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ABSTRACT

Interaction detection methods have led to the dis-
covery of thousands of interactions between
proteins, and discerning relevance within large-
scale data sets is important to present-day biology.
Here, a spectral method derived from graph theory
was introduced to uncover hidden topological struc-
tures (i.e. quasi-cliques and quasi-bipartites) of
complicated protein—protein interaction networks.
Our analyses suggest that these hidden topological
structures consist of biologically relevant functional
groups. This result motivates a new method to pre-
dict the function of uncharacterized proteins based
on the classification of known proteins within topo-
logical structures. Using this spectral analysis
method, 48 quasi-cliques and six quasi-bipartites
were isolated from a network involving 11 855
interactions among 2617 proteins in budding yeast,
and 76 uncharacterized proteins were assigned
functions.

INTRODUCTION

With the availability of complete DNA sequence data for
many prokaryotic and eukaryotic genomes, a formidable
challenge of post-genomic biology is to understand how
genetic information results in the concerted action of gene
products both temporally and spatially to achieve biological
function, as well as how they interact with each other to create
an organism. It is important to develop reliable proteome-wide
approaches for a better understanding of protein functions
(1,2). Genomic approaches have been used to predict func-
tions of a large number of genes based on their sequences.
However, as we know, proteins rarely act alone at the
biochemical level; rather, they interact with other proteins as
an assembly to perform particular cellular tasks. Having
systematic functions, these assemblies represent more than the

sum of their parts (3). Traditionally, protein interactions were
studied individually by genetic, biochemical and biophysical
techniques focusing on a few proteins at a time (4). It is
increasingly realized that dissecting the genetic and bio-
chemical circuitry of a cell prevents us from further under-
standing the biological processes as a whole. Basic
constituents of cellular protein complexes and pathways,
protein—protein interactions are key determinants of protein
function. It is believed that all biological processes are
essentially and accurately carried out through protein—protein
interactions.

In the last 3 years, high-throughput interaction detection
approaches, such as yeast two-hybrid systems (5,6), protein
complex purification techniques using mass spectrometry
(3,7), correlated messenger RNA expression profiles (8,9),
genetic interaction data (10,11) and ‘in silico’ interaction
predictions derived from gene context analysis [gene fusion
(12,13), gene neighborhood (14,15) and gene co-occurrences
or phylogenetic profiles (16,17)], have been developed and
they have created a number of datasets regarding protein—
protein interactions for several model organisms (Saccharo-
myces cerevisiae, Caenorhabditis elegans and Helicobacter
pylori). These large-scale datasets open a door to comprehen-
sive understanding of the genetic and biochemical phenomena
in a cell. Subsequently, several promising methods have been
successfully applied to this field. For instance, Schwikowski
et al. (18) and Hishigaki et al. (19) predicted uncharacterized
proteins based on interacting partners; Maslov and Sneppen
(20) analyzed the stable topological properties of interaction
networks; Ge et al. (21) provided the first global evidence that
genes with similar expression profiles are more likely to
encode interacting proteins; and Fraser ez al. (22) revealed that
the connectivity of well-conserved proteins in the network is
negatively correlated with their rate of evolution. These
studies revealed that the available data from protein—protein
interaction networks in S.cerevisiae share some unexpected
features with other complex networks.

The topological pattern of interactions is a rich source of
biological functional information, and therefore we need to
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develop methods to mine and to understand the interaction
networks. Here, we applied the spectral analysis method,
which has been successful used in other fields (23), to
proteomics to identify topological structures of interaction
networks, i.e. quasi-cliques and quasi-bipartites. Interestingly,
we found that the proteins within same group share similar
biological functions. Moreover, for one-third of proteins that
are still uncharacterized in S.cerevisiae, this method provides
a new approach to predict their functions based on topological
structures.

MATERIALS AND METHODS
Spectral analysis

Spectral analysis is a powerful tool to reveal high-level
structures underlying enormous and complicated relation-
ships. As a famous paradigm, David Gibson, Jon Kleinberg
and Prabhakar Raghavan did excellent work on extracting
information from link structure of the Web (23,24). The World
Wide Web is known to be composed of an increasing number
of pages with hyperlinks pointing to other pages. Despite high
complexity of the Web structure, spectral analysis was
successfully used to discover ‘authoritative’ information
sources and ‘hub’ pages joining authoritative ones together.
We applied the spectral analysis method to complicated
protein—protein interaction networks and identified interesting
topological structures. In this method, a network is represented
by a bi-directed graph G(V,.E), i.e. vertex set including
each protein as a vertex V = {Py,P,...P,}, and the edge set
E = {(P;,P)| there is an interaction between protein P;and P;}.
The symmetric n X n adjacent matrix is defined as A = (a;),
where a;; = 1if (P,P;) € E, and a; = 0 if (P,P)) ¢ E.
Spectrum of the adjacency matrix A is essentially a
reasonable measurement of properties of nodes that could be
propagated across the interactions. Let us consider assigning a
score to each node to represent their intensity, say X. A node
with a high score would increase its neighbors’ score through
their interactions. In other words, two nodes are mutually
reinforcing, which is in nature a cyclic definition of scores:

n
AX,' = Z a,-j X )(J
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The iteration method derived from Gibson et al. (23) and
Kleinberg (24) is introduced to break such a cycle. It is
interesting that X; converges to a fixed point from any
initializing assignment, and it can be proved that the fixed
point is one of the eigenvectors of matrix A, which means it is
an intrinsic characteristic of interactions. Moreover, since
matrix A is symmetric, all of its eigenvectors are mutually
orthogonal, which means that the corresponding properties are
also mutually independent. In other words, each eigenvector
represents a special property that none of the others could

represent.

Identification of topological structures

From a topological point of view, the spectrum helps to
uncover the hidden topological structures of a complex
interaction network. We found that for each eigenvector
with a positive eigenvalue, the proteins corresponding to
absolutely larger components tend to form a quasi-clique

(i.e. every two of them tend to interact with each other)
(Fig. 1la), whereas for each eigenvector with a negative
eigenvalue, such proteins tend to form a quasi-bipartite (i.e.
the proteins in which two disjoint subsets express high level
connectivity between sets rather than within sets) (Fig. 1b).
This observation can be explained as follows. The maximal
eigenvalue of an adjacent matrix is the maximal value of
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(where x; is the ith component of the eigenvector). Other
positive eigenvalues can also be described as the maximal
value Q with orthogonal condition. Since Q is the summary of
x;x; corresponding to edge v;v;, it would be maximal when the
nodes with more edges are assigned a larger value with the
same signal, which form a quasi-clique intuitively. Similar
quasi-bipartites would be obtained eigenvectors with negative
eigenvalues.

We applied the clustering coefficient (CC) (25,26) in our
analysis to quantify a quasi-clique’s tendency to form a
cluster. The ratio between the number of edges that actually
exist between these N nodes and the total number N(N — 1)/2
gives the CC-value of a quasi-clique, i.e. CC = E/[N*(N — 1)/
2]1*¥*100%, where E is the number of interactions within the
clique and N is the number of proteins in it. CC is greater than
0 and less than 1. A value close to 1 represents a clique close to
a complete graph.

Assignment of annotation and P-values to quasi-cliques

As an isolated quasi-clique may involve different functional
categories, P-values (27,28) are used as criteria to assign each
quasi-clique a main function. Hypergeometric distribution
was applied to model the probability of observing at least k
proteins from a quasi-clique size n by chance in a category
containing C proteins from a total genome size of G proteins,
such that the P-value is given by
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The above test measures whether a quasi-clique is enriched

with proteins from a particular category more than would be
expected by chance. If the P-value of a category is near 0, the
proteins of the category in a quasi-clique will have a low
probability of being chosen by chance. Here, we assigned each
quasi-clique the main function with the lowest P-value in all
categories.

RESULTS
Data source and analysis

Among the interactions produced by high-throughput methods
there could be many false positives. To measure their accuracy
and to identify the biases, von Mering et al. (4) assessed a total
of 80 000 interactions among 5400 yeast proteins reported
previously and assigned each interaction a confidence value.
In order to reduce the interference by false positives, we
focused on 11 855 interactions with high and medium
confidence among 2617 proteins.



Table 1. Annotation of all quasi-cliques
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No. Protein Interaction CC Distribution (%) P-value Function
no. no. (%) (logyo)
M U D

1 109 2978 50 72 6 22 75 Ribosome biogenesis

2 97 2327 49 72 5 23 67 Ribosome biogenesis

3 68 955 41 19 50 31 10 rRNA processing

4 44 570 60 18 50 32 6 rRNA processing

5 37 423 63 19 49 32 6 rRNA processing

6 34 239 42 76 15 9 25 Ribosome biogenesis

7 24 230 83 50 0 50 15 General transcription activities

8 40 333 42 80 10 10 47 Splicing

9 34 329 58 9 50 41 5 Other tRNA-transcription activities
10 54 1018 71 78 9 13 41 Ribosome biogenesis
11 24 200 7279 4 17 28 Cytoplasmic and nuclear degradation
12 44 410 43 59 11 30 20 Ribosome biogenesis
13 32 267 53 34 3 63 15 rRNA synthesis
14 34 214 38 18 21 61 7 Amino acid degradation (catabolism)
15 21 153 72 52 14 34 14 rRNA processing
16 31 189 40 39 19 42 7 Oxidation of fatty acids; lipid, fatty-acid and isoprenoid biosynthesis
17 27 251 71 11 67 22 2 tRNA transcription; other control of cellular organization; other transcription activities
18 16 106 88 63 19 18 16 mRNA processing (splicing, 5’-, 3"-end processing)
19 21 119 56 57 24 19 9 Ribosome biogenesis
20 35 281 47 60 3 37 17 Ribosome biogenesis
21 24 119 43 25 21 54 5 Lipid, fatty-acid and isoprenoid biosynthesis
22 16 62 51 19 13 68 7 Osmosensing; protein binding
23 13 78 100 69 31 0 8 Ribosome biogenesis
24 27 157 44 56 4 40 25 rRNA synthesis
25 14 46 50 36 7 57 6 Respiration
26 28 142 37 50 0 50 23 rRNA synthesis
27 21 134 63 71 0 29 20 Splicing
28 23 153 60 65 17 18 19 Splicing
29 17 86 63 82 0 18 27 rRNA synthesis
30 18 92 60 89 0 11 32 Transport ATPases
31 19 84 49 37 5 58 11 Tricarboxylic-acid pathway (citrate cycle, Krebs cycle, TCA cycle)
32 15 70 66 40 7 53 6 Lipid, fatty-acid and isoprenoid biosynthesis
33 11 51 92 27 9 64 4 Homeostasis of metal ions (Na, K, Ca, etc.)
34 12 57 86 33 8 59 6 Homeostasis of metal ions (Na, K, Ca, etc.)
35 20 96 50 35 5 60 11 Tricarboxylic-acid pathway (citrate cycle, Krebs cycle, TCA cycle)
36 11 45 82 55 27 18 2 Assembly of protein complexes; lipid, fatty-acid and isoprenoid biosynthesis; cell wall
37 11 51 93 27 9 64 4 Homeostasis of metal ions (Na, K, Ca, etc.)
38 19 136 79 79 5 16 22 Cytoplasmic and nuclear degradation
39 13 72 92 100 0 0 22 Cytoplasmic and nuclear degradation
40 14 59 64 29 21 50 2 Aminoacyl-tRNA-synthetases; cell wall
41 13 47 60 54 8 38 12 Tricarboxylic-acid pathway (citrate cycle, Krebs cycle, TCA cycle)
42 12 58 88 42 8 50 5 Lipid, fatty-acid and isoprenoid biosynthesis
43 19 91 53 21 37 42 4 rRNA processing
44 11 52 94 o4 9 27 6 Ribosome biogenesis
45 10 24 53 50 0 50 5 Amino acid biosynthesis
46 11 52 94 64 9 27 6 Ribosome biogenesis
47 15 40 38 20 0 80 6 Other proteolytic degradation
48 15 51 48 40 20 40 6 Lipid, fatty-acid and isoprenoid biosynthesis

No., quasi-clique no. Protein no., the number of proteins in the quasi-clique. Interaction no., the number of interactions within the quasi-clique. CC, represents
the CC-value of a quasi-clique (see Materials and Methods). Function, the assigned function of the quasi-clique. Distribution, percentages of the following
three classes in the quasi-clique: M, the percentage of proteins which have the main function; U, the percentage of uncharacterized proteins and D, the

percentage of proteins which are discordant with the quasi-clique’s function.

To analyze the interaction dataset, first we applied the
spectral method to calculate all eigenvalues and eigenvectors
of the adjacency matrix corresponding to the network. The
following criteria were then used to generate quasi-cliques
based on eigenvectors with larger and positive eigenvalues.
(i) All the proteins were sorted by their absolute weight value
in an eigenvector, and the top 10% were selected. (ii) Every
protein must interact with at least 20% of the members. Here,
we used CC-value to measure the degree of the interconnec-
tivity between nodes and tuned the parameter to guarantee the
quality of those cliques. (iii) A quasi-clique must contain at

least 10 proteins. As a result, we yielded 48 quasi-cliques,
among which the largest one contains 109 proteins (quasi-
clique 1 in Table 1) and the smallest one contains 10 proteins
(quasi-clique 45 in Table 1); on average, a quasi-clique
contains 26.6 proteins (a protein may appear in different quasi-
cliques). Similar analysis based on eigenvector with negative
eigenvalue produced six quasi-bipartites.

The two topological structures show different interaction
patterns. In a quasi-clique proteins tend to interact with each
other (Fig. 1a), while in a quasi-bipartite, proteins between
sets have denser interactions than those within sets (Fig. 1b).
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Figure 1. The topological structures of protein—protein interaction networks. In a quasi-clique, proteins tend to interact with each other (a), while in a
quasi-bipartite, proteins between sets have denser interactions than those within sets (b).
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Figure 2. The percentage of functional classes of the 48 quasi-cliques.
Distribution of the following three classes: main function, percentage of the
proteins that have the main function; unknown function, percentage of the
uncharacterized proteins; and discordant function, percentage of the proteins
that have discordant functions.

Identification of the above topological structures could not
only represent the complicated interaction network in order,
but also make the complicated network more convenient to
analyze.

Annotation of quasi-cliques

For each of the 48 quasi-cliques, we calculated its P-value and
annotated it based on the Munich Information Center (MIPS)
hierarchical functional categories. MIPS allows a protein to
appear in more than one category, which was taken into
account in the calculation of P-value. As a result, 43 quasi-
cliques were annotated with one functional category and the
other five quasi-cliques were assigned to a set of functional
categories (Table 1; see Supplementary Material for complete
data sets).

We investigated the functions of individual proteins in
quasi-cliques and found that most of them usually share
common functions, including ribosome biogenesis, rRNA and
tRNA synthesis, processing, transcription control and mRNA
splicing, etc. (Fig. 2 and Table 1). Only a small fraction of the
proteins turn out uncharacterized or have functions conflicting
with the common function of the quasi-clique, as shown in
Figure 2. This could be explained by either unavoidable
false positive interactions under the current experimental

conditions or that the proteins really share this kind of function
but it is yet not proved.

To visualize protein interactions and functional annotations,
we have developed a software package that, along with the
complete set of data generated by our algorithm, is publicly
available at http://www.bioinfo.org.cn/PIN/. Using this soft-
ware, users can view topological structures and find annota-
tions of proteins and their interactions conveniently.

Functional prediction for uncharacterized proteins in
quasi-cliques

The isolated quasi-cliques give a good clue to predict
functions of the uncharacterized proteins. Among the 2617
proteins in the raw dataset, 555 were uncharacterized accord-
ing to MIPS hierarchical functional categories (4). For the 76
uncharacterized proteins in the 48 quasi-cliques, we assigned
for each one a function according to the main function of its
hosting quasi-clique. If a protein falls into more than one
quasi-clique, the main function of the quasi-clique with the
lowest P-value was assigned to it. If multiple hosting quasi-
cliques have the lowest P-value, or a quasi-clique has multiple
main functions, a set of functions would be assigned to the
protein. The 76 unknown proteins and their predicted func-
tions with the corresponding P-values are listed in Table 2.
There are 43 rRNA processing proteins, seven proteins related
to pre-RNA processing, 11 proteins related to ribosome
biogenesis, and the other 15 proteins related to energy,
metabolism, cytoskeleton and transcription-regulating (See
Table 2 for complete data).

We assessed the ability of the P-value to annotate and
assign functions using the same approach as Wu et al. (28). As
a control, we created and analyzed random networks with the
same interaction distribution as the original network. The
results show that among the 48 quasi-cliques of our experi-
mental data, >87.5% were significant in one or more
annotation categories at P < 0.01/Nc (here Nc is the number
of categories), whereas <2.1% of quasi-cliques identified from
random network met the same criteria. This means a
substantial fraction of isolated quasi-cliques are likely to be
biologically meaningful.

Some of our predictions were supported by recent experi-
mental evidence. Of all the quasi-cliques, five were dominated
by uncharacterized proteins (functions are unknown for at
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Table 2. Prediction for uncharacterized proteins involved in 48 quasi-cliques

Protein P-value Predicted function
(log0)
YLR421C 28 Cytoplasmic and nuclear degradation
YNL168C 7 Amino acid degradation (catabolism)
YDL193W 6 Lipid, fatty-acid and isoprenoid biosynthesis
YDRO18C 6 Lipid, fatty-acid and isoprenoid biosynthesis
YNLO26W 6 Lipid, fatty-acid and isoprenoid biosynthesis
YJLO46W 12 Tricarboxylic-acid pathway (citrate cycle, Krebs cycle, TCA cycle)
YPL252C 6 Homeostasis of metal ions (Na, K, Ca, etc.)
YLRO074C 2 tRNA transcription; other control of cellular organization; other transcription activities
YNL123W 7 Osmosensing; protein binding
YGL21IW 2 Aminoacyl-tRNA-synthetases; cell wall
YGL211IW 2 Assembly of protein complexes; lipid, fatty-acid and isoprenoid biosynthesis; cell wall
YBLO055C 7 Oxidation of fatty acids; lipid, fatty-acid and isoprenoid biosynthesis
YDR428C 7 Oxidation of fatty acids; lipid, fatty-acid and isoprenoid biosynthesis
YGR263C 7 Oxidation of fatty acids; lipid, fatty-acid and isoprenoid biosynthesis
YORO093C 7 Oxidation of fatty acids; lipid, fatty-acid and isoprenoid biosynthesis
YGLOSOSW 7 Oxidation of fatty acids; lipid, fatty-acid and isoprenoid biosynthesis
YDR428C 7 Amino acid degradation (catabolism)
YGR263C 7 Amino acid degradation (catabolism)
YORO093C 7 Amino acid degradation (catabolism)
YGLO5S9W 7 Amino acid degradation (catabolism)
YGLOSOW 7 Osmosensing; protein binding
YJROO8W 25 rRNA synthesis
YKLO099C 6 rRNA processing
YBL004W 10 rRNA processing
YDL213C 4 rRNA processing
YDR324C 10 rRNA processing
YDR449C 10 rRNA processing
YDR496C 10 rRNA processing
YERO82C 10 rRNA processing
YERI26C 10 rRNA processing
YFROOIW 6 rRNA processing
YGL11IW 10 rRNA processing
YGRO9OW 10 rRNA processing
YGRI03W 10 rRNA processing
YGRI128C 10 rRNA processing
YGR145W 10 rRNA processing
YHRO52W 10 rRNA processing
YHRO88W 14 rRNA processing
YHR196W 6 rRNA processing
YHRI197W 10 rRNA processing
YJL069C 6 rRNA processing
YJL109C 10 rRNA processing
YKLOI14C 10 rRNA processing
YKRO60W 10 rRNA processing
YKRO81C 10 rRNA processing
YLRO22C 14 rRNA processing
YLR106C 6 rRNA processing
YLRI86W 10 rRNA processing
YLR222C 10 rRNA processing
YLR276C 10 rRNA processing
YLR409C 10 rRNA processing
YMRO049C 10 rRNA processing
YMRO93W 10 rRNA processing
YNLOO2C 10 rRNA processing
YNL110C 10 rRNA processing
YNL182C 10 rRNA processing
YNRO53C 10 rRNA processing
YOLO41C 10 rRNA processing
YOLO77C 10 rRNA processing
YOROOIW 14 rRNA processing
YOR145C 6 rRNA processing
YPLOI12W 10 rRNA processing
YPLO93W 10 rRNA processing
YPR144C 10 rRNA processing
YDL209C 47 Splicing
YGR278W 47 Splicing
YLR424W 47 Splicing
YPLISIC 47 Splicing

YGRI156W 16 mRNA processing (splicing, 5’-, 3’-end processing)




2448 Nucleic Acids Research, 2003, Vol. 31, No. 9

Table 2. Continued

Protein P-value Predicted function
(logio)

YKLOISW 16 mRNA processing (splicing, 5’-, 3-end processing)
YKLO059C 16 mRNA processing (splicing, 5’-, 3"-end processing)
YDRO36C 20 Ribosome biogenesis

YDRI101IC 75 Ribosome biogenesis

YGL129C 20 Ribosome biogenesis

YGR283C 75 Ribosome biogenesis

YIL093C 20 Ribosome biogenesis

YJRO14W 75 Ribosome biogenesis

YKL155C 20 Ribosome biogenesis

YMRO0O74C 6 Ribosome biogenesis

YMRI158W 75 Ribosome biogenesis

YMR310C 75 Ribosome biogenesis

YNL177C 75 Ribosome biogenesis

The ORF name of proteins is listed in the ‘Protein’ column, corresponding P-value is listed in the middle
column and predicted function for each protein is listed in the ‘Predicted function’ column.
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Figure 3. Comparison between function prediction and experimental
annotation for small subunit (SSU) processome. (A) SSU processome that is
supported by experimental evidence (the yellow and the green proteins);
(B) our predictions based on quasi-clique 3 (the red proteins and the yellow
proteins). The yellow ones are the overlap of (A) and (B). This suggests
that our prediction is partly consistent with the experimental evidence (31).

least 50% of proteins, Fig. 2), which imply that those unknown
proteins in a same quasi-clique may form a large complex
relating to a certain cellular process. For quasi-cliques 3 and 4,
most of the proteins were predicted to mediate rRNA
processing, which is partly consistent with the results from
recent experiments (29,30,31) (Fig. 3).

DISCUSSION

The yeast large-scale protein—protein interaction data have
broadened our view of protein functions in this proteomics era.
The biological processes of a cell are controlled by interacting
proteins in metabolic and signaling pathways and in com-
plexes such as the molecular machines that synthesize and use
adenosine triphosphate, replicate and transcribe genes, or
build up the cytoskeletal infrastructure (32,33). The know-
ledge regarding protein—protein interactions has been accu-
mulated by biochemical and genetic experiments, including

the widely used high-throughput interaction detection meth-
ods, such as the yeast two-hybrid system and protein complex
purification techniques using mass spectrometry. Now, a
challenging task is to decipher the relationships between
individual proteins and to understand the molecular organ-
ization of cellular networks. Here, for the first time, we
analyzed the complicated protein interaction networks using
the spectral analysis method. This approach is useful in
revealing hidden topological structures, including quasi-
cliques and quasi-bipartites, which exhibit meaningful infor-
mation of a complex network. Figure 4a shows a part of the
original interaction network, which contains 109 proteins. It
looks confusing and difficult to assimilate before analysis. In
contrast, a tightly interacting quasi-clique including 68
proteins was found from this part of network by spectral
analysis. This suggests that a network actually is not random
as it appears (Fig. 4b).

As part of these studies, we first offered a flexible and
promising large-scale protein function prediction system
based on spectral analysis. Compared with the previous
approaches, what we presented here has a number of practical
advantages. Previous methods used partners or neighbors
alone to perform the prediction, whereas our method utilized
the more informative topological structure of the whole
network, and produced some results that were not covered by
the previous predictions. The 76 proteins contain 43 rRNA
processing proteins, seven proteins related to pre-RNA
processing, 11 proteins related to ribosome biogenesis and
another 15 proteins related to energy, metabolism, cytoske-
leton and transcription regulation. As a control, we created and
analyzed random networks with the same interaction distri-
bution as the original network. The results show that among
the 48 quasi-cliques of our experimental data, >87.5% were
significant in one or more annotation categories at P < 0.01/
Nc (here Nc is the number of categories), whereas <2.1% of
quasi-cliques identified from a random network met the same
criteria. Some of our predictions have been proved by
experiments published recently. This suggests that our
prediction method is accurate. Furthermore, this method is a
universal one that could be used to predict protein function in
other organisms.
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Figure 4. Comparison of different visual representations with and without topological structure. The original protein—protein interaction network is rather
miscellaneous and difficult to assimilate (a). The spectral analysis revealed a hidden topological structure underlying the miscellaneous network (b).

Although the initial results are promising, the current
method is still far from perfect. We have not yet fully explored
all quasi-cliques, for that the problem has been proved to be
NP-Complete. Therefore new methods should be developed to
reveal more sophisticated topological features. It should be
pointed out that prediction accuracy is affected by knowledge
of known annotations and false positive interactions. It is well
known that so far annotations of proteins in databases are
incomplete, i.e. a number of proteins with well-characterized
function, or at least well-supported functional prediction, are
annotated as ‘unknown function’ in MIPS. This introduces
additional uncertainties into our prediction. We believe that
our prediction would be better if a more accurate interaction
and annotation dataset was applied.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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