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Abstract

Relevant information about protein interactions is stored in textual sources. This sources are
commonly used not only as archives of what is already known but also as information for generating
new knowledge, particularly to pose hypothesis about new possible interactions that can be inferred
from the existing ones. This task is the more creative part of scientific work in experimental systems.
We present a large-scale analysis for the prediction of new interactions based on the interaction
network for the ones already known and detected automatically in the literature.

During the last few years it has became clear that part of the information about protein interac-
tions could be extracted with automatic tools, even if these tools are still far from perfect and key
problems such as detection of protein names are not completely solved. We have developed a inte-
grated automatic approach, called SUISEKI (System for Information Extraction on Interactions),
able to extract protein interactions from collections of Medline abstracts.

Previous experiments with the system have shown that it is able to extract almost 70% of the
interactions present in relatively large text corpus, with an accuracy of approximately 80% (for
the best defined interactions) that makes the system usable in real scenarios, both at the level of
extraction of protein names and at the level of extracting interaction between them.

With the analysis of the interaction map of Saccharomyces cerevisiae we show that interactions
published in the years 2000/2001 frequently correspond to proteins or genes that were already very
close in the interaction network deduced from the literature published before these years and that
they are often connected to the same proteins. That is, discoveries are commonly done among
highly connected entities. Some biologically relevant examples illustrate how interactions described
in the year 2000 could have been proposed as reasonable working hypothesis with the information
previously available in the automatically extracted network of interactions.

Keywords: SUISEKI, information extraction, protein-protein interactions, frame-based systems, dis-
covery of interactions

1 Introduction

Scientists in areas such molecular biology and biochemistry aim to discover new biological entities and
their functions. Typical cases could be the discovery of the implication of new proteins and genes in
an already known process, or the implication of proteins with previously characterised functions in a
separated process. This is for example the case of the discovery of new signalling pathways linking
previously known ones.

The use of the available information (published papers, talks in conferences, etc.) are a key step for
the discovery process, since in many cases week or indirect evidences about possible relations hidden
in the literature are used to substantiate working hypothesis that are experimentally explored.

A similar situation is found after the application of massive proteomic methods that enable the
discovery of hundred of protein interactions, i.e. yeast two hybrid, mass spectrometry applied to the
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resolution of protein complexes. In this case it is interesting to realise quickly the presence of new
interactions between already known proteins that might constitute a relevant new discovery.

In practice both, the generation of new hypothesis about interactions and highlighting the new
discoveries, require a painful step of analysis of the available information in databases and litera-
ture sources. The automatic systems for information extraction of interactions have the capacity of
facilitating this task.

1.1 The SUISEKI System

... [[Rim11p]] is required for [[Ime1p]]−−[[Ume6p]] interaction , and prior 
studies have shown that [[Rim11p]] binds to and phosphorylates [Ime1p]]. ...

1. Query Medline

2. Parse the text, detect sentence boundaries, 
analyse for part−of−speech, detect protein names.

3. Detect signal− words for interaction

... Rim11p is required for Ime1p−−Ume6p  [[interaction]] , and prior studies 
have shown that Rim11p  [[binds]] to and [[phosphorylates]]  Ime1p. ...

4. Detect interactions

... Rim11p is required for [Ime1p−−Ume6p  interaction]] , and prior studies 
have shown that [Rim11p  binds to and phosphorylates  Ime1p]. ...

5. View and edit the results

6. Refine the query

Figure 1: Overview of the SUISEKI system.

We are developing a System for In-
formation Extraction on Interactions
(SUISEKI) able to automatically iden-
tify protein or gene names and their
biological interactions. On the one
hand our system takes advantage of
the analysis of the syntactical struc-
ture of phrases and other developments
in computational linguistics. And at
the same time it counts on the statis-
tics and number of occurrences of in-
dications of interactions in the frame-
work of what are generally known
as pattern-matching approaches. The
SUISEKI approach can be considered
a hybrid between the purely statisti-
cal methods [15, 9, 1, 2, 4] and the
more computer linguistically oriented
approaches such as [13, 16, 18].

Different components of the SU-
ISEKI system have been previously de-
scribed in [3] and [5, 6]. The basic
steps during the analysis of protein in-
teractions are summarised in Fig. 1.
In the first step the user has to per-
form a query on MEDLINE to extract
the entries that form the text corpus
(step 1 in the figure). Then the text is
separated in sentences and parsed by
a part-of-speech tagger. This informa-
tion is used to detect the protein names
in combination with a set of rules and dictionaries (2). Sentences containing at least two protein names
are matched against a collection of predefined frames that contain the basic forms of expressing protein
interactions in scientific text (3). The results are kept in a protein-protein interaction database that
allows the analysis with an interactive query interface (4), the interface allows additional manipula-
tions of the information by human experts. Additional modules are applied to extract more specific
information on proteins like possible synonyms and functional descriptions (5).

With the practical limitations of this methodology in mind the possibility of obtaining massive
amount of data has prompted us to ask some basic questions about the structure and organisation of
the interaction networks, with the aim of using this information to discover new interactions. This
allows us for the first time to go beyond the facts that are contained in the text and extracted by
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an IE system and to predict totally new facts based on this information. These proposals could be
helpful in the interpretation of proteomic data or being followed by detailed experimental approaches.

2 Methods

The core of the system is the definition of the rules that capture different language constructions that
are commonly used to express interactions. These rules are implemented in the system as so-called
frames. The frames with the highest recall are those of the form “[protein/gene] binds/associates/...
[protein/gene]”. They incorporate a distance measure (number of words) between particles (names and
specific verbs indicating an interaction). Short distances (between zero to five words) represent more
clearly relations and are associated to higher probability scores, in this case our precision estimation
is of 68% (percentage of frames of this type with a distance of maximal five words between the
particles that detect correctly an interaction). Frames with distances larger than 10 words between
the protein/gene names and the action-keyword have associated a lower score and correspond to a
precision of 21%. A number of other frames are created with different combinations of distances.
These frames also detect negations to reduce the number of false positives.

Most of the remaining frames are dedicated to specific relations, such as “[noun indicating inter-
action] of [protein/gene] with [protein/gene]”, these frames are very precise, for example the precision
of this particular frame is better than 95%, even if they cover a relatively small number of cases.

The final result is a list of interactions each of them associated with a score (the sum of the
probability scores according to the frames that matched) that is related with the reliability of this
information.

The use of the frames relies heavily on the previous identification of protein and gene names. The
intrinsically complex nature of this problem makes the application of different heuristics necessary.
Names can be composed of English words of general use (e.g. checkpoint protein 1), they can be part
of other names (e.g. Cdc7 and Cdc7 protein kinase are two different proteins) and non-protein names
may form part of protein names (e.g. RNA is not a protein name but RNA polymerase II). Additional
complications are words like alpha, multisubunit or promotor that may form part of the names or may
better be excluded. Finally, the commonly present abbreviations, substance names and experimental
techniques require specific treatment to differentiate them from protein and gene names.

Furthermore in the class of protein or gene names there exist semantic problems because names
can refer to protein families like for example Fus3p and Kss1p that are MAP kinases or CLN1, CLN2
and CLB5 that are all G1/S cyclins. In this case it is possible that in the future the use of annotated
classifications of proteins and functions (ontologies) may provide viable solutions.

SUISEKI uses a combination of different indications for this task. First the syntactical information
provided by a part-of-speech tagger to detect the noun-phrases that contain the names. Then these
phrases are checked for lexical criteria (by the use of a slightly adapted English dictionary) and for
morphological criteria (if it looks like a protein or gene name like for example p53 or Arf1 or words
ending with -ase). Finally the terms are accepted as protein or gene names if they fit in the context
(this step is still very limited and it checks if the terms refer to cell or phage names).

2.1 Text Corpora

The first text corpus analyzed consists of the 43417 Medline abstracts [19] that contain “Saccharomyces
cerevisiae” in MeSH terms. The second corpus is a subset of 5283 that additionally contain the words
“cell cycle”. The detailed analysis of a biological scenario presented here is based on the cell-cycle
corpus. The text corpora for the cell cycle and yeast have sizes of 12Mb and 95Mb approximately.
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2.2 Application of SUISEKI

The analysis carried out with SUISEKI requires a considerable preparation time (access to the text
corpus, indexing and parsing), while the statistical parts of the implementation are much faster. The
most time consuming step is the part-of-speech tagging of the text what can take some hours for the
approximately 40,000 abstracts of the entire yeast corpus. The following steps will take about 2-3
hours on a common workstation.

The interactions are represented as a graph in an interactive window. The interface allows ad-
justment of a threshold (score of the interactions) to restrict the displayed interactions to a higher
or lower level of accuracy. The interface has basic search capacities implemented and a basic layout
algorithm to “unfold” the graph avoiding the collapse of the entities in the graph. The viewer has
been implemented in Java as a stand-alone piece of software with an applet that enables the access of
the data via the internet. The graph can be edited, wrong interactions can be deleted, and nodes can
be fused (necessary for synonyms). The data on the interactions (which proteins interact, the scores,
types of interactions, links to the literature, etc.) are stored in a simple relational database schema
that facilitates the access to the information. The results of the analysis are written to HTML-pages
and linked to the graph-viewer. This allows the direct access to all the underlying information (the
text or individual sentences) used by the system.

3 Results

3.1 Performance of the SUISEKI System

We have previously analysed large data sets to establish the performances of the system in real biologi-
cal scenarios [5, 6]. The efficiency of SUISEKI in directly related with the frequency of the interactions,
since the accuracy of the extracted interactions increases with their relative abundance. That is, the
most commonly found interactions have higher chances of corresponding to true interactions. The
system found a total of 4657 interactions in the 5283 abstracts comprising the cell cycle corpus.

As mentioned before each of the detected interactions gets a score that is related to the reliability of
this information. Interactions in the first quarter of this list (ordered by the scores) have a reliability of
80% (20% false extractions) which decreases when we move down in the list (69%, 63% and 42% in the
second, third and forth quarter). This allows the application of thresholds to adapt the precision/recall
level.

The second important figure to consider here is the capacity of the system for retrieving a significant
number of the interactions contained in the text. The recall (percentage of detected interactions in
relation to the number of interactions detected by manual inspection) is low when small samples are
considered (recall of 38%), but increases considerably when large text collections are analysed, since
then the system benefits from the repetition of information in different parts of the text. The recall
raised to 72% when the system had to recover 154 interactions selected from a sample in the cell cycle
corpus. We would expect an increase in the system recall in larger text corpora (e.g. the full yeast
corpus or the full text of the articles instead of the abstracts), since the yeast cell cycle represents a
relatively small set of abstracts.

3.1.1 Sources of Incorrectly Detected Interactions

Our previous analysis and the recently published evaluation of the capacity of the SUISEKI system
for retrieving the protein-protein interactions contained in DIP database [17] only from MEDLINE
abstracts [7] has made us aware of the importance of the several areas in which the information
extraction applications require improvement. They can be summarised in three main topics, treated
in order of importance:
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1. Erroneous detection of protein names. A systematic nomenclature for gene and protein
names does not exist for most organisms. And in addition to many possible writing variants for
the same name synonyms can be associated with the genes or proteins what makes the detection
and classification of the terms very difficult. Our analysis of the DIP database [7] shows that
50% of the names given in the database were impossible to find in the corresponding abstracts.

2. Insufficient information in the text sources.

(a) Medline abstracts, commonly used do not contain all the information about interactions.
The above mentioned experiment [7] has shown that for 30% of the cases interactions that
were described in the database were not found in the abstracts but in the full text of the
publication. The analysis of the full text of the articles remains a challenge at the moment.

(b) Indirect references and anaphoric expression. This is a well-known problem in computa-
tional linguistics (e.g. information contained in previous sentences is referred implicitly in
the following text), and this is a key question for the analysis of Medline abstracts where
protein names can be given in the title or initial sentences and later treated with forms
such as “the protein” or mentioned as a general class of proteins like “the kinase”.

3. Incorrect detection of the interactions due to deficiencies in the information extrac-
tion technology.

(a) Incorrect parsing of sentences, mainly due to the limitations imposed by the parsers and
their lack of adaptation to this particular domain.

(b) Limitations of the current set of frames that SUISEKI uses for describing interactions.
In the analysis of the DIP database mentioned above, we discovered that in 20% of the
cases in which the information was contained in the abstracts and the names were correctly
identified our system failed to detect the corresponding interactions because the structure
of the sentences was too complicated for the available frames. This problem has to be seen
in context, since even if some of the sentences are not captured by the frames the same
information would be most likely repeated in other sentences that would conform to the
standard structures expected by the frames.

3.2 The Interaction Network of the Cell Cycle

The analysis of the interaction network formed around the cell cycle corpus provides a good practical
example of the type of information provided by SUISEKI and the possibilities open to the analysis by
human experts. The overview provided in Fig. 2, shows how the main protein components implicated
in this biological system were detected automatically. In the upper left corner we see Cdc28, a key
cyclin dependent kinase (CDK) involved in cell cycle control. The activity of Cdc28 is controlled by
the G1 cyclins (cln1, 2, 3) and the G2 cylins (clb1, 2, 3 and 4). The interaction between Cdc28 and
the cyclins controls the activity of the transcription factors Sbf and Mbf.

The graph shows also the relation between the Rad proteins and DNA. They are generally impli-
cated in DNA repair and recombination. The group of genes close to them (Rme1p, Ime1, etc.) are
related with the developmental control of meiosis. Ste20 is a protein kinase required for pheromone
signal transduction, pseudohyphal and invasive growth, as well as mating. It binds to and is acti-
vated by Cdc42, a small GTPase of the Rho family, which has a role in regulating actin organisation.
Cdc24 is the guanine-nucleotide exchange factor for Cdc42 and together they are required for the
establishment of cell polarity and for bud formation.

The overview provided in Fig. 3 hides some of the complexities of the interaction network to focus
on Cdc28, the cyclins, and the major transcription factors. The Medline sentences matched by the
SUISEKI frames are organized in web pages and linked to the graphical web interface. The information
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Figure 2: A part of the interaction network for
the cell cycle corpus.

Figure 3: Focus on the cyclins that regulate
the cell cycle, their effector the cyclin depen-
dent kinase Cdc28 and the major transcription
factors implicated in this process.
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Figure 4: Distribution of the number of connections per node (entity) in the yeast and the cell cycle
corpus (The values are given in logarithmic scale in both axis).

about interactions is separated from the information about protein functions that is also presented to
the user. For example, we used this information to understand that Sbf is a dimer of Swi4 and Swi6,
while Mbf is a dimer of Mbp1 and Swi6. A sentence where the interaction between Swi4 and Swi6
was detected clarifies that Swi4 is the DNA binding part, and that Swi6 binds to Swi4. From other
sentences it became clear that Mbp1 also binds to the DNA, and that Swi6 is the regulatory part of
these two transcription factors (Sbf and Mbf). It was also easy to detect that MCB and SCB are
specific DNA sequences where these transcription factors bind.

3.3 The Connectivity in the Network of Interactions

For the two corpora the relation between the number of connections and nodes in the interaction
graph (the proteins or genes) is represented in Fig. 4. In both cases most of the nodes are connected
by less than 10 connections, while only a few of them are the centre of a remarkable high number of
connections.

The most connected node is DNA, followed by key chemical compounds such as ATP, GTP (in the
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general yeast corpora) and proteins such as actin and microtubules in both corpora (Table 1). This
correlates well with their central activity in the functioning of the cell, and in the case of actin and
microtubules to the role of the cytoeskeleton in the cell cycle.

In the current implementation entities such as metabolites (ATP, GTP, GDP) and general classes
of proteins such as DNA and microtubules are included, because even if they are not protein or gene
names they have a considerable nucleation power and help to understand some of the relations. This
is also the case for some of the general protein names, e.g. cyclin, Cdk or DNA polymerase that cover
a class of interactions for that protein families. Besides this nucleation centres it is clear in the figures
that some particular proteins are very well represented in terms of connections in direct correlation
with their role as key players in the corresponding biological systems.

Remarkable examples in the yeast cell cycle are for example Cdc28 that is an essential protein
controlled both by G1 and G2 cyclins, and in interaction with them it controls the transcription factors
SBF and MBF integrating cell-cycle signals and controlling the response at the level of transcription
activation.

A second example could be Cdc42, a small GTPase of the Rho family (a member of the Ras super-
family). Cdc42 is controlled by its exchange factor, Cdc24 and itself controls the actin polymerisation
during the bud formation. This interaction is key for the establishment of the cell polarity. Ste20
is a protein kinase required for pheromone signal transduction as part of the MAP kinase pathway
where it is activated by Cdc42. At the same time Ste20 is controlled via phosphorylation by the cyclin
Cln2, more precisely it is phosphorylated by the complex Cln2p-Cdc28 kinase (see graph). Therefore
Cdc42 provides a link between the cell structure (cytoskeleton) and the regulation of transcription
(via Ste20).

Table 1: Highly connected entities in the two text corpora.

Cell cycle corpus Yeast corpus

Number of
connections

Entities Number of
connections

Entities

297 DNA 1264 DNA
70 actin 291 ATP
62 Cdc28 187 Gal4
59 cyclin 166 Tbp
46 Cln2 164 actin
42 bud 161 ATPase, GTP
38 Cdc42, Swi4 129 DNA-binding, RNA polymerase II
35 Cdc6, Cdk 124 Ras
33 Cln1, Pho85 122 GTPase
31 microtubule 117 Gcn4
30 DNA polymerase 112 phosphatase
29 Ras, Sbf 111 Uas
28 GTPase, Ime1, Swi6 103 Gal1 promoter
27 GTP 89 polypeptide
26 Cdc25 86 Map
25 Apc, Uas 83 Rap1
24 Cdc14, Ste20 76 histone
22 Cdc45, Map 75 polymerase
21 cyclin-dependent, Ste11 71 GDP, TATA
20 Cdc24, Far1, Mapk 67 Cdc28
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Figure 5: Subgraph showing the relation be-
tween the promotor element CACGAAAA and
cyclins Cln1 and Cln2.

Figure 6: The subgraph for Verprolin and
Vrp1 which are linked to the same nodes
and turned out to be synonyms for the
same protein name.

3.4 Can the SUISEKI System Be Used to Produce New Discoveries?

3.4.1 Closeness in the Interaction Map Indicates Functional Relationships

In the literature the interactions are listed one by one, but by recovering a significant part of them
one can add a new dimension to this information. The interaction map puts them in a context and
represents a knowledge that is normally restricted to a specialist working with a particular group of
proteins. During the deeper examination of protein networks we realised that nodes that are close but
not directly connected are in most cases functionally related or form part of the same macromolecular
structure.

An example can illustrate this point. The subgraph in Fig. 5 shows the relation between the
promotor element CACGAAA, the proteins Swi4 and Swi6 that form part of the transcription factor
Sbf and the G1 cyclins Cln1 and Cln2. There exists no direct relation between the promotor and
the cyclins but the sentence “SWI4 and SWI6 are components of a factor (SBF) that binds the
CACGAAAA (SCB) promoter elements responsible for activation in late G1 of the HO endonuclease,
CLN1 and CLN2 genes [MED 1386897]” demonstrates their close functional relationship.

Another example is the relation between Ntc20 and Ntc30. Both of them are, among others,
connected to the same nodes but not directly to each other. But they form part of the same functional
complex as shown in the following sentences: “Like other identified components of the complex, both
Ntc30p and Ntc20p are associated with the spliceosome in the same manner as Prp19p immediately
after or concurrently with dissociation of U4, indicating that the entire complex may bind to the
spliceosome as an intact form” and “Neither Ntc30p nor Ntc20p directly interacts with Prp19p, but
both interact with another component of the complex, Ntc85p [MED 11018040]”.

Not all the proteins connected by the same nodes represent related proteins and in some cases we
discovered synonyms of the same protein name that appear connected to the same network of proteins.
Two of such cases are Verprolin and Vrp1p that have very similar connections (see Fig. 6) but are
synonyms of the same protein name (“The proline-rich protein verprolin (Vrp1p) binds to the SH3 do-
main of Myo3p or Myo5p in two-hybrid tests, coimmunoprecipitates with Myo5p, and colocalizes with
Myo5p [MED 9628892]”) and Ime2 and Sme1 (“These results suggest that IME1 product stimulates
meiosis by activating transcription of SME1 (IME2) and that protein phosphorylation is required for
initiation of meiosis [MED 219643]”).

But the limit between a functional relationship and a direct interactions between two proteins is
not that clear. Therefor me performed an experiment and divided our cell cycle text corpus in two
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Figure 7: Minimal distances between all nodes
in number of edges in the before2000 corpus.
Distances of 1 represent a direct connection be-
tween two entities (some nodes are not con-
nected at all what is not represented in this
graph).

Figure 8: The interactions of transcription
factors IIA and IID later shown to form
part of a macromolecular complex.

parts, one containing abstracts published till the year 1999 (corpus before2000) and the rest comprising
the years 2000 and 2001 (till April 2001; corpus after1999). The corpus before2000 was used as the
reference set and compared to the “new” interactions detected in the corpus after1999.

We first analysed the graph generated for the before2000 corpus. The graph obtained is quite
inhomogeneous, not all the nodes are interconnected, several regions are separated, and other regions
are very densely populated. The distribution of the minimal distances of all nodes (all against all) in
the interaction map is shown in Fig. 7. It shows a mean distance of 5 with most of the values spread
between 3 and 7 connections.

The analysis of the after1999 corpus revealed a total of 855 new interactions of which 149 corre-
sponded to connections between protein (or gene) pairs that were already part of known interactions
(in the before2000 corpus) but with no direct connection. For these new interactions the mean dis-
tance between the nodes was 3.2. This means that on average there were 3 edges or 2 nodes between
the new interactions (the minimum would be 2 because 1 means a direct interaction). Only for 24 of
them there was no connection at all (regardless of the distance) in the literature collected before the
year 2000.

These numbers can be compared with a random experiment where 149 nodes were randomly chosen
from the interactions before2000 corpus. This experiment was repeated 25 times to calculate standard
errors. The mean distance in this simulation was 5.0 ± 0.3 (a number that was expected because this
was the mean value of the distribution represented in Fig. 7) and 106.8 ± 5.7 nodes had no connection
in the graph (more than 2/3 of the selected nodes). The average distance of the simulated experiment
was 5 edges or 4 nodes.

Therefore the new relations discovered after1999 corresponded in most cases to entities that were
already connected by shorter distances in the graph before2000 (shorter than average and shorter
than expected from a random distribution of interactions). In these cases it is tempting to think
that researches in the field were closely following proteins and genes that were becoming suspiciously
closer by having similar interactions with other proteins or genes, and finally proved that they interact
directly with each other.
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3.4.2 Deducing New Interactions

One example of these “new” interactions is illustrated in Fig. 8, where the connection between the
transcription factors IIA and IID and TATA box element is visible as an indirect relation mediated
by the common binding to the TATA box in the before2000 corpus. It could have been concluded
from this analysis that a relation between the IIA and IID transcription factors was to be expected.
Indeed, in the after2000 corpus this relation was demonstrated (“The general transcription factor IIA
(TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of
several negative regulators of the TATA-binding protein (TBP) subunit of TFIID [MED 10581267]”).
This example could be seen as reminiscent of the mental process of the researches in this field that
knowing that various transcription factors activated the same genes decided to investigate their possible
participation in molecular complex that would cooperate during the regulation of transcription as a
single unit.

4 Discussion

A number of publications have addressed the problem of detecting protein and other molecular interac-
tions from the literature. Large-scale applications of these systems have been limited to co-occurrence
studies of gene symbols in MEDLINE abstracts for yeast [15] and human genes [9] that perform very
well but are not able to specify the type of relation that is detected between the genes. This is a
serious limitation if one is interested in the analysis of interaction networks.

Other, more computer linguationally orientated systems can give more detailed information about
the interactions that are reported but they are still limited to small text corpora of a few hundred
sentences and have not provided a biological analysis of the problem (e.g. [13, 10, 12, 14, 16]). Fur-
thermore none of these systems explicitly deals with the detection of protein names even if this has
been discussed in specific publications [8, 11].

SUISEKI uses concepts from both of these extremes to select only the proteins that interact with
each other (and eliminate other types of relations) and to detect the protein names directly from the
text and not with a fixed list of names. But it was not overloaded by using methodologies that would
have prevented its application to big text corpora. Grammar analysis was substituted by specialised
frames that catch frequently used language constructions that are used to express protein interactions.
The probability scores associated with the frames allowed a classification of the detected interactions
according to their reliability. The precisions range from 80% for the high scoring interactions to less
than 50% for low scoring ones, the recall was with more than 70% considerably high.

These values of precision can not be considered as existing but they were good enough for our
studies and are the price that has to be paid for the large-scale application of IE techniques.

4.1 The Network of Known Interactions

We have analysed some of the basic properties of the interaction networks for both text corpora, the
yeast cell cycle and the full Medline collection about yeast. In both cases the graphs obtained showed
interesting properties. First they are very inhomogeneous, with very populated (connected) areas and
very sparse ones, including the presence of different disconnected sets of interactions.

Second, they show the capacity of some key biological entities, such as DNA, central metabolites
or major macromolecular complexes (cytoskeleton) for nucleating interactions.

Third, they make obvious the presence of central proteins and genes that concentrate different
signalling pathways and connect full systems, for example cytoskeleton and transcription regulation.
The interest in these proteins and their presence in different areas of research is well correlated with
their key role in the interaction graphs. Different examples are clearly in line with these interpretations.
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4.2 The Network as a Potential Source of New Discoveries

We propose here the use of the network of interactions extracted from the literature as a potential
source of information for the generation of hypothesis about new interactions. These hypotheses could
be seen as suggestions for further directed experimental work or as guides to set the priorities in the
interpretation of systematic proteomic data.

We use the example of the yeast cell cycle to compare the connectivity of the network of inter-
actions documented before and after the year 2000. In this case it was possible to see how the more
recently discovered new interactions between previously known proteins were frequently established
between entities (proteins, genes or macromolecular complexes) that were very close in the previously
established graph (closer than average and closer than the random distributions). Therefore, it seems
feasible to propose a searching strategy based on the study of new interactions among the highly
connected nodes that share many similar connections.

Following this strategy we have analysed the relations between transcription factors IIA and IID.
Before the year 2000, they belong to a well-connected set of interactions in which they have in common
some key connections. This information could have helped to propose a direct interaction between
them before it was experimentally discovered in the following year.

It is unavoidable to think that other discoveries of higher biological value than this simple exam-
ple are hidden in the interaction graphs. Bringing them to the scientific community requires deep
knowledge of the research area and orderly access to massive amount of experimental information.
The knowledge has to be provided by human experts, while the SUISEKI system can facilitate the
access to the information and the formulation of hypothesis. We are confident that the experts will
appreciate the possibilities offered by the system at the same time that they are able to avoid the
pitfalls introduced by erroneous name detections and incorrectly assigned interactions.
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