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Abstract 
 
Background  
 
Several in silico methods exist that were developed to predict protein interactions from 
the copious amount of genomic and proteomic data. One of these methods is Domain 
Fusion, which has proven to be effective in predicting functional links between proteins.  
 
Results 
 
Analyzing the structures of multi-domain single-chain peptides, we found that domain 
pairs located less than 30 residues apart on a chain are almost certain to share a physical 
interface. The majority of these interactions are also conserved across separate chains. 
We make use of this observation to improve domain fusion based protein interaction 
predictions, and demonstrate this by implementing it on a set of Saccharomyces 
cerevisiae proteins.  
 
Conclusion 
 
We show that existing structural data supports the domain fusion hypothesis. Empirical 
information from structural data also enables us to refine and assess domain fusion based 
protein interaction predictions. These interactions can then be integrated with 
downstream biochemical and genetic assays to generate more reliable protein interaction 
data sets. 
 



Background 
 
Networks of interacting molecules drive every process in biological cells. Proteins 
dominate these networks, some of which involve transient interactions such as signal 
transduction cascades and ligand-receptor interactions, while others form more 
permanent molecular machineries such as ribosomes and polymerases. Unraveling these 
networks and interactions will not only help us better understand complex cellular 
processes, but also enable us to make inferences about the function of individual proteins 
through ‘guilt-by-association’ [1]. 
  
Over the last few years, high-throughput interaction detection assays have been 
introduced and refined to complement the traditional genetic and biochemical techniques. 
High-throughput mass spectrometry protein complex identification (reviewed by Pandey 
and Mann [2]), and yeast two-hybrid systems [3] are examples of these. The success of 
these techniques is well illustrated in the budding yeast Saccharomyces cerevisiae, in 
which networks of its interacting proteome where constructed using genome-wide 
screens. [4-7] 
  
The wealth of genomic and protein sequences, the increase of 3D structures of protein 
complexes, together with the deluge of microarray expression data, has provided 
researchers with an overwhelming body of information that can be used to infer both 
functional as well as interaction linkages. Clearly, bioinformatics and computational 
biology are necessary tools for delineating this information. In response to the data 
explosion, several in silico methods have recently been developed to predict associations 
from these data.  
 
Phylogenetic profiles focus on the co-occurrences of genes across several organisms. By 
studying the pattern of evolutionary conservation between sets of genes in different 
organisms (phylogenetic distribution), it has been shown that these phylogenetic profiles 
can be successfully used to infer both localization as well as functional association 
between proteins [8-10]. Protein domains that are found fused together within a protein 
are frequently involved in the same process, and in many examples proven to be 
physically interacting. This phenomenon is the basis for the domain fusion analysis, 
which can be used to predict protein interactions in cases where the fused domain pair is 
found independently across separate protein chains [11, 12]. 
 
Structural data has also been mined and analyzed for residue patterns within interfaces 
between pairs of interacting proteins. These are then used to train learning models for ab 
initio categorization and prediction of protein interactions [13, 14]. Jansen and co-
workers [15] illustrated how expression profiles from mRNA expression data could be 
harnessed and used as an effective source for the prediction of protein interactions. 
 
A number of groups have compared and reported on the protein interaction datasets that 
are emerging from the various genome-scale biochemical, genetic and in silico 
experiments [16-18]. All of them drew a similar conclusion; high-throughput methods 
produce little overlapping results, and taken singularly, each technique has a high error 



rate (false positive and false negative). Each of these methods has their own specific 
strength and weakness, and covers a separate subset of interactions. Integrating the 
various result sets together, allows one to piece together a map of the interacting 
proteome that is more reliable with higher accuracy, and more informative with higher 
coverage. 
 
The study by von Mering and co-workers [17] showed that in silico methods have higher 
coverage and higher accuracy than the majority of biochemical/genetics methods, second 
only to high-throughput mass spectrometry. The use of sensible strategies and filters has 
allowed in silico analyses to provide better performance. On top of that, these methods 
are less biased towards abundant proteins. In silico analyses are indispensable, and 
further improvements of these methods to make them more accurate will provide a 
cleaner set of data for downstream biochemical/genetic studies.  
 
In this study, we make use of an empirical observation that domain pairs, which lie in 
close proximity on a protein chain tend to interact, to refine the domain fusion analysis. 
This way, we aim to improve the accuracy of the domain fusion analysis. 
 
Domain fusion 
 
The basis for domain fusion (or gene fusion) is the observation that certain proteins 
(termed the Rosetta stones) in a given species are found to consist of a fusion between 
two separate proteins in another species. Through fusion, the entropy of dissociation 
between the two proteins is reduced, and it is hypothesized that in all likelihood, these 
two separate proteins share a functional association, if not a physical interaction [11, 12].   
 
Domains have been described as the primary building blocks of proteins [19], 
recombining in various permutations, resulting in proteins of completely different 
functions [20]. In our implementation of the domain fusion analysis, we chose the 
representation of proteins being composed of domains, separated by linkers on a peptide 
chain.  
 
In this paper, we make use of existing structural data to support the domain fusion 
hypothesis. We interrogated known 3D structures for evidence of inter-domain physical 
interactions on the same chain. We investigated and concluded that there was an 
association between the distances at which domains are spaced apart on the chain, and the 
propensity for a domain-pair to interact. 
  
We also show that domain pairs, located in close proximity on a protein chain, are likely 
to interact even when found residing on different chains, hence proving that the domain 
fusion hypothesis is valid.  
 
Finally, we demonstrate that peptide chains with closely spaced domains are likely to 
make better Rosetta stones, and we make use of this observation to improve domain 
fusion based protein interaction predictions. 



 
 
Results 
 
Supporting the domain fusion hypothesis 
 
The available structural data indicate that intra-chain domain pairs, which lie in close 
proximity on a peptide chain, tend to physically interact with one another. The mean 
distances of interacting intra-chain domain pairs are smaller than ones which do not 
interact; interacting pairs are on the average 50 residues apart, while non-interacting pairs 
have a mean distance of 166 residues between them. 
 
In order to verify the correlation between distance and interaction, we made use of 
contingency tables and the chi-squared test statistic. For a set of inter-domain distances 
ranging from 5 residues to 200 residues, we constructed 2x2 contingency tables that 
classified domain pairs according to two criterions; 1) whether or not they are separated 
by a distance no greater than a threshold, and 2) whether or not the domain pair is 
interacting. The chi-squared value of each table was used as a statistic to test the null 
hypothesis (H0): Domains pairs separated by no greater than a predefined distance and 
their tendency to interact were independent. The p-values indicate the probability of 
having the chi-squared test statistic as extreme as, or larger than observed when Ho is 
true.  
 
We found that the contingency table for domain pairs spaced up to 30 residues apart had 
the highest chi-squared value, with a statistically significant p-value of less than 0.001, 
allowing us to confidently reject H0. This trend is noticeable in the chart illustrating the 
proportion of interacting pairs across various inter-pair distances (figure 1). Domain pairs 
located less than 30 residues apart are almost certainly (90%) to be in contact with each 
other, whereas only half (51%) of domain pairs with more than 30 residues separation 
were categorized as physically interacting. The chi-squared value is also overlaid on the 
chart in a dotted line, representing the test statistic from each corresponding contingency 
table. 
 
In order to validate the domain fusion hypothesis, we not only need to show that domain 
pairs on the same chain tend to interact with each other, but importantly, this same 
domain pair will tend to be in contact if they are located independently across separate 
chains of a polypeptide complex. From our data, we noticed that 71% of domain pairs, 
which lie within 30 residues of each other on the same chain, could be found physically 
interacting across separate chains of a complex. In contrast only 38% of domain pairs 
lying greater than 30 residues apart are seen to be in contact within a multi-chain 
complex. Once again, putting this into a contingency table and evaluating the chi-squared 
statistic we reject the null hypothesis (p-value <= 0.001). In other words, there is a 
correlation between domain-pairs spaced less than 30 residues apart on a single peptide 
chain and their tendency to interact across separate chains of a polypeptide complex. 
 
 



 
30 residues criteria applied to Swiss-Prot proteins 
 
We wanted to verify that the 30 residues criteria could be used as a measure to filter and 
improve predictions made using the domain fusion methodology. A set of proteins for the 
budding yeast S. cerevisiae was downloaded from Swiss-Prot, and domain fusion based 
protein interactions were predicted as described in the Methods section. After filtering for 
promiscuous domains, a total of 9279 protein interactions remained, of which 28% or 
2629 were supported by a Rosetta stone with no more than 30 residues between the fused 
domains.  
 
The functional category assigned to each protein in an interacting pair was used to gauge 
the plausibility of the interaction; if two different proteins were found physically 
interacting, one would expect the two proteins to have overlapping functional categories. 
62% of the interacting protein pairs, supported by a 30 residue Rosetta stone, have both 
partners belonging to the same functional category. The same proportion for interacting 
pairs not supported by a 30 residue Rosetta stone is 48%. This 14% difference is 
significant with a p-value of less than 0.001, using a two-sample t-test. 
  



Discussion 
 
In silico methods for predicting protein interactions are not only able to match the 
accuracy of the other genetic, biochemical and biophysical techniques, but also have the 
added advantage of providing higher coverage [17]. Among the in silico methods, 
domain fusion is an attractive technique because it enables a functional link to be drawn 
between two proteins based solely on their primary sequence. Still, large-scale sets of 
high-throughput protein interaction data available today are spurious, more than half of 
them proving to be false positives [17], the challenge remains to improve the quality of 
high throughput protein interaction data sets.  
 
Protein interactions can be classified as either permanent or transient interactions. The 
data from this study were taken from the PDB, where most of the submitted structures are 
results from x-ray crystallography experiments. Consequently, we believe that the vast 
majority of our deduced domain and protein interactions are physical, permanent 
interactions. 
 
Our study of multi-domain, single and multiple-chain protein structures in the PDB gave 
us two results. First of all, it supports the domain fusion hypothesis suggested by 
Marcotte and Enright. Secondly, it allows us to conclude that single chain peptides with 
closely spaced domain pairs make better Rosetta stones, and hence better predictors of 
protein interactions. 
 
Evident from the set of PDB structures we studied, is a correlation between the distance 
separating a pair of domains on a protein chain, and their tendency to physically interact 
with one another. As described by Marcotte and co-workers when they constructed the 
domain fusion hypothesis for evolution of protein interactions, affinity between 
interacting pairs of domains may be enhanced when the domains are fused together on 
the same chain [11]. Consequently, close proximity of the interacting pair on the same 
chain increases the effective local concentration of the two domains, facilitating the 
interaction. The biochemical advantage for such an arrangement would explain the 
tendency for interacting domains to be found close together on a protein chain. Our 
observation that domain pairs located less than 30 residues apart are almost certainly to 
share an interface clearly supports this idea.  
 
Previously, Park and co-workers [21]had observed this figure in an unrelated report. In 
this study, we adopted a different concept of a protein domain - PFAM categories which 
are essentially sequence-based annotations. Analyzing a substantial set of structural data 
from the PDB, we also derive at this similar threshold of 30 residues, and show it to be 
statistically significant. 
 
Conservation of domain Interactions across multi-chain structures 
 
The data from multi-chain PDB structures provide additional support to the domain 
fusion hypothesis, by showing that most of the intra-chain domain interactions are 
similarly represented across separate chains of a complex. This provides additional 



mechanistic evidence that the interaction between the two domains is most probably 
functional and conserved.  
 
To our knowledge, this is the first time structural data has been used to support the 
domain fusion hypothesis. 
 
Functional classification of non-interacting domains in close proximity 
 
We tried to uncover a pattern within the set of closely spaced, yet non-interacting domain 
pairs. We wanted to detect if there was an over-representation of domains from a specific 
molecular functional category in this non-interacting list. This list is displayed in Table 1. 
From the Gene Ontology categories of the domains, it is obvious that a good proportion 
of domains on the list are involved in DNA/RNA processing activities, as well as 
catalytic functions, but we didn’t observe any statistically significant differences when 
comparing this non-interacting set with the sets of domain pairs which interact. This 
could be due to the small number of non-interacting domains in close proximity. 
 
Furthermore, since the interactions we can detect from structural data are more likely to 
be permanent interactions, it is possible that the reason no physical contact is witnessed 
between these proximal domains in structural data is because the domains form transient 
interactions that are not captured in the x-ray crystallography data. 
 
Hot loops and interactions 
 
We also looked for a relation between protein disorder and interacting domain pairs. We 
wanted to see if protein domain pairs which interact on the same chain, tend to be linked 
by a disordered region. To this effect, we used DisEMBL[22]to do the disorder analysis. 
However, we were unable to infer any relationship between disorder and interacting 
domains.  
 
Use of 30 residue criteria to refine domain fusion predictions 
 
Our results from predicting interactions among S. cerevisiae proteins indicate that Rosetta 
stones with domains separated by less than 30 residues do indeed make better domain 
interaction (and hence protein interaction) predictors.  
 
The set of protein interactions inferred from these Rosetta stones are enriched with more 
reliable interactions, as judged by using similar function as a criteria. The total number of 
interactions is reduced to nearly a quarter when employing this method. This allows us to 
conclude that the number of false positives is reduced, increasing the accuracy of the 
prediction. Without needing to employ a hard filter, protein interactions predicted using 
the domain fusion methodology may be ranked according to the quality of the Rosetta 
stones each interaction is inferred from, allowing one to identify a much smaller subset of 
more reliable interactions, and use them for downstream analyses. 
 
 



Conclusions 
 
We have successfully demonstrated the use of current structural data as a resource for 
refining current protein interaction predictions, in particular domain fusion predictions. 
Our data strongly suggests that domain pairs separated by less than 30 residues on a 
peptide chain are almost certainly to physically interact, and this criterion is useful in 
accessing protein interactions predicted from Rosetta stone proteins.  
 
Going forward, the availability of a large number of structures through structural 
genomics programs will facilitate a larger sampling of the domain structure space. New 
patterns may emerge as use of this data becomes available, allowing better predictions to 
be made.  
 
 



Methods 
 
Intra-chain domain interactions 
 
We used domain models from the Protein Family database (PFAM) [23] which were 
mapped onto structures from the Protein Databank (PDB) [24]. The PFAM to PDB 
mappings were obtained from PFAM data files, and we only considered PFAM entries 
that were tagged with the type ‘Domain’. There are a total of 4169 peptide chains in the 
PDB that are annotated with more than one PFAM domain, comprising a total of 504 
unique PFAM domains present within the data set. In order to obtain a non-redundant 
representation of these peptide chains, we took clusters of them based on 50% sequence 
identity, and selected one representative from each cluster. This left us with a set of 565 
3D structures of multi-domain peptide chains, comprising a total of 996 distinct domain 
pairs, of which 478 are unique pairs. 
  
We used the coordinates within the PDB data files to calculate the distances between 
domains, and to determine if they are interacting. Two domains are judged to be 
interacting if they share at least five contacting residue pairs, where contacting residues 
are residue pairs with less than 6Å between their respective alpha-carbon atoms. 
 
Multi-chain interactions 
 
Using a similar approach to the above, we obtained a set of multi-chain PDB structures in 
which the previously determined domain-domain interactions can be observed across 
separate peptide chains within a complex. The ASALIST from the PQS server [25]was 
used to sift out the biologically significant contacts from the crystal packed structures. Of 
the 379 domain pairs above, 305 were found on separate chains of a complex, and these 
were used for the analysis.  
 
GO functional annotation 
 
PFAM domains were categorized into Gene Ontology (GO) molecular functions and 
cellular processes using the PFAM2GO data provided by the GO consortium [26]. 
 
Saccharomyces cerevisiae protein interactions prediction 
 
In order to assess how distance between domains could be used to improve the domain 
fusion based protein interaction predictions, we predicted interactions between 6918 
proteins from the organism Saccharomyces cerevisiae found within the Swiss-Prot 
database, and gauged the quality of the interactions by looking at the function of each 
interacting protein.  
 
The steps taken to predict protein interactions based on domain fusion are as follows. 
Swiss-Prot (release 42.9) and Trembl (release 25.9) [27] protein datasets were first 
searched for multi-domain proteins, by relying on their PFAM annotations. As above, 
only PFAM domains of type ‘Domain’ where considered. These multi-domain proteins 



were then catalogued as Rosetta Stones. Pairwise domain interactions were inferred by 
cataloging each distinct domain pair found on every Rosetta Stone protein, together with 
the number of residues separating the pair. As described by Marcotte and co-workers 
[11], domain interactions involving the 5% most promiscuous domains were discarded, 
removing the majority of false positives.  
 
This domain interaction set was then used to predict pairwise protein interactions 
between the S. cerevisiae proteins, by looking at the complement of PFAM domains 
between each and every pair of proteins, and seeing if there were any Rosetta stone 
determined domain interactions between the domains of each protein. The protein 
interactions were sorted into two groups; one group inferred from domain interactions 
supported by the existence of a Rosetta stone protein with no more than 30 residues 
between the domain pair, and the other group with no support from a 30 residue Rosetta 
stone. 
 
To validate these protein interactions, we mapped the proteins to the MIPS 
comprehensive yeast genome database [28], and looked for interacting protein partners 
that share the same MIPS functional category. Interactions between pairs that share the 
same function are more likely to be true.   
 
All the data was stored in a relational database schema implemented in MySQL, with a 
set of perl modules written for data transaction and manipulation. The Bioperl 
bioinformatics tool kit [29] was used to parse Swiss-Prot, Pfam and PDB data, as well as 
to extract coordinates of each atom from each PDB structure. 
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Figure 1. Distance between domain pairs on a protein chain and the likelihood that 
they interact 
The solid line indicates the percentage of domain pairs, within a distance range apart, 
which are in contact. The broken line shows the distribution of chi-squared values 
corresponding to constructed 2X2 contingency tables that classified domain pairs 
according to 2 criterions; 1) whether or not they are separated by a distance no greater 
than the upper limit of each range, and 2) whether or not the domain pair is interacting. 
The percentage of interacting domain pairs drop noticeably after 30 residues, and the chi-
squared value is also maximum at this threshold. 
 



Table1: List of domain pairs separated by less than 30 residues but are not 
interacting 
 

 
 
 
 
 

Domain 1 Molecular Function Domain 2 Molecular Function No. of 
Contacts 

2-Hacid_DH oxidoreductase activity 2-Hacid_DH_C oxidoreductase activity 4 
CH  CH  0 
Cytochrome_CIII  Cytochrome_CIII  0 
dsrm double-stranded RNA 

binding 
dsrm double-stranded RNA 

binding 
0 

EGF  EGF  0 
eRF1_1  eRF1_2  0 
FKBP  FKBP  1 
fn1  fn1  0 
fn1  fn2  2 
fn2  fn2  0 
GlutR_NAD_bind glutamyl-tRNA 

reductase activity 
GlutR_dimer glutamyl-tRNA reductase 

activity 
1 

HTH_9 molybdate ion 
transporter activity 

TOBE  0 

kazal  kazal  0 
MHC_II_beta immune response ig  2 
myb_DNA-binding DNA binding myb_DNA-binding DNA binding 0 
Peptidase_M10 proteolysis and 

peptidolysis 
fn2  2 

Phe_tRNA-synt_N phenylalanine-tRNA 
ligase activity 

tRNA-synt_2d phenylalanine-tRNA ligase 
activity; 

0 

resolvase recombinase 
activity;DNA 
recombination 

HTH_7 recombinase activity;DNA 
recombination 

1 

RHD regulation of 
transcription, DNA-
dependent 

TIG  0 

Ribosomal_L9_N structural constituent of 
ribosome 

Ribosomal_L9_C structural constituent of 
ribosome 

0 

RNase_PH_C RNA binding;RNA 
processing 

KH nucleic acid binding 0 

Rotamase isomerase activity Rotamase isomerase activity 0 
rrm  rrm  4 
rve DNA binding;DNA 

recombination 
integrase integrase activity 0 

SH2 intracellular signaling 
cascade 

SH3  0 

sushi  sushi  4 
TPP_enzymes_N  TPP_enzymes  2 
WW  WW  0 
zf-Sec23_Sec24  Sec23_trunk  0 
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