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Abstract
In contrast to bioreactors the metabolites within the microbial cells are converted in an impure
atmosphere, yet the productivity seems to be well regulated and not affected by changes in
operation variables. These features are attributed to integral metabolic network within the
microorganism. With the advent of neo-integrative proteomic approaches the understanding of
integration of metabolic and protein-protein interaction networks have began. In this article we
review the methods employed to determine the protein-protein interaction and their integration
to define metabolite networks. We further present a review of current understanding of network
properties, and benefit of studying the networks. The predictions using network structure, for
example, in silico experiments help illustrate the importance of studying the network properties.
The cells are regarded as complex system but their elements unlike complex systems interact
selectively and nonlinearly to produce coherent rather than complex behaviors.

Review
The microbial proteome and proteomic approaches
The analyses of proteome, the ensemble of proteins asso-
ciated with a given cell, organelle or other sub-cellular
component at a given physiological state of cells have
been made possible by the sequencing of genome of a
number of organisms. The proteins bring about the func-
tions of a cell, the study of their ensemble would help bet-
ter understand the function of cell and also enable
integration of the function at molecular level. Under-
standing the proteome of microorganisms provides two
broad advantages, one is the utilization of microorgan-
isms or biotechnological exploitation, that is, for the pro-
duction of metabolites [1] and the other is to deterring the
pathogenic and parasitic microbes by understanding host-
pathogen interactions or interaction of the microorgan-
isms with multi-cellular systems [2]. The integration of

message transfer at different levels within the cells is not
completely understood and analyses of proteome may
help improve that understanding [3], which is expected to
improve metabolite production and also better targeting
of molecular interactions as therapeutic strategy. Biotech-
nology is the exploitation of the living organisms either
directly or using derivatives of them for the benefit of hu-
mankind. The derivatives are often exploited is different
ways compared to their counter natural processes within
the cells.

The chemical or biochemical engineering processes oper-
ate with purified compounds (substrates or reactants and
catalysts or enzymes). The processes with purified cata-
lysts usually turn the substrates into product(s). The engi-
neering processes are difficult to maintain at a steady state
of production, require very careful maintenance of the op-
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eration variables. The presence of impurities and variation
in any parameters results in dramatic decrease in produc-
tivity despite employing the same cellular catalyst in engi-
neered processes. A cell lack perfect
compartmentalization, although a definite degree of sep-
aration or compartmentalization exists within the cells
and produces a large number of chemicals at any given
time in a mixed state. In contrast to engineered systems
which has a great deal of emphasis on purity of reagents,
lack robustness and not rapid in response to perturbation
in operation variables, all cells demonstrates a great de-
gree of tolerance to impurity, are impervious to distur-
bances and mostly have a rapid response to an external
stimuli. The perturbations in operation variables are often
detrimental for chemical and bioengineered systems.
Adapting control features in engineered processes from
cells would enable better process control and may enable
designing methods for new chemicals employing cell de-
rived catalysts [3].

The cell can be viewed as ensemble of network of interac-
tions such as protein-protein, protein-nucleic acids and
protein-small molecule. Several protein and small mole-
cules constitute anabolic, catabolic and amphibolic path-
ways which are often interconnected and referred to as
metabolic pathways [4,5]. Inside the cells, specific meta-
bolic networks are driven by demand for robustness to
uncertain environments and use often imprecise compo-
nents, yet in response to an external stimuli it produces
the precise yield of chemicals necessary, with a great deal
of molecular understanding these paradoxical features re-
mains to be understood even today [6,7]. It has been put
forth that these paradoxical features are neither accidental
nor artificial but derive from a deep and necessary inter-
play between complexity and robustness, modularity,
feedback and fragility [6–8]. In anabolic pathways a sub-
strate enters into the pathway and acted upon by a
number of proteins in series for a particular conversion,
which is necessary for a catalytic reaction involving anoth-
er substrate received from external cellular environment.
All of this occurs in presence of entities unrelated to path-
way. The importance of metabolic networks within the
cell has been realized and they have been found interest-
ing and complex enough to be the subject of intense
mathematical and computational analysis. Thousands of
components of a living cell are interconnected and are in
the dynamic state [4,5]. Thus the functional properties of
the cells are encoded by a set of complex intracellular in-
teractions at molecular level [9,10]. The architecture of
metabolic networks inside the cell has been found to have
a highly heterogeneous scale-free topology [9]. This struc-
ture of network also allows simultaneous tolerance to ran-
dom errors [4,5,8] and determines the key aspects of
functionality and regulation [11].

The methods for determination of ensemble of interacting 
partners
A number for high-throughput methods for detecting pro-
tein interactions especially for microbial systems are now
available. Protein-protein interactions play crucial roles in
the execution of various biological functions. Interactions
with other proteins are of extreme importance and can
serve as highly informative hints for functional predic-
tion: physical association between a novel protein and a
well characterized one readily indicates that the former
has a function related to that of the latter. Comprehensive
analyses of protein-protein interactions thus constitute an
integral part of functional genomics. The natures of pro-
teins are far more complex than nucleic acids. It is appar-
ent that a variety of methods would be needed to
determine genome wide protein-protein interactions for
any organism or even for subcellular organelles. These ap-
proaches can be divided into two categories: the top-down
proteomic approach and the bottom-up genomic ones.
The proteomic approaches are represented by the mass
spectrometric and protein chip analyses of native protein
complexes. The genomic approaches are where protein
encoded in the genome of interest is expressed to evaluate
interactions. These include the techniques such as yeast
two-hybrid system and phage display.

Mass spectrometry of purified complexes
The purifications of protein complexes are achieved by
immunoprecipitation using column of beads containing
coupled antibodies to one of the components of complex.
Often a variation of method is utilized where either a bait
protein or tagged components are used. The constituent
protein components of the complex is then separated by
gel electrophoresis and subjected to analyses by mass
spectrometry. Usually the excised gel bands (1-D gels) or
spots (2-D gels) of proteins are subjected to in-gel proteo-
lytic digestion (usually trypsin) and subjected to mass
spectrometric identification. Two techniques are com-
monly used the first, Tandem affinity purification (TAP)
allows rapid purification under native conditions of com-
plexes, even when expressed at their natural level [12,13].
The TAP method requires fusion of the TAP tag, either N-
or C-terminally, to the target protein of interest. The TAP
method was initially developed in yeast but can be suc-
cessfully adapted to various organisms. Its simplicity, high
yield, and wide applicability make the TAP method a very
useful procedure for protein purification and proteome
exploration [12–14]. The second technique is, high-
throughput mass spectrometric protein complex identifi-
cation (HMS-PCI) protocol where a number of predicted
interacting partner proteins are used as baits and associat-
ed proteins are identified. This method was also initially
developed for yeasts [15]. Numerous protein complexes
have been identified using this method including several
new interactions in a number of signaling pathways and
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in the DNA damage response [15]. The TAP approach has
the advantage of working with the protein in its native
state within the cells and the tagged proteins provides av-
enue to determine internal consistency. However, it has
the disadvantage of missing the weak binding partners or
weak association complexes and may not detect complex
partners that associate with protein that undergoes tran-
sient modification subject to irreversibility on changing
the conditions. The HMS-PCI approach may result in for-
mation of some unnatural complexes and render detec-
tion of some partners impossible due to blockage of sites
on protein as a result of association with the bait present
in excess amount than in native state.

Protein chip
Protein chips coated with antibodies or chemicals help
capture the protein or biomarkers. The captured proteins
or biomarkers can be identified by using surface enhanced
laser desorption/ionization (SELDI) mass spectrometry.
The technique of SELDI is also referred as Protein Chip
Technology [16]. Currently protein biochips can be uti-
lized to profile and compare protein expression in normal
and diseased states particularly in the area of cancer, infec-
tious disease and toxicology [17]. The technique has the
limitation at level of capture and the ability of ionization
of low abundance proteins.

Yeast two-hybrid assay
Pairs of proteins to be tested for interaction are expressed
as fusion proteins (or hybrids) in yeast with one protein
being fused to a DNA-binding domain (bait) the other to
a transcriptional activator domain (prey). The plasmids
carrying the DNA sequences coding for the bait and prey
proteins are introduced into the same yeast cell using a
mating strategy [18–21]. The system is designed so that
the bait and prey proteins interactions leads to transcrip-
tional activation resulting in expression of a reporter gene
that allows detection of the interaction. This technique
enables detection of transient and unstable interactions
and also in vivo interactions. However, this technique al-
lows only pair-wise testing proteins and interaction of
multiple proteins at a given time cannot be investigated.
The investigation of proteins resident of sub-cellular or-
ganelles by this technique deviates from their native phys-
iological setting and often provides results that are not
true.

Correlated mRNA expression (synexpression)
The genes showing similar transcriptional response under
different cellular conditions are grouped by systematic
measurement of the mRNA levels. Usually such gene
groups consist of a large number of genes that codes for
physically interacting proteins [22]. In eukaryotes, highly
coordinated expression of genes functioning in common
processes is a widespread phenomenon. These sets of co-

regulated genes ('synexpression groups') may be the key
determinant facilitating evolutionary changes that lead to
species diversity. The development of DNA micro-arrays
for the simultaneous monitoring of thousands of tran-
scripts has allowed global insights into gene expression
[23]. The technique of synexpression has helped deter-
mine a number of interacting proteins for yeast cell-cycle
analysis [22] and potential drug targets in rat brain by EST
analyses [24]. The results indicate the usefulness of synex-
pression for exploring the functional genomics for infor-
mation forthcoming from various genome projects. This
is an indirect but in vivo technique and may cover a wide
range of cellular conditions than other methods, but is a
relatively inaccurate predictor of direct physical interac-
tion.

Genetic interactions (synthetic lethality)
Two mutations are synthetically lethal if cells with either
of the single mutations are viable but cells with both mu-
tations are nonviable. Usually these genes are functionally
associated and their protein products undergo physical in-
teraction. Such genetic interactions are being studied in an
all-versus-all approach in yeast [25]. As with the suppres-
sor analysis, synthetic lethal mutations often indicate that
the two mutations affect a single function or pathway.
Synthetic lethal phenotypes are diagnostic of an interac-
tion between the products of the two mutant genes in the
cell [26]. Combinations of synthetic lethal mutants can
also give information about what products are needed to
complete a cellular process. This is also an indirect in vivo
technique, amenable to unbiased genome-wide screening
for protein-protein interaction.

Phage display
The phage display approach is a powerful tool, which was
initially developed to detect antibodies [27]. Phage carry-
ing V genes were displayed on the surface of fd bacteri-
ophage which binds specifically to antigen and can be
isolated by affinity chromatography. The use of the tech-
nique has expanded and phage libraries displaying ran-
dom peptides can be used to select for ligands able to bind
specific target molecules, to mimic non-proteinaceous lig-
ands and also as a tool to map epitopes recognized by the
antibodies. The display of the proteins or their functional
domains provides a system for the analysis of structure-
function relationships, novel peptide vaccines and others
[28,29]. The technique suffers from limitation where in-
teraction depends on conformation or needs correct fold-
ing for binding, which is not conferred by expressed
truncated peptides.

In silico predictions through genome analysis
Three types of evidence may be found in a genome wide
scan indicating interacting partners or potential interac-
tion among the proteins in question, the first type of evi-
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dence being, the proteins that are interaction partners are
often encoded by conserved operons in prokaryotes [30–
32]. The second type of evidence being, since interacting
proteins interact together to provide a function or absence
of a partner may impair the others and therefore in the ge-
nome wide scan the interacting proteins are likely to be ei-
ther present or absent together and unlikely to be found
alone in absence of other key partners [33]. The interact-
ing proteins are likely to have a similar 'phylogenetic pro-
file'. The third type of evidence being, the presence of
fusion of seemingly unrelated proteins into a single
polypeptide chain suggests a physical interaction [34,35].
The in silico techniques are rapid, relatively inexpensive
and with the rapid sequencing of genomes their utility is
ever expanding. However, in silico experiments requires
assigning orthology relationship between proteins, and
fails in prediction where such relationship cannot be es-
tablished and this has led their application remaining
confined mainly on prokaryotes.

A large number of data pertaining to interacting proteins
generated by proteomic methods described above are
available in public databases such as DIP http://dip.doe-
mbi.ucla.edu/, BIND http://bind.ca, MIPS http://
www.mips.biochem.mpg.de, WIT http://wit.mcs.anl.gov/
WIT2 and IBIOINFORMATICS http://www.ibioinformat-
ics.org/research.htm. A comprehensive listing of databas-
es can be found at Molecular Information Agent http://
mia.sdsc.edu/mia/html/bioDBs.html and also at human
proteome organization http://www.hupo.org.

Metabolic and protein-protein interaction network
The cellular processes in a microorganism are seamlessly
integrated through a complex network of constituent
components and reactions. Systematic comparative math-
ematical analysis of the metabolic networks of several mi-
croorganisms have shown that, despite significant
variation in their individual constituents and pathways,
these metabolic networks have the same topological scal-
ing properties and show striking similarities to the inher-
ent organization of complex non-biological systems. This
indicates that organization of metabolic networks is iden-
tical for all living organisms, and also has similar design
principles such as being robust, error-tolerant and being
scale-free. The metabolic network entails large-scale or-
ganization of interactions [36] among all cellular constit-
uents and probably has a common blueprint among all
organisms.

The robustness of various cellular processes is rooted in
the dynamic interactions among its many constituents,
such as proteins, DNA, RNA and small molecules. Scien-
tific developments have improved our ability to identify
the design principles that integrate these interactions into
complex systems. Discovery of genomes now allow devel-

opment of organism-specific connectivity maps of meta-
bolic and, to a lesser extent, other cellular networks,
however, the large number and diversity of the constitu-
ents and reactions that form such networks, these maps
are extremely complex, offering only limited insight into
the organizational principles. The study of network prop-
erties has endowed ability to address in quantitative terms
the structure of these cellular networks and has advanced
our understanding of the generic properties of complex
networks.

Properties of network
Complex networks occurring in nature share common
global statistical features including "small-world" proper-
ty of short-paths between two nodes and highly clustered
connections. In many such networks there are few nodes
with many more connections than the average node con-
nections and such networks have been termed as "scale-
free". In scale-free networks the fraction of nodes having k
edges, p(k), decays as power law p(k)~k~y (y is between 2
and 3). Understanding of basic structural elements partic-
ular to each class of network is necessary to define the net-
works properly. Patterns of interconnections between the
nodes have been termed as "network motifs". Under-
standing of the network motifs is expected to help uncov-
er the structural design principle of the networks. Motifs
are expected to define the universal classes of networks
and unraveling them may help uncover the basic building
blocks of most networks [37].

The classical random network theory was introduced by
Erdös-Rényi, based on the assumption that each pair of
nodes (that is, constituents) in the network is connected
randomly with probability p, leading to a statistically ho-
mogeneous network in which, despite the fundamental
randomness of the model, most nodes have the same
number of links, <k>. In particular, the connectivity fol-
lows a Poisson distribution that peaks strongly at <k> im-
plying that the probability of finding a highly connected
node decays exponentially (P(k) ≈ e-k for k >> <k>). On the
other hand, empirical studies on the structure of the
World-Wide Web, Internet and social networks have
shown serious deviations from this random structure,
demonstrating that these systems are described by scale-
free networks for which P(k) follows a power-law, P(k) ≈
k-γ [5,9]. Unlike exponential networks, scale-free networks
are extremely heterogeneous their topology being domi-
nated by a few highly connected nodes (hubs), which link
the rest of the less connected nodes to the system. The dis-
tinction between scale-free and exponential networks
emerges as a result of simple dynamical principles. Under-
standing the large-scale structure of cellular networks can
provide not only valuable universal structural informa-
tion, but could also lead to a better understanding of the
dynamical processes that generated these networks. Any
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two nodes in the system can be connected by relatively
short paths along existing links also known as "small-
world character" is a general feature of many complex net-
works. In metabolic networks these paths correspond to
the biochemical pathway connecting two substrates. The
degree of interconnectivity of a metabolic network can be
characterized by the network diameter, defined as the
shortest biochemical pathway averaged over all pairs of
substrates.

Large-scale, scale-free topology, governed by power law
An important consequence of the power-law connectivity
distribution is that a few hubs dominate the overall con-
nectivity of the network. The sequential removal of the
most connected nodes leads to sharp rise in the diameter
of the network eventually disintegrating the network into
isolated clusters that are no longer functional. Scale-free
networks also demonstrate unexpected robustness against
random errors. A unique feature of metabolic networks, as
opposed to non-biological scale-free networks, is the ap-
parent conservation of the network diameter in all-living
organisms. Within the special characteristics of living sys-
tems this attribute may represent an additional survival
and growth advantage, as a larger diameter would attenu-
ate the organism's ability to respond efficiently to external
changes or internal errors. For example, if the concentra-
tion of a substrate were to suddenly diminish owing to a
mutation in its main catalyzing enzyme, offsetting the
changes would involve the activation of longer alternative
biochemical pathways, and consequently the synthesis of
more new enzymes, than within a metabolic network with
a smaller diameter. An important known consequence of
the inhomogeneous structure is the network's simultane-
ous tolerance to random errors, coupled with fragility
against the removal of the most connected nodes.

The simultaneous emergence of an inhomogeneous struc-
ture in both metabolic [9,38] and protein interaction net-
works suggests that there has been evolutionary selection
of a common large-scale structure of biological networks
and indicates that future systematic protein-protein inter-
action studies in other organisms will uncover an essen-
tially identical protein-network topology. The correlation
between the connectivity and indispensability of a given
protein confirms that, despite the importance of individ-
ual biochemical function and genetic redundancy, the ro-
bustness against mutations in organisms is also derived
from the organization of interactions and the topological
positions of individual proteins

Clustering and modularity and hierarchical organization
An important feature of scale-free networks is the exist-
ence of a few highly connected nodes that participate in a
very large number of metabolic reactions. With a large
number of links, these hubs integrate all substrates into a

single, integrated web and therefore the existence of fully
separated modules is prohibited in highly integrated
module-free metabolic network organization. The analy-
ses of the functional capabilities of metabolic networks by
a number of approaches have indicated the existence of
separable functional modules. The metabolic network of
many organisms (for example,E. coli) is known to possess
a highclustering coefficient that suggests modular organi-
zation.

The apparent dichotomy of presence of modular organi-
zation in contrast to scale-free nature of metabolic net-
works was reconciled by hierarchical organization.
Average clustering coefficient defined as Ci = 2n/ki(ki - 1),
was calculated for 43 organisms, where n denotes the
number of direct links (distinct substrates present in the
metabolic network) connecting the ki nearest neighbors of
node i, is equal to 1 for a node at the center of a fully in-
terlinked cluster, and it is 0 for a metabolite that is part of
a loosely connected group. Therefore, Ci averaged over all
nodes i of a metabolic network is a measure of the net-
work's potential modularity. We found that, for all, The
average clustering coefficient was determined for 43 or-
ganisms and was found to be an order of magnitude larger
than that expected for a scale-free network of similar size
suggesting that metabolic networks in all organisms are
characterized by a high intrinsic potential modularity. The
clustering coefficient of metabolic networks is independ-
ent of their size. To resolve the apparent contradiction of
existence of modularity and scale-free network a simple
heuristic model of metabolic organization was proposed
and referred to as a "hierarchical" network. The architec-
ture of such a network integrates a scale-free topology
with an inherent modular structure. It has a power law de-
gree distribution with degree exponent γ = 1 + (ln 4)/(ln
3) = 2.26, in agreement with γ = 2.2 and has a clustering
coefficient C is about 0.6 (independent of the size of the
network) is also comparable with that observed in meta-
bolic networks.

In deterministic scale-free networks, the clustering coeffi-
cient of a node with k links follows the scaling law C(k) ~
k-1. This scaling law quantifies the coexistence of a hierar-
chy of nodes with different degrees of modularity. The
higher a node's connectivity, the smaller its clustering co-
efficient that asymptotically follows the 1/k law
[5,10].The C(k) function for the metabolic networks of 43
organisms was calculated to determine whether hierarchi-
cal organization is present in cellular metabolism. For
each organism, C(k) was represented by C(k) ~ k-1, in con-
trast to the k-independent C(k) predicted by both the
scale-free and modular networks providing evidence for
an inherently hierarchical organization. Hierarchical
modularity reconciles all observed properties of metabol-
ic networks [10]: their scale-free topology; system size-in-
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dependent clustering coefficient; and the power law
scaling of C(k).

The organization of metabolic networks is likely to com-
bine a capacity for rapid flux reorganization with a dy-
namic integration with all other cellular function. The
system-level structure of cellular metabolism is approxi-
mated by a hierarchical network organization with seam-
lessly embedded modularity. In contrast to commonly
assumed existence of a set of modules with a non-uniform
size potentially separated from other modules, the meta-
bolic networks has many highly integrated small modules
that group into a few larger modules, that in turn is inte-
grated into even larger modules. The scale-free topology
has been found at many different organizational levels,
genetic protein interaction and protein domain networks
within the biological networks. For biological systems, hi-
erarchical modularity is consistent with the notion that
evolution may act at many organizational levels simulta-
neously. The accumulation of many local changes, which
affect the small, highly integrated modules, could slowly
impact the properties of the larger, less integrated mod-
ules. The emergence of the hierarchical topology through
copying and reusing existing modules and motifs reminds
the results of gene duplication and offers a key role to the
modules that appeared first.

Utilities and future of network-structure knowledge
The prediction ability network structure
The network structures allow predictions using efflux
measurements alone that could be experimentally verified
for simple organisms. All necessary mechanistic details in-
cluding kinetic parameters are unlikely to be available for
all constituent members of large-scale metabolic net-
works, the ones that are generally present in the cells. The
lack of such mechanistic details renders the dynamic
modeling of networks extremely difficult if not impossi-
ble. The structure-oriented analyses requiring only net-
work topology have been recently attempted. The method
involves breaking down a network into elementary flux
modes based on simple accounting of metabolic inputs
and outputs and enables predicting possible properties of
network [11,39]. Elementary mode analysis establishes a
link between structural analysis and metabolic flux analy-
sis. Elementary flux modes are defined as smallest sub-
networks enabling the metabolic system to operate in
steady state. The annotated genome sequences now pro-
vide the ability to reconstruct the metabolic network for
the whole cell, which in turn provide the ability to mode-
ling and computation of complex biological functions
[31,40,41]. Whole cell constraints-based (and constraint-
independent) in silico models have been constructed ena-
bling prediction of optimal growth rates on common car-
bon substrates as well as adaptive evolution that are
consistent with experimental data [42,43]. The knowledge

of metabolic pathways have also led to development of
number of computational tools for different purposes,
network construction as well as prediction, some of these
utilities are PathFinder http://www.zsolutions.com/path-
find.htm, BioMiner http://www.microdiscovery.de/
biominer_e.html, MetaTool http://www.bioinf.mdc-ber-
lin.de/projects/metabolic/metatool/, FluxAnalyzer http://
www.mpi-magdeburg.mpg.de/en/research/projects/
1010/1014/1020/mfaeng/fluxanaly.html and FluxVision
http://www.metabolic-explorer.com/flux.html.

Prediction about potential behavior of mutants
As pointed out that network structure provide the ability
to predict the outcomes with minimum available kinetic
details pertaining to constituent catalytic proteins. With
the knowledge of network structure the mutants becomes
a special case of such prediction ability. Mutants also ena-
bles test of the ability of predictions [11]. Predicting
whether a mutant would be able to grow involves identi-
fying elementary flux modes that do not use the missing
reaction. [39].

Deriving understanding of the non-homologues metabolic pathway in 
organisms
In many microorganisms the classical metabolic pathway
may be different. Understanding of the network structure
and comparison of different modules may help predict
the intermediate connections in the metabolic pathway.
The proteomic methods may help in identifying the inter-
acting partners and define an interactome or module,
which would fit with the rest of the pathway components
in the organism. For example, in a number of thermophil-
es, the classical Calvin-Benson pathway members for fixa-
tion of CO2 are absent yet Rubisco is found in a number
of members [44]. The proteomic approach may help iden-
tify the proteins interacting with Rubisco and thus help
determine as to how 3-phosphoglycerate is utilized or
how D-ribulose-1,5-bisphosphate is generated in these
thermophiles in absence of other members of the classical
cycle.

Production of biochemicals using microbes or microbe derived cata-
lysts
Currently in chemical as well as in biochemical engineer-
ing the approach to produce chemicals are using pure
components (reagents or substrates and catalysts). How-
ever, with the advent of knowledge of protein complexes,
interactomes, modules and network it is increasing be-
coming clear that future bioengineering would depend on
use of interactomes or truncated networks. It is evident
that future bioengineering system would involve combi-
nation of interactomes or truncated modules of network
based on systems design principles derived from the
knowledge of system level understanding in biology. Met-
abolic engineering embraces the art of joining the differ-
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ent modules or truncated interactomes using the
underlying concept of applied system biology, which has
been used in pathway engineering to produce new com-
pounds and cell engineering for their use as catalysts in
multi-step biotransformations [45,46]. Although such ap-
proaches have been utilized in metabolic engineering in
past [45–47], however, with the emerging knowledge of
global network properties, utilization of the embedded
protocols connecting the interactomes will provide new
dimensions to metabolic engineering.

Chanelling metabolite to prepare new compounds
In contrast to chemical and biochemical systems, cells
have several properties. A metabolite is often at a branch
point and in different organisms these branch points are
different. Different proteins act upon the same metabolite
in different organisms. It is likely that truncated interac-
tomes from different organisms could be used to generate
a novel metabolite from a given metabolite [45]. This will
lead to a new path by stabilization of different but trun-
cated interactomes from different organisms channeling
the intermediates in a new direction.

Preparation of non-living miniature multi-step catalytic bags from mi-
crobial cells
The knowledge of metabolic network or modules and
how to keep a portion of that intact, cocooned within the
cell may render preparation of non-live cells that may not
only allow efficient conversion but may enable extended
functioning. Why go to bother of cost intensive purifica-
tion and immobilization of enzyme, if the same cohort of
enzyme trapped within non-live cells can provide for the
same level of conversion. More importantly it is possible
that some salvage pathway is retained within the non-live
cells enabling efficient conversion using redundant path
even if the catalytic ability of one pathway component in
the main pathway is impaired [45–47].

Knowledge of networks as a tool for effective disruption of pathogen-
ic microorganisms
Although an overwhelming number of microbes are use-
ful for the mankind but a number of them are very harm-
ful as well. They are the pathogens for human, livestock
and plants. The fight against pathogenic microbes uses the
arsenal of compounds that impairs their metabolic sys-
tem. However, the tiny microorganisms are extremely ver-
satile, something their multi-cellular counterparts are
always lacking. The microbes undergo a selection process
against the chemicals used for their destruction. They be-
come resistant to chemicals used against them. The in-
creased resistance to microbicidal agents had been a
problem of great concern in medical and pharmaceutical
community. The knowledge of network also confers the
ability to attack the system in a much better and concerted
manner. For harmful microbes disruption of their metab-

olism, based on their differences from hosts would be eas-
ier and effect with the advent of knowledge of their
metabolic network structure and their constituent compo-
nents. Disruption of metabolic network has been proven
to be a successful therapeutic strategy for Mycoplasma
[48], Candida and Leishmania [49] and against plant
pathogen Ustilago [50].

Conclusions
A number of recent advances have been made in quantita-
tive experimental approaches, includes new advances in
mass spectrometry, electrophoresis with different fluroe-
sent labels. These proteomic approaches, however, does
allow only a static glimpse of abundant proteins. Whereas
these powerful approaches has difficulty in identification
of proteins at a given point enabling in static glimpse, in-
side the cell the networks not only identifies the right pro-
tein at right time but also enables performing functions so
as to enable steady flow of metabolites. How such recog-
nition and functionality is achieved amidst myriads of en-
semble of proteins and other components? The current
powerful methods are much away from that understand-
ing. What is needed is equivalent of an ultrasonogram in
embryology/neonatology at molecular level. What is
needed is a dynamic picture with molecular details where
each molecule could be identified separately but at the
same time sufficient molecular details of interactions
could also be sufficiently decipherable. Quantitative flux
analyses [51,52] approaches to understand metabolome
[53,54] or fluxome [47,55] have begun, which provides
dynamic data and has the potential to provide dynamic
information of interactome and modules and eventually
that of the network. In future with superior organized da-
tabases are expected to give ability to incorporate informa-
tion derived from the flux analyses and the kinetic details
of the protein components in elemental flux analyses
models [11,39]. Also, based on the static information for
the same system analyzed under several different condi-
tions may help construction of dynamic maps of the inter-
action networks. Each proteome analyzed under a given
condition will be equivalent to a static picture but their
combination will enable simulation of dynamic situa-
tions.

It is now gaining acceptance that understanding secrets of
cell lies in understanding complex networks which a cell
employs. The future designs should be putting artificial
metabolic pathways and not linear addition of catalysts in
bioreactors with all advantage of stability and channeling
that is available inside the cells. Such approaches may de-
liver productivity and rapidity akin to cells and remain
impervious to disturbances in operation variables. Stabili-
zation of such truncated modules (or combining different
interactomes) and their being in a state of continuous
functionality are important issues. The knowledge gained
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from studies on protein interaction and metabolic net-
works [19,25,56,57] is expected to result in system-level
[6,7,58] understanding in biology, (a) system structure
which comprises of gene interaction and biochemical
pathways and the mechanisms by which such interactions
modulate the physical properties of intra- and inter-cellu-
lar structures, (b) system dynamics that is how the system
responds to external stimuli or operation variables, (c) the
control methods, the mechanisms that systematically con-
trol the state of cell and last and most important (d) the
design principles or methods [7]. The design methods are
the underlying foundations based on which biological
systems have derived their desired properties. The knowl-
edge of cellular design methods would enable bioengi-
neers to simulate rather than blind trial-and-error [7]. [A
number of websites help in familiarizing with networks
and systems biology and a few of them are: http://
www.AfCS.org, http://www.sbml.org, http://
www.cellml.org, http://www.stke.org, http://
www.nd.edu/~networks/gallery.htm]

The protocols and modules are complementary, inter-
wined and as systems become more complex protocols fa-
cilitate the layering of additional protocols involving
feedback and signaling. Pathway engineering in bioreac-
tors using underlying design principles would need deep-
er understanding of system level biology and its implicit
layered protocols. As pointed out earlier, system level un-
derstanding of network not only makes better ability to
produce new entities or devising new routes for produc-
tion but also enables novel disruption strategies for treat-
ment of pathogen perhaps using the hitherto known
chemical entities. There is a realization that biological sys-
tems has large number of functionally diverse multifunc-
tional interacting set of elements that interact together in
a nonlinear fashion to produce coherent behavior [58].
This has led to approach understanding biological sys-
tems as systems, targeting their identification of their
structure and unraveling their dynamics. As opposed to
controlled complex systems where systems designer often
provides target values for the system, in biological systems
such targets are created by the system and renewed contin-
uously by the system. Thus there is self-determined evolu-
tion in biological systems [58].
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