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We propose a docking method that mimics the way proteins bind.
The method accounts for the dominant driving forces at the
different length scales of the protein binding process, allowing for
an efficient selection of a downhill path on the evolving receptor-
ligand-free energy landscape. Starting from encounter complexes
with as much as 10 Å rms deviation from the native conformation,
the method locally samples the six dimensional space of rigid-body
receptor-ligand structures subject to a van der Waals constraint.
The sampling is initially biased only by the desolvation and elec-
trostatic components of the free energy, which capture the partial
affinity of unbound structures that are more than 4 Å away from
the native state. Below this threshold, improved discrimination is
attained by adding an increasing fraction of the van der Waals
energy to the force field. The method, with no free parameters,
was tested in eight different sets of independently crystallized
receptor-ligand structures consistently predicting bound confor-
mations with the lowest free energies and appropriate stability
gap around 2 Å from the native complex. This multistage approach
is consistent with the underlying kinetics and internal structure of
the free energy funnel to the bound state. Implications for the
nature of the protein binding pathways are also discussed.

The goal of protein docking is to obtain a model for the bound
complex from the coordinates of the unbound component

molecules. Current docking methods evaluate a vast number of
docked conformations by simple functions that measure surface
complementarity. However, in addition to near-native states,
these methods produce many false positives, i.e., structures with
good surface complementarity but high root mean square de-
viations (rmsd). Substantial efforts have been devoted to the
development of methods to eliminate the false positives. Ap-
proaches involve the reranking of the complex structures by
using scoring functions that account for the chemical affinity
between the individual molecules, and the refinement of inter-
acting surfaces (1–7). Although these procedures improve the
discrimination such that conformations with less than 5 Å rmsd
are generally found within the top ten to hundred structures, for
most complexes the highest ranked structures are still far from
the native.

Based on the mapping of the interaction free energy between
a receptor and its ligand (8), we have previously concluded that
a reasonable approach to successfully predicting docked con-
formations was to divide the problem into two steps (4). The first
step entails the identification of the binding region (within 10 Å
rmsd), emulating the diffusional search of the ligand for its target
on the receptor surface. Before establishing substantial surface
contacts, receptor-ligand association is governed by electrostatic
and desolvation interactions, and hence the approximate binding
region can be found by mapping these smooth components of the
free energy in the conformational space of encounter complexes
(8). Another option is the use of the low resolution docking
method (7), which removes the details of interacting proteins to
match the resulting smooth geometric forms. Both methods
predict the broadly defined binding mode of the two proteins,
but are unable to describe the specific interactions at the atomic
level. The second step consists on the refinement of this broad
binding region to atomic scale. At this stage, surface comple-
mentarity (9), led by short-range van der Waals (vdW) forces,

plays a crucial role on the stability and specificity of the high
affinity complex.

In this paper, we present a docking algorithm that, inspired by
the general principles governing protein binding, docks or refines
complex structures with as much as 10 Å rmsd from the bound
state to 2 Å rmsd. In particular, the method embodies the
changes in protein–protein interactions as the process moves
along the association pathways. Fig. 1 illustrates the stages in the
free energy as the receptor and ligand approach the bound state
along some association pathway. At separation between the
proteins on the order of 10 Å, the interactions are purely
electrostatic and partial desolvation effects, resulting in a free
energy surface that is relatively smooth along some arbitrary
configurational coordinate measuring the rmsd from the bound
or native conformation (8). As the proteins get closer, the
occurrence of vdW interactions yield favorable contributions in
several states, including the native state, leading to mostly steric
energy barriers (Fig. 1B). Finally, once the molecules are fully
desolvated, the free energy surface becomes very rugged be-
cause of the high sensitivity of the vdW interactions to structural
perturbations (Fig. 1C).

From the point of view of kinetics, Fig. 1 suggests that protein
binding should entail distinct kinetic regimes where different
driving forces govern the binding process at different times. This
scenario is summarized in Fig. 2 (8, 10, 11), where a sketch of the
free energy funnel corresponding to Fig. 1 is plotted against a
reaction coordinate. The funnel distinguishes three kinetic re-
gimes. First, nonspecific diffusion (regime I) brings the mole-
cules to close proximity. Second, in the recognition stage (regime
II), the chemical affinity steers the molecules into relatively well
oriented encounter complexes ('5 Å), overcoming the mostly
entropic barrier to binding. Brownian dynamics simulations of
this regime (10) were also found to be consistent with a
significant narrowing of the binding pathway to the final bound
conformation, as suggested by Fig. 1B. Finally, regime III
corresponds to the docking stage where short-range forces mold
the high affinity interface of the complex structure.

As already mentioned, earlier attempts to address the problem
of predictive protein docking have been based on the thermo-
dynamic hypothesis, which reduces the search of the complex
structure to the minimization of a potential approximating the
free energy. However, as sketched in Fig. 1C, states that are
separated by few angstroms in the configurational space may be
separated by large steric barriers in energy space. Thus, the
straightforward minimization on such a landscape results in the
well known multiple minima problem. Significant steps toward
the resolution of this problem have been achieved by novel
methods proposed by Scheraga and collaborators (12), and
others (13, 14). These new algorithms avoid the multiple minima
problem by smoothing the landscape in Fig. 1C. The above
notwithstanding, the large number of possibilities in which a
protein can bind to a substrate, together with the ruggedness of
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the free energy surface, has rendered it almost impossible for
theoreticians to consistently use the thermodynamic principle to
predict bound structures from separately crystallized proteins.

The tunable docking method proposed here is based on a
kinetic approach that builds on the aforementioned multistage

protein binding process, and the inherently smooth free energy
governing the initial affinity between a receptor and its ligand.
The method slowly tunes in the contribution of the vdW energy
in the ranking free energy (see Fig. 1), from the smooth
components of the free energy (l 5 0), to the full free energy
dominated by vdW interactions (l 5 1). Starting from complexes
within the basin of attraction, around 10 Å rmsd from the native
complex structure, the method successfully predicts bound con-
formations within 2 Å rmsd. Interestingly, productive binding
pathways also display some of the expected internal structure of
the free energy funnel shown in Fig. 2.

Methods
Crystal Structures. We present docking applications to eight
different sets of independently crystallized (unbound) protein
pairs, with known complex structure (see Table 1). The protein
structures are denoted by their four letter code in the Protein
Data Bank (PDB). We study representative systems from four
major classes of protein–protein complexes: the barnase-
barstar (PDB code 1brs) system from the RNase-inhibitor
family; five systems from the protease-inhibitor family, includ-
ing the trypsin-bovine pancreatic trypsin inhibitor (2ptc) and
subtilisin-streptomyces (2sic) and -chymotrypsin (2sni) inhib-
itor; the serine esterase complex acetylcholinesterase-
fasciculin II (1fss); and hen egg white lysozyme bound to
antibody Fab D44.1 (1mlc) from the antigen-antibody family.
Some of these structures have been analyzed in numerous
docking studies (4–7), and most of them are generally con-
sidered to be challenging systems when the separately deter-
mined protein structures are used for docking. To test the
generality of the method, we also make sure that these systems
include different binding specificities. For instance, binding of
barnase and barstar (1brs) is driven by electrostatic forces,
whereas, for the protease inhibitor complexes 1cho and 1ppf,
desolvation is the dominant driving force. The complexes 2ptc
and 1mlc have basic residues at key positions in the binding
pocket, and their f lexibility is a further challenge.

Initial Conformations. In this paper, we do not directly address the
question of how the initial set of docked structures is generated.
The only restriction or assumption is that these structures are
within the basin of attraction of the binding region which, based
on previous computations, has been established to be around 10
Å rmsd from the crystal complex structure (4, 8). The initial set
of conformations, {A}, for 1ppgy2ovo, 5chay2ovo, and 1mlby
1lza correspond to a cluster of encounter complexes around the
lowest binding free energy pocket between receptor and ligand
found in a previous discrimination analysis (4). The starting
conformations for the other five protein pairs were extracted
from a set of 10,000 structures generated by using the program
DOT (15). The conformations were chosen such that their rmsd
from the crystal structure were between 7 and 14 Å. It is
interesting to note that in several cases the output from DOT
resulted in few or no structures below 5 Å rmsd.

Both of these methods produce a relatively large number of
conformations around the binding region. Because the dock-
ing method depends on the set of initial structures, for this
study we selected clusters composed of structures that would
differ among each other by 8–12 Å rmsd. We note that in
general the average structure would be less that 10 Å rmsd
from the complex—typically, around 7 Å rmsd. We also
checked that the deviations from the native structure were
both translational and rotational. Indeed, superimposing the
centers of the initial structures and the target we find that the
typical rmsd arising from the difference in rotational states was
between 4 and 7 Å.

Fig. 1. Shapes of the binding free energy landscape as a function of some
arbitrary coordinate measuring the rmsd from the native conformation. (A)
Free energy corresponding to the smooth component DGs, which dominates
the interactions of partially desolvated encounter complexes (8) near the
binding region (l 5 0). (B) Intermediate free energy mimicking the transition
between the ‘‘smooth’’ and the ‘‘rugged’’ free energy (l . 0.5). (C) Free
energy of a fully desolvated interface of a receptor-ligand system (l 5 1).
Square symbols portray structures that, driven by the tunable landscape, are
funneled into a single minimum of the free energy.

Fig. 2. Binding free energy funnel. The first barrier to binding is for the most
part entropic, accounting for the loss in rotational and translational degrees
of freedom. The height of this barrier depends on the interplay between the
long-range electrostatic steering and the intermediate range desolvation
forces. The former can, in some circumstances, eliminate this barrier (23, 24).
As suggested by Fig. 1, the steric barrier associated with structural rearrange-
ments is deeper in the binding pocket. For diffusion limited processes, the
maximum height of this barrier must be lower than the barrier for the ligand
to escape back to solution, implying that the recognition process is the
rate-limiting step. Finally, kinetic estimates suggest that the steric activation
barrier is significantly higher than the entropic one, suggesting a relatively
slow transition, on the order of milliseconds, to the bound structure.
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Free Energy Decomposition. The binding free energy is computed
by the expression (4)

DG 5 DGs 1 DEvdW, [1]

where DGs will be referred to as the smooth component of the
free energy,

DGs5DEcoul1DGsol2TDSsc. [2]

The term DE
coul

corresponds to the direct electrostatic energy;
DGsol is the desolvation free-energy change due to transferring
the atoms, buried in the interface, from the solvent to a protein
environment; DSsc is the side-chain entropy loss; and T is the
temperature. The van der Waals energy is denoted by DEvdW. We
note that the binding free energy expression generally also
includes the change in internal energy and a further term, TDS,
associated with the loss of rotational, translational, and vibra-
tional entropy. However, in the present analysis, the protein
backbones are held rigid at all times, and the relatively small
changes in the internal energy are neglected. The TDS term is
omitted because, for a given pair of molecules, it depends weakly
on the structure.

The electrostatic term DEcoul is calculated by using a distance-
dependent dielectric (16) equal to 4r, enforcing a minimum
atom-to-atom distance separation equal to the sum of their
corresponding vdW radii to avoid artificial overlaps. We estimate
the full contribution of the desolvation forces by using Zhang et
al. atomic contact potential (ACP) (17). This method is an
adaptation of a method first introduced by Miyazawa and
Jernigan (18). The ACP potential includes the self-energy
change on desolvating charge or polar atom groups and side-
chain entropy loss, i.e., DGACP 5 DGsol 2 TDSsc. The van der
Waals energy, DEvdW, is computed by using the standard Len-
nard-Jones potential as implemented in CHARMM (19). All
structural minimizations have been done by using ABNR
(adopted basis Newton-Raphson) steps and the CHARMM-19
potential with polar hydrogens only, distance-dependent dielec-
trics « 5 4r, and fixed backbone.

Method: Tunable Docking. The algorithm refines a cluster {A} of
ten rigid body receptor-ligand structures, constrained to
around 10 to 13 Å rmsd from the complex. To specify the
geometry of a complex structure, the receptor is centered at
the origin of the coordinate system, and the position of the
ligand is described in terms of 12 variables. Three of the these,
the center-to-center distance dcm between the two molecules,
and two Euler angles ucm and fcm, are used to specify the
ligand’s geometrical center. The relative orientation of the
ligand is specified by the remaining 9 variables, corresponding
to the Cartesian coordinates of the three unitary vectors, (xi,
yi, zi) with i 5 1,2,3. The three vectors define a coordinate
system fixed on the ligand’s center. Because the vectors are

orthonormal to each other, only three degrees of freedom are
independent. However, the use of this redundant Cartesian
system facilitates the sampling of the conformational space.
We also define the vector sW , where sk is the standard deviation
of the kth variable in the set {A}, constrained to a minimum
and maximum of 1o and 6o for ucm and fcm, 0.5 Å and 3 Å for
dcm, and 0.08 Å and 0.5 Å for (xi, yi, and zi), respectively.

The docking method consists of the following six steps.
(i) Preprocessing. The overlaps in the initial set of conforma-

tions {A} are removed by rigidly pulling apart the molecules
along their center-to-center axis. A second set, {B}, is initialized
with the adjusted set {A} ranked according to DGs, and contains
the top ten best ranked complexes that are sampled during the
docking procedure.

(ii) Sampling. The goal of this step is to generate new structures
by a modified version of the nonlinear simplex algorithm (20)
using the structures in {A} as templates. We randomly select two
structures a and b from {A} to obtain a new point xW with the
coordinates dcm

a , ucm
a , fcm

a , and (xi
b, yi

b, zi
b), and define the centroid

of the simplex cW as the average of the coordinates in {A} not
including xW. The basic operations in the simplex method are
reflection, expansion, and contraction (20). We perform ran-
domized versions of these operations to sample along the vector
rW from xW to cW. First, reflection of xW is used to generate the
structure g 5 cW 1 rW 1 «W, where «W is a vector of uniformly
distributed random real numbers between 62sW . If g does not
improve the set {B} (see step v of the algorithm), then we
perform a contraction to generate a new g 5 cW 1 0.5rW 1 «W; or,
if g improves the top ranked structure in {B}, then we perform
an expansion and generate g 5 cW 1 2rW 1 «W; otherwise, a new point
xW(a,b) is selected.

(iii) Constrained vdW optimization. The energy of the receptor-
ligand structure g from ii is minimized by using 30 adopted basis
Newton-Raphson (ABNR) steps in CHARMM, and the vdW
energy of the resulting complex is evaluated. The compactness
of the docked conformation is further improved by using the
following steps: (a) the ligand is brought closer to the receptor
by translating it by an amount equal to 20.02 3 dcm along the axis
joining the centers of the molecules; (b) 30 ABNR steps are
applied to minimize the CHARMM energy of the structure, and its
vdW energy is evaluated; (c) if the new vdW energy is larger than
its previous value by more than 10 kcalymol, then the lower
energy structure is minimized by 300 steps. Otherwise, we return
to step a.

(iv) Ranking by the free energy. We compute the electrostatic
and desolvation free energy of the minimized complex structure
g. Structures with large overlaps, i.e., with vdW energies larger
than 60% of the lowest observed vdW energy, are discarded. If
g is the ith structure sampled during the search, then the target
function is evaluated as

DGi
g 5 DGs 1 liDEvdw, [3]

Table 1. Protein complexes studied

Complex PDB Receptor Ligand

Unbound

PDB PDB

1ppf Human leukocyte elastase OMTKY 1ppg 2ovo
1cho a-chymotrypsin OMTKY 5cha 2ovo
1fss Acetylcholinesterase Fasciculin-II 2ace 1fsc
1brs Barnase Barstar 1a2p 1a19
2sic Subtilisin BPN9 Streptomyces inhibitor 2st1 3ssi
2ptc Trypsin BPTI 2ptn 6pti
2sni Subtilisin novo Chymotrypsin inh.2 2sbc 2ci2
1mlc Fab D44.1 Hen egg lysozyme 1mlb 1lza
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where li 5 iy1,000 for i , 1,000, and li 5 1 otherwise. If DGi
g

is lower than DGi for any of the structures in {B}, then g is added
to {B}, while the highest energy structure is dropped.

(v) Updating {A}. As described, set {B} always contains the 10
lowest free energy structures sampled. These structures are used
to periodically update set {A}, but with some delay to avoid
shifting the entire cluster because of single outliers. The first
update is at i 5 140. For i . 140, {A} is updated every time when
the best ranked structure in {B} improves, and also at periods of
140 sampled structures.

(vi) Convergence. Once all the sk are less than their corre-
sponding minima, the method has converged to a solution where
the docked structures in the set {B} are within 0.25 Å of each
other. Otherwise, the search resumes in step ii.

Results
Our results are summarized in Fig. 3 where the average rmsd of
the top 10 best ranked structures in {B} are plotted as a function
of the number of structures sampled. The rmsd is computed with
respect to the unbound ‘‘native-like’’ ligand—i.e., aligned as in
the native complex structure. As indicated by the standard
deviation of the average rmsds, the method converges toward a
unique binding site (within 0.5 Å rmsd) after '500 sampled
structures, or about a day of CPU time on a RISC 10000 Silicon
Graphics computer. For two cases, 2sbcy2ci2 and 1mlby1lza, we
observed a slower rate of convergence.

To appreciate how the refinement proceeds from the initial
structures to the final prediction, Fig. 4 shows the locus of the
initial set of conformations, the unbound ‘‘native-like’’ ligand,
and the predicted docked structure for four complexes, as well

as the centers of the 400 initial structures sampled for two
systems. In all cases, we find that the method flows nicely to the
correct region of the phase space. The reason is that, as shown
in Fig. 5, the total free energy of the sampled structures as a
function of rmsd for all complexes is a good discriminator, with
no false positives. It is also interesting to note that we find an

Fig. 3. rmsd as a function of the number of sampled structures. The rmsd is
computed with respect to the optimal alignment of the unbound ligand in the
bound native structure. The 1 symbols correspond to the average rmsd of the
top 10 structures stored in set {B}. Solid lines indicate the standard deviation
of the average rmsd.

Fig. 4. Loci of the initial set of structures and of the predicted structures with
respect to the native state. The 10 initial structures have their z axis drawn in
green. The predicted structure has its z axis drawn in red, and the axes of the
‘‘native-like’’ structure are in black. For clarity, we show only the position of
the center of mass of the first 400 structures sampled in two systems (magenta
dots). All distance units are in Å. The center of the receptors are at (0,0,0).

Fig. 5. Free energy as a function of rmsd. The 1 symbols correspond to the
average free energy of the best 10 ranked structures. Dots denote the free
energy of the sampled structures.
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energy gap of around 10 kcalymol between our predictions and
structures with rmsds larger than 4 Å.

The breakdown of the free energy to its two main components,
DGs and DEvdW, is shown for four cases in Fig. 6. Most cases
behave as for 2sbcy2ci2, where the smooth component of the free
energy DGs is a good discriminator between 4 to 10 Å rmsd away
from the complex, whereas DEvdW is typically better below 4 Å
rmsd. The only exceptions were found for 2ptny6pti and 1mlby
1lza, where the level of discrimination of DGs is overall weak.
These two complexes show a sharp decrease of DGs in the final
stage of the minimization. However, this feature does not
discriminate between high and low rmsd structures; instead, it
reflects only the close proximity of some charge groups. Another
interesting case is 1a2py1a19, which shows that DGs is a good
discriminator between 4 to 10 Å rmsd, but below this range it has
a negative correlation. These observations are consistent with
the fact that these three complexes show very little chemical
affinity if the bound protein conformations are replaced by the
unbound structures. Indeed, it has been shown that, before
association, these complexes undergo side chain rearrangements
that significantly improve their affinity (21). Because our
method does not include any preprocessing of the crystal struc-
tures, it is not surprising that these cases resulted in docked
conformations with the highest rmsd.

We have also checked that a straightforward minimization of
the full free energy does not necessarily improve the predictions.
A good example of this is shown at the bottom of Fig. 6, where
fixing l 5 1 for 1mlby1lza leads to a different minimum with an
rmsd of 4 Å, as well as a very different behavior of DGs and
DEvdW. The two minimizations, varying l or fixing it, highlight

how the improvement of DGs (or DEvdW) can sometimes come
at the expense of DEvdW (or DGs). In all likelihood, this behavior
is artificially (21) enhanced by the poor positioning of side chains
at the binding interface.

The thermodynamic analysis provided by Figs. 3, 5, and 6
might be somewhat misleading when analyzed independently of
the dynamic process in which l varies between 0 and 1. For
example, for 2ptny6pti, DGs does not seem to be a good
discriminator as a function of rmsd. However, as a function of the
number of sampled structures (or ‘‘time’’ in a sense analogous to
Monte Carlo time steps), DGs works very well driving the system
to lower free energies and lower rmsd structures (see Fig. 7). On
the other hand, a full free energy minimization might trap the
docking process in the high rmsd minimum apparent in the plot
of DEvdW.

For all eight of the test cases, we predict a complex structure
with around 2 Å rmsd from the unbound ‘‘native-like’’ ligand.
The worst prediction is the antibody-antigen 1mlby1lza system,
which predicts a 3 Å rmsd structure. Most predictions fare
somewhat better when compared directly with the C-a chain of
the native structure located within 10 Å of the interface of the
cocrystallized complex structure. Table 2 shows, for the top
ranked predictions, the rmsd with respect to the ‘‘native-like’’
unbound ligand, and the rmsd of both the predicted and the
‘‘native-like’’ unbound ligands with respect to the relevant C-a
atoms of the native structure near the interface. Because the
backbone of the unbound structures is kept rigid, even the best
alignment of the unbound ligand to the bound structure yields
around 1 Å rmsd. Strikingly, some of our predictions are within
1 Å or less of the binding site. However, for 1lza and 2ci2, the
rmsd increases by as much as 0.5 Å when restricting consider-
ation to the region within 10 Å of the interface. In these cases,
the binding site in the unbound ligand structure is distorted by

Fig. 6. Free energy components as a function of rmsd. Symbols are as in Fig.
5. The vdW energy is represented by the Lennard-Jones potential. The Top
four panels correspond to the decomposition of the free energy for the same
data shown in Fig. 5. The Bottom panel corresponds to a rerun of the docking
algorithm for 1mlby1lza using the full free energy (l 5 1) as the target
function.

Fig. 7. Free energy components as a function of the number of sampled
structures for 2ptny6pti. Symbols are as in Fig. 5.

Table 2. rmsd of predicted complex structures with respect to
the unbound ligand aligned as in the complex crystal structure

Recep.yligand
PDB codes

Prediction
rmsd, Å

Prediction
rmsd*, Å

Opt.Unb.lig.
rmsd*, Å

1ppgy2ovo 1.85 1.36 1.19
5chay2ovo 1.58 0.86 1.13
2acey1fsc 1.59 1.78 0.97
1a2py1a19 2.52 2.58 0.41
2st1y3ssi 2.79 1.12 0.83
2ptny6pti 2.69 1.50 0.36
2sbcy2ci2 1.28 1.92 1.13
1mlby1lza 3.03 3.51 0.88

For comparison, we list the rmsd of our predictions, both for all backbone
atom and only for the ones in the interface, as well as for the optimal
alignment of the unbound ligand to the native structure. rmsd* denotes the
rmsd restricted to the C-a atoms within 10 Å of the native interface.
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large misfolded side chains (Arg-45 and Met-40 in 1lza and 2ci2,
respectively), thereby increasing the free energy of all near-
native conformations. The rmsd for 1mlby1lza is particularly
large (3.51 Å for the restricted set of residues), but the rmsd of
3.03 Å for all C-a atoms indicates that, even for this large local
deviation, the relative orientation of the two molecules in the
complex is essentially correct. We also note that, even for this
most difficult case, the method was able to refine the initial
cluster of 12 Å rmsd structures to around 3 Å.

To study the convergence of the method and the robustness of
the results, some of the calculations have been repeated by using
different clusters of initial structures. We have checked that the
predictions of the method are robust in the sense that small changes
on the initial set of structures do not change the final rmsd by more
than 0.5 Å. More generally, the details of the sampling method are
not crucial for our results as long as the local character of the
random sampling is preserved. However, the method fails to
converge if the initial structures are too far apart from each other
(around 20 Å rmsd). Docking tests of structures with cluster centers
more than 15 Å away from the native often converge to unique
structures, with free energies consistently higher than the docked
structures near the binding region.

As already mentioned in Methods, the cluster centers of the
systems studied here are typically around 7 Å rmsd away from
the native. Reducing 7 Å to about 2 Å as seen in our results is
a nontrivial problem, and the modified simplex method clearly
performs very well. Assuming that at least some of the cluster
points are in the region of attraction of the global minimum, the
simplex method will move the entire cluster toward the native
state. However, convergence to a false minimum can occur if,
along this pathway, the cluster becomes small enough to be fully
accommodated by the basin of attraction of a minimum. Three
different mechanisms are used to reduce the possibility of such
premature convergence. First, restricting consideration to elec-
trostatic and solvation terms in the early stages of the search
smoothes the target function, removing most of the local minima
that could serve as traps. Second, the randomization in step iii
of the algorithm substantially expands the region sampled by the
method. Finally, it is important to select initial structures that are
on the order of 10 Å from each other. For the small proteins
considered in this paper, 10 Å appears to be the length scale of
the region of attraction of the native state because of electro-
static and desolvation interactions. As the above discussion
implies, despite the various countermeasures, convergence does
not necessarily indicate that the global minimum has been found,
and thus the reliability of results can be improved by performing
repeated minimizations from different initial clusters.

Discussion
We focus on the prediction of bound complexes from indepen-
dently crystallized (unbound) receptor and ligand structures

starting from a set of structures within the basin of attraction of
the binding site (10 Å rmsd from the native structure). Despite
the structural differences between the cocrystallized complex
and unbound structures, our method successfully predicts low
rmsd structures, on the order of 2 Å, from the native for eight
receptor-ligand systems. We emphasize that exactly the same
method was used in all 8 complexes, and that the only presump-
tion is that the initial set of structures are within the basin of
attraction of the binding site (i.e., around 10 Å rmsd).

We provide strong evidence suggesting that it is possible to
efficiently trail down the free energy binding funnel. Specifically,
the method captures the basic mechanism of protein recognition
as well as the short range tuning of the surface complementarity
in the high affinity complex. The former is governed by the
electrostatic and desolvation components of the free energy,
which captures the partial affinity of the macromolecules when
properly aligned near their binding site (8). As the binding funnel
narrows (see standard deviation in Fig. 3), the vdW interactions
become the dominant driving force on the biasing field, improv-
ing the surface complementarity between molecules. The ro-
bustness of our target function can be seen in Figs. 3 and 5, which
show how the chemical affinity and vdW interactions comple-
ment each other to obtain the best possible fit, and is confirmed
by the fact that exactly the same method yields reasonably
accurate predictions for all of the eight systems considered here.

We argue that the evolution of the average top 10 ranked
structures (1 symbols in the figures) should, to some degree,
reflect the typical behavior of productive binding pathways. In
accord with Fig. 2, some systems show a characteristic peak on
the vdW energy at '5 Å rmsd when plotted against ‘‘time’’ (see
Fig. 7). This transition peak is also seen sometimes in the full free
energy. The peak corresponds to the transition point between
the soft binding regime, controlled by the ‘‘smooth’’ chemical
affinity, and the tight regime, controlled by the ‘‘rugged’’ vdW
interactions. Because these interactions forcefully move the
receptor and the ligand to close proximity, rotational and
translational entropy plays no role on our docking method.

From a kinetic point of view, Figs. 2 and 7 are consistent with
the view that the recognition process is dominated by a weakly
bound intermediate whose affinity is mostly determined by the
smooth free energy terms. This process can take place in a
reasonably fast time scale ('1028 s), in accord with recent
Brownian dynamic simulations (10) and nonspecific aggregation
data (22). On the other hand, the steric barriers arising from the
snug fit of the interface should lead to longer time scales for
docking to the final complex structure.
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