayout will also prove useful in the field. BioLayout

has already attracted a lot of attention, as it is one of a very small number

of bioinformatics visualisation tools. I believe that data visualisation will

become more and more important over the coming years, as the flood of

genomic data rapidly increases.

It has been a rewarding and enjoyable experience working at the European

Bioinformatics Institute. The Wellcome Trust Genome Campus is home to

more than 800 people, and the opportunity to meet researchers with such

diverse backgrounds and nationalities has been a stimulating experience. I

believe that I have learned a great deal from meeting people and exchanging

ideas during my time on campus.
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Appendix B

CGD and Tribes Database
Schema

The Complete Genomes Database (CGD) and the Tribes database are linked
together into a single MySQL entity. The MySQL table definitions are shown
in this Appendix, together with an Entity Relationship (ER) diagram (Figure
B.1) illustrating how the individual tables link together. These databases
are populated separately using two Perl scripts which utilise the DBI and
DBD::mysql modules for database access. Both scripts are fully listed at the
end of this appendix.

The initial population of CGD requires a FASTA file containing sequences
from a complete genome. The CGD database is populated by a Perl script
called add genome.pl. This script takes input from the user then automat-
ically generates unique identifiers for each sequence and stores them in the
database. Sequences are stripped of non-standard characters such as carriage
returns and ’*’ or ’\’. The current set of 74 genomes that have been indexed
in the CGD database is shown on the following page.

Population of the Tribes database requires clustering results from the
Tribe-MCL algorithm, results from BLAST and automatically generated con-
sensus annotations derived from the RLCS algorithm (not listed). All this
processing is handled by the add families.pl Perl script which is fully listed
at the end of this Appendix.

206



The Set of 74 Complete Genomes, currently indexed in CGD.

+--------------+----------------------------------------------+-------------+---------+----------------+

| species_code | fullname | total_genes | size_mb | date_sequenced |

+--------------+----------------------------------------------+-------------+---------+----------------+

| AAEO-VF5 | Aquifex aeolicus, VF5 | 1553 | 1.55 | 26/03/1998 |

| AFUL-DSM | Archaeoglobus fulgidus, DSM4304 | 2409 | 2.18 | 27/11/1997 |

| APER-XK1 | Aeropyrum pernix, K1 | 2694 | 1.67 | 30/04/1999 |

| ATHA-XXX | Arabidopsis thaliana | 25761 | 115.43 | 14/12/2000 |

| ATUM-C58 | Agrobacterium tumefaciens, C58 | 5299 | 5.66 | 17/08/2001 |

| BBUR-B31 | Borrelia burgdorferi, B31 | 1639 | 1.23 | 11/12/1997 |

| BHAL-C12 | Bacillus halodurans, C-125 | 4066 | 4.20 | 01/11/2000 |

| BMEL-M16 | Brucella melitensis, M16 | 3198 | 3.29 | 08/01/2002 |

| BSUB-168 | Bacillus subtilis, 168 | 4093 | 4.21 | 20/11/1997 |

| BUCH-APS | Buchnera sp., APS | 575 | 0.64 | 07/09/2000 |

| CACE-ATC | Clostridium acetobutylicum, ATCC 824 | 3916 | 4.13 | 15/08/2001 |

| CCRE-XXX | Caulobacter crescentus, CB15 | 3737 | 4.02 | 27/03/2001 |

| CELE-XXX | Caenorhabditis elegans | 19957 | 97.00 | 11/12/1998 |

| CJEJ-NCT | Campylobacter jejuni, NCTC 11168 | 1634 | 1.64 | 10/02/2000 |

| CPER-X13 | Clostridium perfringens, str. 13 | 2723 | 3.03 | 22/01/2002 |

| CPNE-AR3 | Chlamydia pneumoniae, AR39 | 1119 | 1.23 | 15/03/2000 |

| CPNE-CWL | Chlamydia pneumoniae, CWL029 | 1052 | 1.23 | 01/04/1999 |

| CPNE-J13 | Chlamydia pneumoniae, J138 | 1070 | 1.23 | 15/06/2000 |

| CTRA-MOP | Chlamydia trachomatis, MoPn | 921 | 1.07 | 15/03/2000 |

| CTRA-SVD | Chlamydia trachomatis, serovar D | 894 | 1.04 | 23/10/1998 |

| DMEL-XXX | Drosophila melanogaster | 13054 | 137.00 | 24/03/2000 |

| DRAD-XR1 | Deinococcus radiodurans, R1 | 3116 | 3.28 | 19/11/1999 |

| ECOL-EDL | Escherichia coli O157:H7, EDL933 | 5349 | 4.10 | 25/01/2001 |

| ECOL-MG1 | Escherichia coli, MG1655 | 4290 | 4.64 | 05/09/1997 |

| ECOL-RIM | Escherichia coli 0157:H7, RIMD0509952 | 5447 | 5.59 | 28/02/2001 |

| HALO-NRC | Halobacterium sp., NRC-1 | 2605 | 2.01 | 24/10/2000 |

| HINF-KW2 | Haemophilus influenzae, KW20 | 1707 | 1.83 | 28/07/1995 |

| HPYL-266 | Helicobacter pylori, 26695 | 1575 | 1.67 | 07/08/1997 |

| HPYL-J99 | Helicobacter pylori, J99 | 1491 | 1.64 | 14/01/1999 |

| HSAP-XXX | Homo sapiens | 27333 | 2900.00 | 15/02/2001 |

| LINN-CLI | Listeria innocua, CLIP 11262 | 2968 | 3.01 | 26/10/2001 |

| LLAC-IL1 | Lactococcus lactis, IL1403 | 2266 | 2.36 | 02/05/2001 |

| LMON-EGD | Listeria monocytogenes, EGD-e | 2846 | 2.94 | 26/10/2001 |

| MGEN-G37 | Mycoplasma genitalium, G-37 | 479 | 0.58 | 20/10/1995 |

| MJAN-DSM | Methanococcus jannaschii, DSM 2661 | 1773 | 1.66 | 23/08/1996 |

| MLEP-XTN | Mycobacterium leprae, TN | 1605 | 3.23 | 22/02/2001 |

| MLOT-MAF | Mesorhizobium loti, MAFF303099 | 7281 | 7.60 | 03/12/2000 |

| MPNE-M12 | Mycoplasma pneumoniae, M129 | 689 | 0.82 | 15/11/1996 |

| MPUL-UAB | Mycoplasma pulmonis, UAB CTIP | 782 | 0.96 | 15/05/2001 |

| MTHE-DEL | Methanobacterium thermoautotrophicum, deltaH | 1871 | 1.75 | 15/11/1997 |

| MTUB-CDC | Mycobacterium tuberculosis, CDC1551 | 4203 | 4.40 | 25/04/2001 |

| MTUB-H37 | Mycobacterium tuberculosis, Hv37 | 3924 | 4.41 | 11/06/1998 |

| NMEN-MC5 | Neisseria meningitidis, MC58 | 2081 | 2.27 | 10/03/2000 |

| NMEN-Z24 | Neisseria meningitidis, Z2491 | 2065 | 2.18 | 30/03/2000 |

| NOST-PCC | Anabaena sp., strain PCC 7120 | 6129 | 7.21 | 31/10/2001 |

| PABY-GE5 | Pyrococcus abyssi, GE5 | 1765 | 1.76 | 22/12/1999 |

| PAER-IM2 | Pyrobaculum aerophilum, IM2 | 2605 | 2.22 | 22/01/2002 |

| PAER-PAO | Pseudomonas aeruginosa, PAO1 | 5570 | 6.26 | 31/08/2000 |

| PHOR-OT3 | Pyrococcus horikoshii, OT3 | 2061 | 1.74 | 30/04/1998 |

| PMUL-PM7 | Pasteurella multocida, Pm70 | 2014 | 2.25 | 13/03/2001 |

| RCON-MAL | Rickettsia conorii, str. Malish 7 | 1374 | 1.27 | 14/09/2001 |

| RPRO-MAD | Rickettsia prowazekii, Madrid E | 834 | 1.11 | 12/11/1998 |

| RSOL-XXX | Ralstonia solanacearum | 5116 | 5.70 | 11/12/2001 |

| SAUR-MU5 | Staphylococcus aureus, Mu50 | 2748 | 2.88 | 21/04/2001 |

| SAUR-N13 | Staphylococcus aureus, N315 | 2624 | 2.81 | 21/04/2001 |

| SCER-S28 | Saccharomyces cerevisiae, S288C | 6357 | 12.07 | 12/06/1997 |

| SENT-CT1 | Salmonella enterica serovar Typhi, CT18 | 4763 | 5.10 | 25/10/2001 |

| SENT-LT2 | Salmonella enterica serovar Typhimurium, LT2 | 4553 | 4.95 | 25/10/2001 |

| SMEL-102 | Sinorhizobium meliloti, strain 1021 | 6206 | 6.68 | 27/07/2001 |

| SPNE-TIG | Streptococcus pneumoniae, TIGR4 | 2140 | 2.20 | 20/07/2001 |

| SPNE-XR6 | Streptococcus pneumoniae, R6 | 2043 | 2.04 | 01/10/2001 |

| SPOM-XXX | Schizosaccharomyces pombe | 4945 | 13.80 | 21/02/2002 |

| SPYO-SF3 | Streptococcus pyogenes GAS, M1 | 1696 | 1.85 | 10/04/2001 |

| SSOL-XP2 | Sulfolobus solfataricus, P2 | 2996 | 2.99 | 03/07/2001 |

| STOK-XX7 | Sulfolobus tokodaii, str. 7 | 2826 | 2.69 | 31/08/2001 |

| SYNE-PCC | Synechocystis sp., PCC6803 | 3167 | 3.57 | 30/06/1996 |

| TACI-DSM | Thermoplasma acidophilum, DSM1728 | 1478 | 1.56 | 28/09/2000 |

| TMAR-MSB | Thermotoga maritima, MSB8 | 1849 | 1.86 | 27/05/1999 |

| TPAL-NIC | Treponema pallidum, Nichols | 1030 | 1.14 | 17/07/1998 |

| TVOL-GSS | Thermoplasma volcanium, GSS1 | 1526 | 1.58 | 20/12/1999 |

| UURE-SV3 | Ureaplasma urealyticum, serovar 3 | 613 | 0.75 | 12/10/2000 |

| VCHO-N16 | Vibrio cholerae, El Tor N16961 | 3835 | 4.00 | 03/08/2000 |

| XFAS-9A5 | Xylella fastidiosa, 9a5c | 2830 | 2.68 | 13/07/2000 |

| YPES-CO9 | Yersinia pestis, CO92 | 4093 | 4.82 | 04/10/2001 |

+--------------+----------------------------------------------+-------------+---------+----------------+
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Figure B.1: Entity Relationship (ER) Diagram for the CGD and Tribes
databases. Relationships between tables are shown with arrows. Each index
is shown with a coloured circle.

+----------------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------------+------------------+------+-----+---------+----------------+

| genome_id | int(10) unsigned | | PRI | 0 | auto_increment |

| fullname | varchar(100) | | | | |

| source | varchar(40) | | | | |

| date_sequenced | varchar(10) | | | | |

| species_code | varchar(8) | | | | |

| total_genes | int(10) | YES | | NULL | |

| tax_class | varchar(200) | | | | |

| source_url | varchar(150) | YES | | NULL | |

| size_mb | float(10,2) | YES | | NULL | |

| curator | varchar(8) | | | | |

| date_added | varchar(40) | | | | |

+----------------+------------------+------+-----+---------+----------------+

Figure B.2: MySQL table definition for the Genomes table
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+------------+------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+------------------+------+-----+---------+-------+

| protein_id | varchar(15) | | PRI | | |

| genome_id | int(10) unsigned | | MUL | 0 | |

| old_name | varchar(40) | YES | | NULL | |

| length | int(10) | YES | | NULL | |

| sequence | mediumtext | YES | | NULL | |

| annotation | varchar(250) | YES | | NULL | |

| family_id | varchar(40) | YES | | NULL | |

+------------+------------------+------+-----+---------+-------+

Figure B.3: MySQL table definition for the Proteins table

+------------+------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+------------------+------+-----+---------+-------+

| protein_id | int(10) unsigned | | PRI | 0 | |

| accession | varchar(20) | | MUL | | |

| old_name | varchar(20) | YES | | NULL | |

| genome | varchar(100) | YES | | NULL | |

| tax_class | varchar(200) | YES | | NULL | |

| length | int(10) | YES | | NULL | |

| sequence | mediumtext | YES | | NULL | |

| annotation | varchar(250) | YES | | NULL | |

| family_id | varchar(40) | YES | | NULL | |

+------------+------------------+------+-----+---------+-------+

Figure B.4: MySQL table definition for the Swiss Proteins table

+---------------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+---------------+------------------+------+-----+---------+----------------+

| feature_id | int(10) unsigned | | PRI | 0 | auto_increment |

| protein_id | int(10) unsigned | | | 0 | |

| feature_name | varchar(15) | | | | |

| feature_type | varchar(40) | YES | | NULL | |

| feature_start | int(11) | YES | | NULL | |

| feature_end | int(11) | YES | | NULL | |

| feature_score | double(16,4) | YES | | NULL | |

+---------------+------------------+------+-----+---------+----------------+

Figure B.5: MySQL table definition for the Feature table
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+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| protein_id | varchar(15) | | PRI | | |

| family_id | varchar(40) | | MUL | | |

+------------+-------------+------+-----+---------+-------+

Figure B.6: MySQL table definition for the Family Members table

+--------------------+------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------------------+------------------+------+-----+---------+-------+

| family_id | varchar(40) | | PRI | | |

| family_size | int(10) unsigned | YES | | NULL | |

| annotation | varchar(250) | YES | | NULL | |

| annotation_score | int(3) unsigned | YES | | NULL | |

| average_similarity | int(3) unsigned | YES | | NULL | |

| family_release | int(10) unsigned | YES | | NULL | |

| archeal | int(1) unsigned | YES | | 0 | |

| bacterial | int(1) unsigned | YES | | 0 | |

| eukaryal | int(1) unsigned | YES | | 0 | |

| viral | int(1) unsigned | YES | | 0 | |

+--------------------+------------------+------+-----+---------+-------+

Figure B.7: MySQL table definition for the Families table

210



add genomes.pl

#!/ebi/mig/src/bin/perl

$|=1;

#use lib "/ebi/mig/src/lib/perl5/site_perl";

use DBI;

use DBD::mysql;

use Term::ReadLine;

use Term::ReadKey;

$term = new Term::ReadLine ’ProgramName’;

$database="CGD";

$user="root";

$machine="maine.ebi.ac.uk";

system("clear");

print "-------------------------------------------------------------------\n";

print "AddGenome v0.9\n";

print "\n";

print "Adds a Genome to the CGD MySQL Database\n";

print "-------------------------------------------------------------------\n\n";

if (!$ARGV[0])

{

print "Usage: addgenome genome.fasta\n";

print "\n";

print "Where genome.fasta is a FASTA formated flatfile of all peptides in a genome\n\n";

exit(0);

}

if (!-e $ARGV[0])

{

die "Error: File ($ARGV[0]) does not exist\n";

}

ReadMode 4;

$accesspassword = $term->readline("Please Enter Password:");

ReadMode 0;

print "\n\n";

$dbh = DBI->connect("DBI:mysql:$database:$machine", $user, $accesspassword) or die "Cannot Connect\n";

$statement="LOCK TABLES genomes WRITE, proteins WRITE, features WRITE\;";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute or die "cant execute the query: $sth->errstr";

$statement="SELECT COUNT(*) FROM genomes\;";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute or die "cant execute the query: $sth->errstr";

$total_genomes= ($sth->fetchrow_array())[0];

$total_genomes++;

$prompt="Please enter the fullname of this genome:";

while (!$fullname)

{
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$_ = $term->readline($prompt);

if (length($_) > 2)

{

$fullname=$_;

}

else

{

print "Error please try again\n";

}

}

$prompt="Please enter the date this genome was published (Format DD/MM/YYYY):";

while (!$date)

{

$_ = $term->readline($prompt);

if((/([0-9]{2})\/([0-9]{2})\/[0-9]{4}/) && ("$1"<=31) && ("$2" <=12))

{

$date=$_;

}

else

{

print "Error please try again\n";

}

}

$prompt="Please enter the source of this data (eg. NCBI, TIGR, University of Washington etc..:";

while (!$source)

{

$_ = $term->readline($prompt);

if (length($_) > 2)

{

$source=$_;

}

else

{

print "Error please try again\n";

}

}

print "\n\n\nPlease enter a 7 letter species/strain code for this species.\n";

print "The first four letters of the code indicate the species.\n";

print "The last three represent the strain.\n\n";

print "Seperate the species and strain codes with ’-’\n\n";

print "A default code will be automatically generated. The first letter comes from the genus, the\n";

print "next 3 letters from the species and it assumes that the strain is unknown and attaches ’XXX’.\n";

print "If you accept this code please press - enter.\n";

print "If the strain of the species is known please enter the code for the strain.\n";

print "If it is a 2-letter code place\n";

print "an ’X’ before the 2 letters.\n\n";

print "Examples:\n\n";

print " Saccharomyces cerevisiae SCER-XXX\n";

print " Caenorhabditis elegans CELE-XXX\n";

print " Helicobacter pylori - Strain J99 HPYL-J99\n";

print " Escherchia coli - Strain K5 ECOL-XK5\n\n\n\n\n";

while (!$genome_code)

{
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$automatic_code=uc(join("",substr((split(" ",$fullname))[0],0,1),

substr((split(" ",$fullname))[1],0,3),"-XXX"));

$prompt="Enter Species Code (XXXX-YYY): [Default: $automatic_code]";

$temp= $term->readline($prompt);

if (!$temp)

{

$temp=$automatic_code;

}

$statement="SELECT species_code from genomes where species_code =\"$temp\"";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute or die "cant execute the query: $sth->errstr";

$used_already = ($sth->fetchrow_array())[0];

if (!$used_already)

{

$_=$temp;

if ( (length($temp) == 8 ) && (/[A-Za-z]{4}-.{3}/))

{

$genome_code=uc($temp);

}

else

{

print "Error: Incorrect Species/Strain code entered\n";

}

}

else

{

print "\n\nError: This Species/Strain code is already in use, please try again..\n\n";

}

}

$prompt="Please enter the full taxonomic string for the species - Genus Species, Strain:";

while (!$taxon)

{

$_ = $term->readline($prompt);

if (length($_) > 2)

{

$taxon=$_;

}

else

{

print "Error please try again\n";

}

}

$prompt="Please enter the source URL (either HTTP:// or FTP://) [Optional]:";

$source_url=NULL;

$temp = $term->readline($prompt);

if ($temp)

{

$source_url="\"$temp\"";

}

$prompt="Please enter the Size in Megabases of this species (Eg 14.23) [Optional]:";

$genome_size=NULL;
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$temp = $term->readline($prompt);

if ($temp)

{

$genome_size="\"$temp\"";

}

$curator=$ENV{USER};

$current_date=‘date +’%d/%m/%Y %H:%M:%S’‘;

chop($current_date);

print "\nSubmission Information\n";

print "User: $curator ($current_date)\n";

print "-----------------------------------------------------------------------\n";

print "The values you have entered are:\n\n";

print "Organism: $fullname\n";

print "Source: $source\n";

print "Date: $date\n";

print "Species Code: $genome_code\n";

print "Taxonomic Classification: $taxon\n";

print "Source URL: $source_url\n";

print "Genome Size (Mb): $genome_size\n\n";

print "Are these values correct- yes/no:";

while (($values ne ’yes’) && ($values ne ’no’))

{

$values=$term->readline(’[yes/no]>’);

if($values eq "no")

{

exit;

}

}

#PRINT LOG FILE

open (FILEOUT,"> submission.log");

print FILEOUT "\nSubmission Information\n";

print FILEOUT "User: $curator ($current_date)\n";

print FILEOUT "-----------------------------------------------------------------------\n";

print FILEOUT "The values you have entered are:\n\n";

print FILEOUT "Organism: $fullname\n";

print FILEOUT "Source: $source\n";

print FILEOUT "Date: $date\n";

print FILEOUT "Species Code: $genome_code\n";

print FILEOUT "Taxonomic Classification: $taxon\n";

print FILEOUT "Source URL: $source_url\n";

print FILEOUT "Genome Size (Mb): $genome_size\n\n";

print FILEOUT "Are these values correct- yes/no:";

close FILEOUT;

$statement="INSERT INTO genomes VALUES ($total_genomes,\"$fullname\",\"$source\",

\"$date\",\"$genome_code\",NULL,\"$taxon\",$source_url,$genome_size,\"$curator\",\"$current_date\")\;";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute or die "cant execute the query: $sth->errstr";

print "Done\n";

open (FILE,$ARGV[0]) or die "Error: cannot open FASTA file\n";

while (<FILE>)

{

chop($_);

214



if (/^>(\S+)(.*)/)

{

$total_proteins++;

$protein_id="$genome_code";

$protein_id=sprintf("%s-%0.6d",$genome_code,$total_proteins);

$old_id{$protein_id}=$1;

$annotation{$protein_id}=$2;

if (length($annotation{$protein_id}) > 250)

{

$annotation{$protein_id}=substr($annotation{$protein_id},0,250);

}

$annotation{$protein_id}=~ s/\"//g;

$annotation{$protein_id}=~ s/\’//g;

}

else

{

$sequences{$protein_id}=join("",$sequences{$protein_id},$_);

}

}

foreach $sequence (sort(keys(%sequences)))

{

$counter++;

$percentage=sprintf("%5s",(($counter/$total_proteins)*100));

print "$percentage\n";

$peptide=$sequences{$sequence};

$length=length($peptide);

$peptide=~s/(.{60})/$1\n/g;

$statement="INSERT INTO proteins VALUES (\"$sequence\",$total_genomes,

\"$old_id{$sequence}\",\"$length\",\"$peptide\",\"$annotation{$sequence}\",\"\")\;";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute or die "cant execute the query: $sth->errstr";

}

$statement="SELECT count(*) from proteins where genome_id=\"$total_genomes\"\;";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute or die "cant execute the query: $sth->errstr";

$total_proteins= ($sth->fetchrow_array())[0];

print "Added $total_proteins\n";

$statement="UPDATE genomes SET total_genes=\"$total_proteins\" WHERE genome_id=\"$total_genomes\"\;";

print "$statement\n";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute or die "cant execute the query: $sth->errstr";

$statement="UNLOCK TABLES\;";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute or die "cant execute the query: $sth->errstr";

$dbh->disconnect;

print "Add Genome Complete\n";
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add families.pl

#!/ebi/mig/src/bin/perl

$|=1;

use DBI;

use DBD::mysql;

use Term::ReadLine;

use Term::ReadKey;

require ’consensus-annotate2.pl’;

$term = new Term::ReadLine ’ProgramName’;

$database="CGD";

$user="root";

$machine="maine.ebi.ac.uk";

system("clear");

print "-------------------------------------------------------------------\n";

print "AddFamilies v1.0\n";

print "\n";

print "Adds Finished and Annotated MCL families to the Database\n";

print "-------------------------------------------------------------------\n\n";

ReadMode 4;

$accesspassword = $term->readline("Please Enter Password for the database:");

ReadMode 0;

print "\n\n";

print "READING Species Descriptions\n";

open (PROC,"echo \"select proteins.protein_id, genomes.tax_class from proteins,

genomes where proteins.genome_id=genomes.genome_id\"| mysql -u cgg -h maine CGD|");

while (<PROC>)

{

chop($_);

@array=split(" ",$_);

$hash{$array[0]}=$array[1];

}

close PROC;

open (PROC,"echo \"select accession, tax_class from swissproteins\" | mysql -u cgg -h maine CGD|");

while (<PROC>)

{

chop($_);

@array=split(" ",$_);

$hash{$array[0]}=$array[1];

}

print "Done!\n";

print "Regenerating Families Table:";

$dbh = DBI->connect("DBI:mysql:$database:$machine", $user, $accesspassword) or die "Cannot Connect\n";

$statement="drop table families\;";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute;

$statement="drop table family_members\;";

$sth = $dbh->prepare($statement) or die "Can’t prepare $statement: $dbh->errstr\n";

$rv = $sth->execute;
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$dbh->disconnect;

print "Done\n\n\n";

open (PROC,"|cat ../sql/families.sql | /sw/arch/bin/mysql -u root -h maine -p$accesspassword CGD");

close PROC;

open (PROC,"|cat ../sql/familymembers.sql | /sw/arch/bin/mysql -u root -h maine -p$accesspassword CGD");

close PROC;

open (PROC2,"|/sw/arch/bin/mysql -u root -h maine -p$accesspassword CGD");

$families=0;

open (FILE,$ARGV[0]);

while (<FILE>)

{

if (/^(\d+)\s+(\S+)\s+(.*)/)

{

push(@{$familieshash{$1}},$2);

if ($3)

{

push(@{$annotations{$1}},uc($3));

}

$count{$1}++;

}

}

foreach $cluster (sort numeric(keys(%familieshash)))

{

$archea=$bacteria=$eukaryota=$viruses=0;

$average=0;

$av_count=0;

$go1="";

$go2="";

foreach $protein (@{$familieshash{$cluster}})

{

if ($go1 eq "")

{

$go1="protein1=\"$protein\"";

}

else

{

$go1=join(" OR ",$go1,"protein1=\"$protein\"");

}

if ($go2 eq "")

{

$go2="protein2=\"$protein\"";

}

else

{

$go2=join(" OR ",$go2,"protein2=\"$protein\"");

}

}

$statement="select protein1,protein2,percen_identity from similarity

where ($go1) AND ($go2)\n";

open (FETCH,"echo \’$statement\’ | mysql -u cgg -h maine CGD_SIM|");

while (<FETCH>)

{

chop($_);

@array=split(" ",$_);

$protein1=$array[0];

$protein2=$array[1];

$identity=$array[2];
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$identity=~s/\%//g;

if (($protein1 ne "protein1") &&($protein1 ne $protein2))

{

$average+=$identity;

$av_count++;

}

}

if ($av_count != 0)

{

$average=$average/$av_count;

}

else

{

$average=100;

}

foreach $protein (@{$familieshash{$cluster}})

{

if ($hash{$protein} eq ’Archaea;’)

{

$archea++;

}

elsif ($hash{$protein} eq ’Bacteria;’)

{

$bacteria++;

}

elsif ($hash{$protein} eq ’Eukaryota;’)

{

$eukaryota++;

}

elsif ($hash{$protein} eq ’Viruses;’)

{

$viruses++;

}

else

{

print "Error!: $protein -> No Tax Class -> God help us!\n";

}

}

$families++;

$family_size=$#{$familieshash{$cluster}}+1;

$family_id=sprintf("TR-%10.10d",$families);

print "$family_id\t($family_size members)\t$cluster\n";

@temp=consensus_annotate(@{$annotations{$cluster}});

print "$temp[0]\n";

if ($temp[0])

{

$annotation=$temp[0];

$annotation=~s/\’/ /g;

$ann_score=$temp[1];

}

else

{

die "Error: No annotation returned\n";

}

$statement="INSERT INTO families VALUES(\"$family_id\",$family_size,\’$annotation\’,

$ann_score,\"$average\",\"0.1\",$archea,$bacteria,$eukaryota,$viruses)\;";
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print PROC2 "$statement\n";

foreach $protein (@{$familieshash{$cluster}})

{

$statement="INSERT INTO family_members VALUES(\"$protein\",\"$family_id\")\;";

print PROC2 "$statement\n";

}

}

close PROC2;

sub numeric {$a<=>$b}
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