
BMC Bioinformatics

This Provisional PDF corresponds to the article as it appeared upon acceptance. The fully-formatted 
PDF version will become available shortly after the date of publication, from the URL listed below.

Clustering proteins from interaction networks for the prediction of cellular 
functions

BMC Bioinformatics 2004, 5:95     doi:10.1186/1471-2105-5-95

Christine Brun (brun@ibdm.univ-mrs.fr)
Carl Herrmann (herrmann@ibdm.univ-mrs.fr)
Alain Guenoche (guenoche@iml.cnrs-mrs.fr)

ISSN 1471-2105

Article type Methodology article

Submission date 29 Mar 2004

Acceptance date 13 Jul 2004

Publication date 13 Jul 2004

Article URL http://www.biomedcentral.com/1471-2105/5/95

Like all articles in BMC journals, this peer-reviewed article was published immediately upon acceptance. It 
can be downloaded, printed and distributed freely for any purposes (see copyright notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

© 2004 Brun et al., licensee BioMed Central Ltd.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Clustering proteins from interaction networks
for the prediction of cellular functions

Christine Brun1, Carl Herrmann1 and Alain Guénoche2
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Abstract

Background Developing reliable and efficient strategies allowing to infer a function to yet

uncharacterized proteins based on interaction networks is of crucial interest in the current context

of high-throughput data generation. In this paper, we develop a new algorithm for clustering

vertices of a protein-protein interaction network using a density function, providing disjoint

classes.

Results Applied to the yeast interaction network, the classes obtained appear to be biological

significant. The partitions are then used to make functional predictions for uncharacterized yeast

proteins, using an annotation procedure that takes into account the binary interactions between

proteins inside the classes. We show that this procedure is able to enhance the performances with

respect to previous approaches. Finally, we propose a new annotation for 37 previously

uncharacterized yeast proteins.

Conclusion We believe that our results represent a significant improvement for the inference of

cellular functions, that can be applied to other organism as well as to other type of interaction

graph, such as genetic interactions.
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Background

While more data become available, analyzing protein-protein interaction (PPI) networks appears

as a particularly effective way to make functional predictions for proteins of unknown function.

Most studies so far focused on the baker’s yeast S. cerevisiae due to large available datasets [1, 2],

but recent experimental data for D. melanogaster [3] will most probably broaden the field of

investigations. It is therefore of crucial interest to develop reliable and efficient strategies allowing

to infer a function to yet uncharacterized proteins based on interaction data.

It was soon noticed that proteins of similar cellular functions tend to lie within a short distance in

the interaction graph. Based on this property, Schwikowski et al. [4] proposed a prediction

method in which a protein of unknown function is assigned the three most frequent cellular

functions represented among its direct interaction partners. This approach is strictly local, as it

does not take into account the graph as a whole but only the immediate protein neighborhood.

However, we have good reasons to believe that the organization of proteins inside the interactome

goes beyond the one-step separation. Protein complexes and pathways are an example of more

complicated relationships between proteins involved in a same biological process. Indeed, other

methods focused on the fact that proteins sharing a significant number of interaction partners are

likely to participate in common cellular processes as proposed by Jacq (2001). Recently, we have

designed PRODISTIN [5,6], a method in which distance values between all protein pairs are

computed from the number of common and specific interaction partners and used to build a

classification tree. Functional classes are defined according to the tree topology and to the number

of proteins sharing functional annotations. The functional predictions for yet uncharacterized

proteins are then proposed based on their belonging to a particular functional class. An

alternative method for predicting biological functions was proposed [7], which ranks protein pairs

according to their probability for having the experimentally measured number of common

interaction partners. A different method, which does not rely on common interaction partners was

suggested by Vasquez et al. [8]; it optimizes the annotations of uncharacterized proteins such as to

minimize the number of interactions between proteins of different functional groups. These latter

two approaches, while based on the interaction network, do not define any clusters of proteins.

Biological knowledge teaches us that dense protein-protein interactions are the sign of the

common involvement of those proteins in certain biological processes. We therefore tried to select
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dense classes of proteins sharing a high percentage of interactions in the interaction graph.

Several clustering algorithms applied to protein interaction graphs have been proposed so

far [9, 10]. They are based on a density function evaluated in each vertex x which is computed

from the number of edges in its neighborhood. We adopted another approach, computing first an

appropriate distance between vertices. Generally the length of a shortest path or the

Czekanowski-Dice distance are used, and a classical clustering method is then applied [6, 11]. We

will present an alternative algorithm using the Czekanowski-Dice distance as in [6]. From the

distance matrix, a new graph Γ is built, which is then partitioned into disjoint classes of proteins

using an appropriate density function. Our algorithm differs from similar approaches in many

ways : 1) the graph Γ is not a classical threshold graph, in which edges are selected when their

length is lower than a threshold value, and 2) we use the valuation of the edges to measure a

density in each vertex and 3) we perform progressive clustering.

The resulting classes are assigned a biological function according to the functional annotations of

their members following a classical majority rule. Finally, a refined annotation procedure is

proposed to predict the cellular function(s) of uncharacterized proteins, taking into account the

function(s) assigned to the class and the direct interaction partners of uncharacterized protein

present within the class. Hence, interaction data is used at two levels: first to define the classes

using our partitioning algorithm, but also to annotate uncharacterized proteins once the classes

have been formed. Overall, the quality of the prediction will strongly depend on (a) the validity

of the clustering algorithm which must reflect the biological reality, and (b) the annotation

procedure within classes.

Results
Graph, classes and partitions

We analyze the interaction network as a graph, such that proteins are the vertices and each

interaction is an undirected edge. Our aim is to build clusters of proteins sharing a high

percentage of interactions, as this appears to be a strong indicator of biological relatedness. We

use the Czekanowski-Dice distance D, because it increases the weight of shared interactors, and

because two proteins having no common interactors will get the maximum distance value, while

those interacting with exactly the same set of proteins will have zero value:
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D(i, j) =
|Int(i)∆Int(j)|

|Int(i) ∪ Int(j)|+ |Int(i) ∩ Int(j)|
,

in which i and j denote two proteins, Int(i) and Int(j) are the lists of their interactors plus

themselves (to decrease the distance between proteins interacting with each other) and ∆ is the

symmetrical difference between the two sets. From the distance matrix, we first build another

valued graph Γ = (X, E), then we evaluate a density function De in each vertex to perform

clustering only from Γ and De.

Graph

Given a distance matrix, D : X ×X → R, the first operation is to select a degree δ which works

as a threshold. From any element x, the distance values D(x, y) are ranked in increasing order

and the δ-th value gives the σx threshold. Then, we take as edges in E all the pairs (x, y) such

that D(x, y) ≤ σx. Let n = |X|, m = |E| and Γδ = (X, E) be the corresponding graph. It is not a

classical threshold graph on D, since the threshold value is not the same for all the vertices.

Moreover, it is not a regular graph with degree δ either, because the edge selection process is not

symmetrical. Consequently, there can be more than δ vertices incident to x.

When there is no ambiguity on the δ value, the graph will simply be denoted Γ. For any part Y

of X, let Γ(Y ) be the set of vertices not in Y that are adjacent to Y . Thus, the neighborhood of x

is denoted Γ(x), the degree of a vertex x is Dg(x) = |Γ(x)|.

Density function

For each vertex x, we compute a density value denoted De(x) which would be high when the

elements of Γ(x) are close to x. Let Dmax be the largest distance value. We evaluate a density

function computed from the average length of the edges from x.

De(x) =
Dmax− 1

Dg(x)

∑
y∈Γ(x) D(x, y)

Dmax

Using the distance values gives a much precise density than the simple number or the percentage

of triangles or edges in the neighborhood of any vertex. The dense classes are by definition

connected parts in Γ sharing high density values. Our initial idea was to search for a density

threshold and to consider the partial subgraph whose vertices have a density greater than this

5



threshold. Classes would have been the connected components. This strategy does not give the

expected results. Enumerating all the possible threshold values, we have observed that often none

was satisfying. By decreasing the threshold, we often obtain only a single growing class, and

many singletons. Since there is no straightforward way to fix a threshold, the local maximum

values of the density function are considered.

Classes at three levels

We construct classes in three steps :

• we first build a kernel which is a connected part of the vertices for which the density is

locally maximum and greater than the average;

• then, these classes are extended, adding vertices that are connected to only one kernel ;

• finally the unclassified elements are assigned to one of the previous classes.

Kernels: a kernel, denoted K, is a connected part of Γ, obtained by the following algorithm : we

first search for the local maximum values of the density function and we consider the partial

subgraph of Γ reduced to these vertices.

∀x ∈ K,∀y ∈ Γ(x) we have De(x) ≥ De(y).

The initial kernels are the connected components of this graph. More precisely, if several vertices

with maximum value are in the same kernel, they necessary have the same density value ;

otherwise the initial kernels are singletons. Then, we assign recursively to each kernel K the

vertices (i) having a density greater than or equal to the average density value over X and (ii)

that are adjacent to only one kernel. Doing so, we avoid any ambiguity in the assignment,

postponing the decision when several are possible.

The number of kernels is the number of classes and it remains unchanged in the following.

Therefore, the number of classes is not an input parameter as for most alternative clustering

methods optimizing a criterion. We shall see that it performs well, when there is a small number

of classes, having from 30 to 50 elements.

Extended classes: at the second level, we assign elements that are connected to a unique kernel,

whatever their density is. If an element which is not in a kernel is connected to several ones, the
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decision is again postponed.

Complete classes: finally, to get partitions, we assign the remaining elements to one class. For x

and any extended class C to which it is connected, we compute the number of edges between x

and C, and also its average distance value to C. Finally there are two candidates, the majority

connected class Cm and the closest one Cd. If they are identical, x is connected to it. And if they

are different we apply the empiric following rule : if |Cm|
|Cd| > 1.5, class Cm is retained, because the

number of links to Cm is clearly larger than to Cd ; otherwise Cd is retained.

Validation of the method

We want to assess that this partitioning method is able to detect areas in a graph having a

percentage of edges larger than the average over the whole graph. Starting with a graph

containing a certain number of known classes, the two main points to verify are the ability to

recover the correct number of classes and the degree of identity between the predicted and the

initial classes. In order to do so, we have developed a random graph generator in which some

balanced classes are established. We do not pretend to mimic protein interaction networks which

have a power-law degree distribution. Graphs are built selecting at random edges with a

probability pi if its two ends are in the same class and pe if they are in two different classes. To

evaluate the class fitting, we use the same parameters as in Guénoche (2004).

• τe, the percentage of elements in one recovered class coming from its corresponding class in

the initial partition;

• τp, the percentage of pairs in the same class that are also joined together in the initial

partition.

We have generated 200 distances on 200 vertices distributed in 5 classes, setting first pi = .5 and

pe = .1 and secondly pi = .4 and pe = .1. For δ = 20 (10% of the number of vertices) we obtain

the best results :

• in the first case, we get 5 classes in 67% of the trials, and a number of classes in the range

4-6 in 97% ; the criteria values are τe = .97 and τp = .94 ;

• in the second case the percentage are respectively 51 and 92 ; the criteria values are τe = .86

and τp = .76

7



These average results prove that this clustering method is able to recover classes in a graph in

which some parts have a higher density of edges. The larger the density gap, the more accurate

the prediction of the number of classes. Hence, it seems appropriate to apply this clustering

algorithm to protein interaction networks, in which the density of edges is not uniform.

Complexity

To establish graph Γ, it is necessary to order the distance values from any x. The computation of

σx is in O(n log n) and the selection of the edges is in O(n). Finally, the graph construction is in

O(n2 log n).

To evaluate De(x) it is sufficient to test the edges in the neighborhood of x which contains at

most n vertices. The computation of the density function is thus in O(n2).

Kernel computation is in O(n2) to find the local maximum vertices, and in O(m) = O(n2) to

determine the kernel elements. During the following steps, for any x we count its connections to

the kernels, and then to the extended classes. Both are also in O(n2). Finally, the complexity of

the clustering method is O(n2 log n).

Using classes for functional annotation of proteins

We apply the clustering algorithm described above to the network of protein-protein interactions

in yeast. In order to assess the efficiency of our method and confront it with others, we use a

curated dataset (as described in Brun et al., 2003) of 2097 protein-protein interactions between

876 yeast proteins, all involved in at least 3 binary interactions. We choose to rule out poorly

connected proteins from the graph because the existence of false-positive and false-negative

interactions weights more for such proteins. The functional annotations used to assign the class

annotation and predict protein function are those of the Yeast Protein Database (YPD, 1st June

2002), which have been manually updated. This means that for proteins annotated as ”unknown”

at the time the database became commercial, we have checked in the Saccharomyces Genome

Database (SGD, February 3rd, 2004) whether it had received a Gene Ontology (GO) annotation

in the meantime, and if so, we converted the GO annotation to its corresponding YPD keyword.

We choose δ = 2, which leads to a partition of the graph in 126 classes [see additional file 1].
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Biological coherence of classes

By comparing the classes obtained with those built using the PRODISTIN method (Brun et al.,

2003), we found that 42 out of 126 are equal or included in PRODISTIN classes, and 70/126 have

at least 70% overlap. This is quite remarkable and confirms the biological significance of the

method, since PRODISTIN classes are by definition functionally homogeneous clusters (at least

50% of proteins in a PRODISTIN class have a common annotation). In addition, a detailed

analysis of the 14 classes that only share 1 protein or do not overlap at all with PRODISTIN

classes, showed that some of them are highly biologically significant. For instance, the three

proteins Csm3, Tof1 and Top1, which form a class, are all important in maintaining the integrity

of the chromosome and form a class. Similarly, Bsp1, Cap1 and Cap2, which also form a class, are

all parts of the actin cytoskeleton. Finally, the class containing Pcl2, Pho85, Psy2, Sor1 and Sor2

underlines the pleiotropic functions of Pho85. This cyclin-dependent protein kinase is involved in

cell cycle control (when interacting with Pcl2, for instance) but also in the regulation of the

accumulation of glycogen, a major polysaccharide storage form of glucose in yeast [12]. This is

thus explaining the clustering of these two last proteins with Sor1 and Sor2 which both participate

to glucose metabolism. Interestingly, Psy2 is a protein of unknown function, which was recently

related to proteins involved in the progression of the cell cycle [13]. Its partitioning in this

particular class thus reinforces this recent experimental result and illustrates the adequacy of our

method. Therefore, the method appears to not only group proteins involved in the same cellular

processes but also to underline crosstalk between cellular processes. The protein classes built by

the algorithm being biologically significant, we thus choose to assign them a functional annotation

corresponding to the functions shared by at least 50% of the annotated proteins of the class.

A new annotation procedure for uncharacterized proteins

As already mentioned in the introduction, a popular annotation procedure for single

uncharacterized proteins, once clusters of proteins are available, is the simple majority rule: the

most frequent function, or those shared by more than d% of the annotated proteins in the class

are assigned to proteins of unknown functions in the class. We will call this approach the

“majority rule in class” approach, or MRC for short. The PRODISTIN method proposed in [6] is

an example of the MRC approach, in which the threshold d is fixed to 50%. However, it is applied

to different classes than those obtained with the previously described clustering algorithm.
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An alternative solution was proposed by Schwikowski et al. [4], which relies directly on the

interaction graph (i.e. regardless of any clustering). The idea is to assign to a protein of interest

the most frequent (e.g. 3) functions of its direct interaction partners (“majority rule among

neighbors”, or MRN).

Although these approaches can yield satisfactory results in particular cases, there is certainly

room for improvement. For instance, the MRN procedure is strictly local and ignores neighbors

that are more than one step away from the protein of interest. This is probably a too restrictive

representation of how proteins work together.

The procedure we propose in this paper is a simple improvement, which aims at (partly) resolving

the problems of previous procedures discussed so far while combining their respective advantages.

We will call it “ hybrid method”, as it is mainly based on protein classes extracted as described in

the previous section from the interaction network, but also takes into account the interaction

partners of each protein inside its class. Using classes means taking into account the relationship

between proteins that are close to each other though not directly interacting, while looking at the

direct interaction partners allows to refine the predictions by using local relationships. More

precisely, our procedure for predicting functions consists of three steps:

1. for a given class, as explain in the previous paragraph, we list all functions found among

proteins in the class, and keep only those that are shared by at least d% of the annotated

proteins of the class (d = 50 in our experiment): we call this set of annotations fg;

2. for a given protein P inside a class, we list the functions found among proteins in its class

with which it interacts directly: this second set of functions is called fn;

3. the predicted annotations for P are (if any) those in fg ∩ fn.

A prediction is possible as soon as the intersection is not empty. This means that there should

exist one or several functions that are frequently encountered among proteins in a class (fg 6= Ø),

but also that single proteins have annotated interaction partners (fn 6= Ø). This double filtering

allows to lower the threshold d with respect to the MRC method, without increasing the rate of

false positives. Moreover, the lower the threshold, the more proteins we can make predictions for

(Fig. 2).
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Function prediction for uncharacterized proteins

As mentioned earlier, the parameter d varies between 30 and 70%. A conservative choice of

d = 70% leads to a prediction for 20 previously uncharacterized proteins (TFR=44%, RCP=75%)

while at d = 30%, we make a prediction for 48 proteins (TFR=51%, RCP=53%). We choose

d = 50%, which yields a prediction for 37 proteins which had no defined cellular role in SGD

(February 3rd, 2003).

Our predictions (Table 1) are then compared with recent experimental results described in the

literature, annotated in Gene Ontology and reported in the Saccharomyces Genome Database

(SGD, march 15th 2004) (http://www.yeastgenome.org/). Novel annotations are available for 12

out of the 37 proteins. For 8 of them (67%), our predictions are in accordance with or related to

the experimental results. For the 4 other proteins (33%), our predictions disagree (Table 2).

Overall, these observations strengthen the relevance of our method.

Comparison with other procedures

Here, we compare the hybrid method to other annotation procedures, in particular the MRC

approach, the MRN approach and the general optimization method (GOM) proposed by Vazquez

et al. [8]. The comparison with previously published methods is made difficult by the fact that it

has been applied to different datasets, and cannot be implemented easily to be run on our data.

We have implemented the MRC and MRN algorithm, which we applied to our interaction

network in order to achieve a direct comparison with our procedure. As for the GOM, we have

tried to confront the functional predictions made for uncharacterized proteins and to use newly

available annotation evidence to validate both prediction methods. This will be discussed at the

end of this section.

We defined two criteria reflecting the efficiency of the prediction method

• the rate of true functions recovered (TFR): this indicator is determined by the

“leave-one-out” method, i.e. by successively scanning all annotated proteins in a class and

confronting their true annotations with the predicted ones,

• the rate of correct predictions (RCP), i.e. the number of correct predictions over the total

number of predictions made.
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For our method and the MRC approach, these indicators depend on the threshold d. A

reasonable interval for d is [30, 70]: below 30%, a function is not particularly representative

whereas above 70%, the threshold is too stringent and yields too few predictions. For a given

value of d, our procedure predicts a function for less proteins than the simple MRC, due to the

additional step in the method. Hence, in order to compare both approaches, we shall plot both

criteria against the number of proteins for which a prediction is made (out of the total number of

proteins, hence 876). The results are shown in Fig. 3.

The RCP criteria decreases with decreasing threshold d: the less strict we are, the more

predictions we make, but the lower the quality of the predictions is. It varies between 41% and

70% for the MRC procedure, whereas it is constantly above 50% for the hybrid procedure (Fig.

3b). Interestingly, when plotted against the number of predictions, the points seem to lie on two

strait and parallel lines. Indeed, linear regressions (straight lines in Fig. 3) fit well with both sets

of data, and confirm that the RCP criteria is constantly above for the hybrid procedure with

respect to the MRC procedure. The improvement is about 3%. If we chose to be very

conservative, our method allows to achieve a rate of correct predictions of 75% for a small number

of proteins.

As for the rate of true functions recovered (TFR), the difference between both procedures is even

more striking (see Fig. 3a). It augments when the threshold d becomes less stringent and thus

when the number of predictions increases. However, as seen previously, the price to pay is a poor

reliability of the prediction. Clearly, the hybrid procedure yields better results than the simple

majority rule. We apply again a linear regression to both sets of data, which confirms that the

hybrid procedure achieves a TFR rate which is 4 to 7% better than the MRC procedure for the

same number of predictions. A very conservative approach yields TFR rates of 45% for the hybrid

and 41% for the MRC procedure, while a less severe approach yields rates well over 50% for the

first procedure against 45% for the second.

In comparison, the performances of the MRN method are limited, as can be seen immediately

from the ROC curve in Fig. 4, in which the TFR is plotted against the RCP. Here, we assigned to

a protein the n most represented functions among its direct interaction partners, with n = 1 . . . 5.

However, this method makes a prediction for almost all the proteins, since having one annotated

interaction partner is enough for a protein to get a function. The poor performances of this

approach emphasizes the need for more refined approaches which takes into account the specific
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neighborhood of each protein.

Finally, we have tried to confront the quality of the predictions made by our method, with respect

to the GOM. In order to do so, out of the 37 uncharacterized proteins we made a prediction for,

we took the 12 which had received an annotation in the meantime based on experimental

evidence, and compared our predictions as well as the GOM predictions to these newly acquired

annotations. Results of this analysis are presented in Table 2. Overall, whereas 8/12 (67%) of our

predictions are equal or strongly similar to the current SGD annotation, only 2/9 GOM

predictions (22%) do match the SGD annotation. Moreover, in 3 out of 7 cases where the GOM

prediction of was different (NIS1, SLX4, YLR238W), this prediction was rated as a high

confidence prediction by the authors (100/100, see [8] supplementary material).

In conclusion, the comparison with alternative methods proposed so far shows that our approach

performs better and makes more reliable predictions.

Discussion and conclusion

We have proposed a new method to analyze the protein-protein interaction network grounded on

the combination of a clustering algorithm of the vertices and a refined method allowing to assign a

function to proteins of yet unknown function. This method builds classes of proteins which appear

to be involved in the same or related biological process(es). Furthermore, the method proposes a

number of highly biologically relevant classes that PRODISTIN was not able to pinpoint. The

results of our method are very encouraging, since the improvement we propose is a very simple

one and yields sizeable effects for a significant number of uncharacterized proteins. Comparison

with alternative approaches (MRN [4] or GOM [8]) shows that the performance of our algorithm

is better in terms of sensibility and/or specificity, and that the predictions seem more reliable. It

is especially interesting that it performs better for the rate of recovered functions, since this is

probably the most relevant indicator. Indeed, the rate of correct predictions for example is very

sensitive to incomplete annotations (false positive might turn out to be true positives).

We have no doubt that there is still room for improvement. For example, the annotation

procedure should be optimized to become even more context sensitive, as some classes have very

coherent protein functions, while the annotations inside others seem more broadly distributed.

This does not mean that the procedure is inadequate, but may reflect the incompleteness of the

biological knowledge. Another improvement might come from using the extended classes of the
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clustering algorithm instead of the partitions, as the density of interactions inside the extended

classes is higher than in the partitions. Thus, the quality of the predictions is likely to be further

increased.
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Figure legends

Figure 1 : Flowchart of the method. (a) A graph is built from a list of binary protein-protein

interactions. (b) The Czekanowski-Dice distance is calculated among all pairs of proteins. (c) A

graph Γ is build based on distance values (see text for details). (d) Classes are constructed after

computing a density function De. (e) Classes are functionally annotated according to a threshold

majority rule in classes (MRC). (f) Function are predicted for uncharacterized proteins by a next

neighbor exploration.

Figure 2 : Comparison of the number of predictions made with our procedure (shaded bars) and

the MRC strategy (full bars) as a function of the threshold parameter d. The total number of

proteins is 876.

Figure 3 : Comparison of our procedure (full squares) and the MRC strategy (full diamonds) of

the rate of true functions recovered (TFR, plot (a)) and the rates of correct predictions (RCP,

plot (b)). The straight lines show the linear fit for our procedure (full line) and the MRC

procedure (dashed lines). The horizontal axis indicates the number of proteins for which a

prediction has been made. All rates in the vertical axis are computed with respect to the total

number of annotated proteins.

Figure 4 : Comparison between the hybrid method (blue squares), the MRC method (red

diamonds) and the MRN [4] (green triangle). The rate of true functions recovered is plotted

agains the rate of correct predictions. For the hybrid method and the MRC method, the points

correspond to thresholds d from 30% to 70% in steps of 5%, whereas for the MRN method the

points correspond to predictions made with the n most frequent functions represented among

direct interaction partners, with n = 1 . . . 5.
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Table 1 : List of predicted functions

YPL077C Vesicular transport (90%,1) ;
IES5 Vesicular transport (100%,1) ;
YDL089W Vesicular transport (100%,1) ;
YLR324W Vesicular transport (100%,1) ;
YKR022C Vesicular transport (100%,1) ;
QUT1 Vesicular transport (83%,3) ;
TVP15 Vesicular transport (100%,3) ; Membrane fusion (50%,1) ;
YFR008W Mating response (67%,2) ;
YLR238W Mating response (67%,2) ;
YNL127W Mating response (67%,2) ;
PST2 Mating response (100%,1) ; Signal transduction (100%,1) ;
SLX4 DNA repair (75%,1) ; Recombination (75%,1) ;
SHU2 DNA repair (100%,1) ; Recombination (100%,1) ;
YCL063W DNA repair (100%,1) ; Recombination (67%,1) ; DNA synthesis (50%,1) ;
NKP2 Mitosis (60%,1) ; Chromatin/chromosome structure (60%,1) ;
SOG2 Mitosis (60%,1) ;
YGL079W Mitosis (71%,1) ;
APP2 Cell structure (50%,1) ;
YBR108W Cell structure (50%,2) ;
YGR058W Cell structure (50%,1) ;
YLR456W RNA processing/modification (57%,1) ;
YNL092W RNA processing/modification (57%,1) ;
YDR140W Protein modification (100%,1) ; Pol II transcription (100%,1) ; Chro-

matin/chromosome structure (100%,1) ;
YEL023C Protein modification (50%,1) ; DNA repair (50%,1) ; DNA synthesis (75%,1)
NIS1 Cell cycle control (50%,2) ;
YLR125W Cell cycle control (62%,2) ;
BIT61 Cell polarity (100%,1) ;
YKL082C Cell polarity (60%,2) ;
YGL230C Pol II transcription (88%,1) ;
TAH18 Pol II transcription (64%,2) ;
YJL084C Carbohydrate metabolism (67%,2) ;
TSR2 Protein synthesis (100%,2) ;
AKL1 RNA turnover (50%,1) ;
YER071C Cell structure (50%,1) ; Protein folding (50%,1) ;
YKR007W Small molecule transport (50%,1) ; Cell stress (100%,1) ; Other metabolism

(50%,1) ;
RMD1 Meiosis (75%,1) ;
FIN1 Signal transduction (75%,2) ; Differentiation (50%,2) ;

Predictions made by our method for 37 previously uncharacterized proteins (no annotation in SGD,
version of February 3rd, 2004). The numbers in parenthesis indicate 1) the percentage of annotated
proteins in the class sharing this cellular function, and 2) the number of neighbors of the protein
which are annotated for this function.
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Table 2 : Comparison with the GOM approach

Protein Hybrid method GOM [8] current SGD annotations
(2/06/2004)

YLR324W vesicular transport ( 6=) nuclear organization (6=) peroxisome organization
and biogenesis

YKR022C vesicular transport ( 6=) nuclear organization (6=) nuclear mRNA splicing,
via spliceosome

YFR008W mating response (=) pheromone response, mat-
ing type determination,
sex-specific protein (=)

cell cycle arrest in response
to pheromone

YLR238W mating response (=) nuclear organization (6=) cell cycle arrest in response
to pheromone

YNL127W mating response (=) budding, cell polarity and
filament organization (=)

cell cycle arrest in response
to pheromone

SLX4 DNA repair, recombina-
tion (')

assimilation of ammonia
(6=)

DNA replication, DNA de-
pendent DNA replication

YCL063W DNA repair, recombina-
tion, DNA synthesis (6=)

biogenesis of cell wall (6=) vacuole inheritance

APP2 cell structure (=) (no prediction ) actin filament organization

NIS1 cell cycle control (=) nuclear organization (6=) regulation of mitosis

YKL082C cell polarity (=) (no prediction) establishment of cell polar-
ity (sensu Saccharomyces)

TSR2 protein synthesis (') organization of cytoplasm
(6=)

processing of 20S pre-
rRNA

AKL1 RNA turnover (6=) (no prediction) actin cytoskeleton organi-
zation and biogenesis, reg-
ulation of endocytosis

Comparison of the predictions made by our method and the GOM [8], for the 12 proteins previously
uncharacterized (SGD, 2/02/2004) which have received an annotation in the meantime (SGD,
2/06/2004). The hybrid method uses YPD keywords, whereas the GOM uses MIPS keywords. The
SGD annotations are Gene Ontology terms. The symbol = means that a prediction is equal or
strongly similar to the actual annotation, whereas ' means that it is related to, and 6= indicates
that the prediction is different.
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Additional file

classes.pdf (portable document format): list of the 126 classes obtained with the clustering
algorithm described in the text (d = 50%), along with their respective annotations when available.
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Additional files provided with this submission:

Additional file 1: classes.pdf : 38KB
http://www.biomedcentral.com/imedia/1358452283393339/sup1.pdf


	Header page
	Article
	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Additional files


