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Protein interaction networks are an important part of the post-genomic effort to integrate a part-list view of the cell
into system-level understanding. Using a set of 11 yeast genomes we show that combining comparative genomics and
secondary structure information greatly increases consensus-based prediction of SH3 targets. Benchmarking of our
method against positive and negative standards gave 83% accuracy with 26% coverage. The concept of an optimal
divergence time for effective comparative genomics studies was analyzed, demonstrating that genomes of species that
diverged very recently from Saccharomyces cerevisiae (S. mikatae, S. bayanus, and S. paradoxus), or a long time ago
(Neurospora crassa and Schizosaccharomyces pombe), contain less information for accurate prediction of SH3 targets
than species within the optimal divergence time proposed. We also show here that intrinsically disordered SH3 domain
targets are more probable sites of interaction than equivalent sites within ordered regions. Our findings highlight
several novel S. cerevisiae SH3 protein interactions, the value of selection of optimal divergence times in comparative
genomics studies, and the importance of intrinsic disorder for protein interactions. Based on our results we propose
novel roles for the S. cerevisiae proteins Abp1p in endocytosis and Hse1p in endosome protein sorting.
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Introduction

Important advances have been made in using computa-
tional methods to mine the ever-growing quantity of
experimental results in order to derive predictions of
protein–protein interactions. For such interactions there
are methods that explore sequence and structure analysis,
like gene fusion [1,2], gene order [3], phylogenetic profiling
[4–7], correlated mutations [8,9] and multimeric threading
[10,11]. It as also been shown that it is possible to combine
different experimental and functional data to predict protein
interactions, especially when weighted using Bayesian net-
works [12]. The accumulation of validated interactions can
also be mined by interlog mapping in order to transfer
protein interaction annotations across species [13,14].

The work described here deals with the prediction of
protein interactions mediated by recognition modules that
target small linear motifs [15,16] and more specifically
interactions involving SH3 domains. This type of asymmetric
binding between globular domains and linear peptides was
first reported in the work on Src kinase [17–20], and many
other domains have now been shown to have similar
properties [15,16]. In a previous study [21], knowledge from
phage display experiments was used to derive a position-
specific scoring matrix (PSSM) for particular SH3 domains,
which was then used to predict putative target ligands. Later,
Tong et al. devised a strategy where two-hybrid screening and
PSSM were combined to derive a high-confidence network
[22]. It was reasoned that an interaction identified by two-
hybrid screening was more likely to be biologically relevant if
the target protein had a high-scoring linear peptide accord-
ing to the PSSM of the bait SH3 domain.

In this work we set out to obtain a high-confidence,
biologically relevant protein interaction network, starting

from the consensus information and using computational
methods. The study showed that it is possible to greatly
increase the accuracy of consensus-based predictions of
protein–linear sequence interactions by taking into consid-
eration the fact that biologically relevant target ligands of
SH3 domains are more likely to be within disordered regions
and conserved in orthologs. The method’s performance was
improved by selection of species within an optimal diver-
gence time from the species of interest.
It has been proposed that intrinsic disorder may play a role

in protein interactions [23–26], and there are documented
cases where binding is coupled to folding [27,28] (reviewed in
[29]). It has also been observed that small linear motifs tend to
accumulate in protein regions predicted to be intrinsically
disordered [30] and that proline-rich regions are usually
devoid of secondary structure [31]. In most structures that we
are aware of, the SH3 domain is in complex only with short
target peptides, and not with full proteins. In all cases the
ligands adopt a nonregular secondary structure, but there is
little information one can take from these, in respect to the
order/disorder of target sites in the context of the whole
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target protein. Although there is currently no experimental
evidence to support that the SH3 domains preferentially bind
to intrinsically disordered regions, the results presented here
show that binding motifs within disordered protein regions
are more likely to be biologically relevant binding sites than
equivalent sites within ordered regions. We use the method
developed to suggest novel SH3 interactions for Saccharomyces
cerevisiae and provide information about the binding sites
within the target proteins.

Results/Discussion

Identification and Conservation of SH3 Domains and
Selection of Genomes

Using profile hidden Markov models (see Materials and
Methods; Figure 1), all putative SH3 domains, and their key
binding positions (see Materials and Methods) were deter-
mined in S. cerevisiae and in a set of thirteen yeast species:
Candida glabrata, Debaryomyces hansenii, Kluyveromyces lactis,
Yarrowia lipolytica [32], C. albicans [33], S. paradoxus, S. bayanus,
S. mikatae [34], S. castellii, S. kudriavzevii, S. kluyveri [35],
Neurospora crassa [36], and Schizosaccharomyces pombe [37].

In S. castellii, S. kluyveri, and S. kudriavzevii, no orthologs for
the majority of the S. cerevisiae SH3 domains could be
identified (results not shown). However, these genomes had
only been sequenced with a 2- to 3-fold coverage [35], which
may have led to some genomic regions being poorly

sequenced. As a result of this, these three genomes were not
included in our work.
The ortholog SH3 domains were split into three groups:

conserved domain, possibly divergent (if the putative ortho-
log SH3 domain was in the same branch of the phylogenetic
tree and had more than two conservative changes in the
binding positions; see Materials and Methods), or divergent
domain (if the putative ortholog SH3 domain was not in the
same branch of the phylogenetic tree) (Figure 1). As expected,
the percentage of conserved domains was higher in genomes
of species that had diverged recently from S. cerevisiae.
Intuitively we can expect that there will be an optimal

divergence time for the species used in a particular
comparative genomic study. In recently diverged species,
most protein sequence is conserved and the statistical power
for comparative genomics of biological features is therefore
smaller. Interspecies conservation becomes less meaningful in
a background of low evolutionary divergence. On the other
hand, finding a conserved consensus in a very divergent
genome might be more significant but only if there was no
major change in the specificity of the domain. This change
will be more probable the more divergent the species is from
the species of interest.
To test the improvement of consensus-based predictions

with a comparative genomics approach, an initial set of
genomes was chosen based on the conservation analysis of the
SH3 domains across the different yeast species (Figure 1). N.
crassa and Sch. pombe were excluded because the SH3 domains
in these two species might be too divergent to observe
conservation of the S. cerevisiae motifs. Very close relatives (S.
paradoxus, S. bayanus, and S. mikatae) were excluded as these
species would have lower statistical power. Therefore, the first
group analyzed consisted of five yeast genomes that broadly
covered the hemiascomycete phylum, containing the four
recently reported genomes of C. glabrata, D. hansenii, K. lactis,
and Y. lipolytica that we grouped with the C. albicans genome.

Evaluation of the ‘‘Conservation’’ Approach
To evaluate the predictive power of our method, two

positive datasets, containing experimentally verified SH3–
linear peptide interactions, and one negative dataset,
containing noninteracting protein pairs were defined (see
Materials and Methods). The binding motifs of the SH3
domains of S. cerevisiae included in the two sets of positive
standards (15 SH3 domains in the gold set and ten in the
platinum set) were taken from the data published by Tong et
al. [22]. Table 1 shows the consensus sequence used in the
study and also, for each SH3 domain, the total number of
peptides found matching this sequence in the S. cerevisiae
proteome. From this a measure of accuracy and coverage (see
Materials and Methods) based on the positive and negative
datasets was calculated. For simple pattern matching of
consensus sequence, the accuracy (defined as TP/[TP þ FP],
where TP indicates true positives and FP indicates false
positives) for predicting protein interaction was 12% and the
coverage (defined as TP/P, where P indicates all positives) was
92% when using the gold positives set (see Figure 2A).
Using T-Coffee [38], an alignment of all putative orthologs

(obtained using the BLAST reciprocal best hit method [39]) of
S. cerevisiae proteins containing sequences matching a
consensus sequence for an SH3 domain was carried out. This
alignment was then used to determine the level of con-
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Synopsis

How can we tackle the complexity of a living cell? It is commonly
said that living organisms are complex and display ‘‘emergent’’
properties. Emergence is perceived in this context as behaviors that
appear at the system level but are not observable at the level of the
system’s components. In the cell this would be equivalent to saying
that the cellular complexity could be explained if we could
understand the interplay between the cellular components: that is,
not just describe the ‘‘parts’’ that make up a cell but understand
how they interact with each other to perform the necessary tasks.

A big step on the road to understanding cellular complexity will be a
complete list of all relevant interactions between the cellular
components. Although a lot of progress as been made in this
direction, we are often dependent on experimental methods that
are costly and time consuming. It’s a big challenge for computa-
tional biology to process the current available knowledge and to
propose new ways of predicting the interactions between cellular
components.

Here the researchers studied protein interactions that are mediated
by small linear peptide motifs,specifically interactions between a
protein’s SH3 domain and its targets, usually small peptide stretches
containing a PXXP motif (where P is proline and X is any amino acid).
The results showed that the putative target motifs that are
conserved in ortholog proteins and are within regions that do not
have a defined secondary structure are more likely to be relevant
binding sites. Besides proposing a way to combine secondary
structure information with comparative genomics to predict
protein–protein interactions, the researchers highlight a possible
role of intrinsically disordered proteins in SH3 protein interactions.
The results also show that when looking for conservation of these
motifs, it is important to carefully select the species used in the
study: comparisons between species that have diverged to a certain
extent—not too little and not too much—are the most informative.



Figure 1. Conservation Study of the SH3 Domains of S. cerevisiae in Ten Other Yeast Genomes

CD, conserved domain (the SH3-containing protein has an ortholog and the ortholog SH3 domain is possibly conserved, i.e., less than three
conservative changes and no nonconservative changes in the binding positions); DD, divergent domain (SH3-containing protein has an ortholog in this
genome but the domain is not on the same branch of the phylogenetic tree); NO, no ortholog (no ortholog found for SH3-containing protein in a
particular genome); PD, possibly divergent (SH3-containing protein has an ortholog in this genome but the ortholog SH3 domain has at least one
nonconservative change in the binding positions or more than two conservative changes in the binding positions).
DOI: 10.1371/journal.pcbi.0010026.g001

Table 1. SH3 Consensus Sequence Information

ORF Name Gene Name Consensus of Target Peptides Derived from Phage Display Pattern Matches

YMR109W MYO5 PXXXPPXXPX 57

YKL129C MYO3 PXXXPPXXPX 57

YBL085W BOI1 RXXPXXPXXX 255

XPRXPXRXXX

YCL027W FUS1 XXXXR[ST][ST][ST]LX 51

YCR088W ABP1 XXXPXXPX[RK]P 71

YDR388W RVS167 RX[LV]PX[PL]PXXX 56

XXPP[VLRIPAM]PXRXX

XXPX[VLRIPAM]PPRXX

YER118C SHO1 XX[RK]XLPXXPX 76

YBL007C SLA1 XXRXXPXPP 31

YGR136W LSB1 XXRXR[YFLP]X[LP]PX 117

XXPX[IVLP]PXRXX

YHR114W BZZ1 XKXXPPPXXX 72

XKXXPPXPXX

X[RKH][RKH][VILMP]P[LVP]PXXX

YHL002W HSE1 XXRX[VLRIPAM]PX[VLRIPAM]PX 77

YFR024C LSB3 XRX[IVLM]PXXPXX 128

XXPX[ML]PXRXX

YHR016C YSC84 XXRX[ML]PX[VLRIPAM]PX 68

XPX[ML]PXRXXX

YJL020C BBC1 XX[KR][KR]XPXXPX 107

PX[VLRIPAM]PXRPXXX

YPR154W PIN3 [YF]XRPXX[AKDP]XPX 51

XPP[VLRIPAM]PXRXXX

XPX[VLRIPAM]PXRPXX

From the SH3 domains in [22], we obtained the consensus sequences from the phage display data, and counted the number of pattern matches found in S. cerevisiae proteins with at least one putative ortholog in the other ten yeast genomes

considered in our study.

DOI: 10.1371/journal.pcbi.0010026.t001

PLoS Computational Biology | www.ploscompbiol.org August 2005 | Volume 1 | Issue 3 | e260003

Biologically Relevant SH3 Protein Interactions



servation of putative target ligand sites by searching for
sequences matching the same consensus sequence in the
orthologs. We did not search for conservation of putative
target motifs in genomes without an ortholog for the domain
under consideration. If there is no ortholog SH3 domain in
the comparing species then the conservation of the motif in
the ortholog of the putative target is not biologically relevant
and should not be counted to increase our confidence in the
putative interaction. Having said this, it should be noted that
there could be several technical reasons why the ortholog of
an SH3 domain could be missed in a genome. There might be
errors in the genome assembly, genome annotations, domain
annotation, or ortholog assignment. Thus, we also tried to
calculate conservation scores without disregarding genomes
with no ortholog for the domain under consideration. While
this did not change the results significantly (data not shown),
we felt that the first approach was more stringent.

In the orthologs, the search was restricted to a window
surrounding the putative target ligand in the S. cerevisiae
sequence, and we called this the probing region. In Figure 2,
accuracy versus coverage for increasing probing regions is
plotted, and it can be seen that by searching in a wider region
of the alignment both coverage and accuracy are increased,
especially for higher conservation scores (the complete
analysis with the number of hits and false and true positives
for each positive set is given in Table S1). Optimal results
were obtained using a probing region of 210 alignment
positions. It is important to emphasize that these were not
necessarily amino acids, but 100 gaps or amino acids on each
side of a motif of ten amino acids. This result could be due to
poor alignment of some proteins, especially those rich in
proline sequences. In fact most of the gain in coverage was
due to interactions with proline-rich proteins that were
difficult to align and had multiple gaps (i.e., Las17p, App1p,
and Vrp1p). Also, these data may suggest that these small
target ligands may be easily moved in primary sequence space
during evolution, owing to compensatory mutations in

proteins that are already proline-rich in nature. For both
sets of positives a big improvement in accuracy was observed
when we selected for consensus sequence conserved in the
five genomes used (3.8-fold increase with the gold positives
and 3.3-fold increase with the platinum positives). There was,
however, a similar fold reduction in the coverage, 3-fold for
the gold and 4.3-fold for the platinum set.
Since most known target proteins in the SH3 interaction

network are proline-rich and a large probing window was
used, it is possible that the hits found in orthologs were due to
chance and lacked biological meaning. To eliminate this
possibility two ‘‘decoy’’ proline-rich patterns were analyzed:
PXXXPXXXP and EXXPXXP (where X is any amino acid),
different from the consensus sequences. Both patterns were
found with high frequency (.400 hits) on S. cerevisiae proteins.
Using these two patterns, a loss in accuracy and coverage was
observed (an average of 1.4 times less accuracy and 1.2 times
less coverage for the PXXXPXXXP motif and an average of
3.4 times less accuracy and 2.5 times less coverage for the
EXXPXXP motif). Thus, we can rule out the possibility that
the results were generated by chance and can confirm that
the observed phenomenon was the conservation of specific
SH3 binding motifs and not of proline-rich tracks.
However, the accuracy obtained with conservation alone

was still poor (using the gold set, accuracy ¼ 46% and
coverage¼ 31%, and using the platinum set, accuracy¼ 30%
and coverage¼ 16%). A hypergeometric test allowed us to say
that that the improvement in both positive sets and for all
conservation scores was significant (p , 0.05) and not due to
random sampling.

Combining Comparative Genomics and Disorder
Prediction
Since SH3 domains generally bind linear amino acid

stretches, we tried to improve the accuracy of our con-
sensus-based method by extracting secondary structure
information about the sequences containing the target

Figure 2. Size of Probing Window When Looking for Conservation of the Consensus Sequence in Orthologs of the Putative Target Protein

We defined the conservation score as simply the number of species where the consensus sequence is conserved. With this information the accuracy and
coverage were calculated, with the gold (A) and platinum (B) positive sets, for consensus sequence conserved in different numbers of species and for
different sizes of the probing region.
DOI: 10.1371/journal.pcbi.0010026.g002
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motifs. It has been argued that there might be biological
advantages in presenting binding sites within unstructured
regions [23–26]. It has also been observed that small linear
motifs tend to accumulate in protein regions predicted to be
intrinsically disordered [30] and that proline-rich regions are
usually devoid of secondary structure [31]. To our knowledge
there is no clear experimental evidence to support that SH3
domain target sites are generally unstructured before bind-
ing, but since SH3 domains bind small linear peptide motifs
that are proline-rich, we hypothesized that SH3 domain
targets might be mainly found in unstructured regions of the
polypeptide chain. Therefore we used GlobPlot [30] in
combination with coil-region predictions [40] to identify
and study all consensus sequences found within disordered
protein regions.

Combining disorder prediction with comparative genomics
resulted in a significant (p , 0.01, using a hypergeometric
test) increase in the accuracy of protein target prediction
(there was a 2-fold average increase in both sets) (Figure 3).
The decrease in coverage was 1.4-fold for the gold and 1.1-
fold for the platinum set. For consensus sequence conserved
in five or more genomes, we obtained 94% accuracy with
28% coverage for the gold set. For consensus sequence
conserved in four or more genomes, we obtained 83%
accuracy with 26% recovery for the platinum set. These
results argue that intrinsic disorder plays an important role
in SH3 protein interactions; however, further experimental
work is needed to verify this observation.

Since the platinum positive set was independent (see
Materials and Methods), the values obtained with this set
may be used as a score for the performance of our method
compared to others. Higher values of coverage and accuracy
with the gold positive set were observed when using our
method, but it should be noted that this could be due to a
possible bias (see Materials and Methods). A detailed record
of the number of hits and false and true positives for each
conservation level in both positive sets can be found in Table
S2.

Using the methods described in this work, we show proof of
concept on how to integrate secondary structure prediction
with comparative genomics to increase the accuracy of
consensus-based prediction of peptide recognition modules.
However, the method employed involves a clear trade-off
between accuracy and coverage.
Of the 59 interactions in the final high-confidence

interaction presented by Tong et al. [22], the method was
able to predict 20 interactions when restricting for consensus
sequences within disorder and found in four of the five
genomes used. We tried to look for distinguishing features
within these 20 interactions, compared to the remaining 39
that the method did not predict. There were no statistical
differences in the average size of protein targets (p¼0.32 with
a t-test), average proline content of protein targets (p ¼ 0.12
with a t-test), usage of Class II motif (p ¼ 0.21 with a
hypergeometric distribution test), or conservation of SH3
domain (p ¼ 0.82 with a t-test). There was a statistically
significant difference in the average conservation of the
target proteins (p¼ 0.03 with a t-test). The protein targets the
method was able to predict were on average conserved in 8.7
of the ten species, while the targets not recovered were
conserved in 7.6 species. This small but significant difference
highlights the bias this method has for conserved interac-
tions. A higher level of confidence can be placed in any
putative target motif found conserved in most yeast species
analyzed, but this level of conservation will only happen for
essential interactions. It is important to note that for this
reason this method will always miss species-specific protein
interactions. However, adding more genomes of species
within an appropriate divergence time should alleviate this
problem, a concept discussed in more detail below. Another
possible cause of loss in coverage could be interactions that
are mediated by currently uncharacterized motifs or through
noncanonical SH3 binding (i.e., through globular regions of
the target protein).
As shown by other authors (reviewed in [41]), it should be

possible to further improve the reliably of a protein

Figure 3. Combining Conservation and Secondary Structure Prediction

We calculated, with the gold (A) and platinum (B) positive sets, the accuracy and coverage for target prediction when including or excluding secondary
structure information. We used a probing region of 210 alignment positions in this analysis.
DOI: 10.1371/journal.pcbi.0010026.g003
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interaction network, and therefore our method, by adding
information from other sources of data (i.e., RNA expression,
and essentiality and function information). This is especially
true if the information is efficiently combined, e.g., employ-
ing a Bayesian network [12]. It was our intention to develop a
method that could be used in species where these sources of
information were not available, but in the future we will try to
develop weighting schemes to include such sources for
prediction of interactions mediated by small linear motifs.

Determining an Optimal Divergence Time for the
Genomes Used When Searching for Conservation of
Target Ligands of SH3 Domains

Included in our initial hypothesis was the notion that there
might be an optimal time of divergence to efficiently use the
comparative genomics approach. To test this, phylogenetic
data [32,42,43] with approximate values for the divergence
times of the yeast species from S. cerevisiae (see Materials and
Methods) were used to create seven groups of four genomes
with increasing average divergence time from S. cerevisiae.
Using the gold positives, the highest accuracy obtained for a

small range of coverage values was determined for each of
these groups. For different coverage ranges the highest
accuracy was generally obtained with groups of genomes
that had diverged from S. cerevisiae on average around 400–
950 million years (My) (Figure 4).
To explore this issue further we tried to find out which

genomes might be more or less informative for our
consensus-based predictions. For each possible combination
of two or more genomes we calculated the highest accuracy
obtained for 11 small windows of coverage (with intervals of
5% of coverage from 15% to 70%). Figure 5 shows the
average of the individual genome representations in all
possible groups, in the groups scoring in the highest 20%
accuracies and in the groups scoring within the lowest 20%
accuracies, over all the coverage windows studied. For each
species, a t-test determination was carried out to see whether
the average frequencies within the highest and lowest
combinations were significantly different from the frequency
in all possible combinations. From the analysis of the results
the more informative genomes are C. albicans, D. hansenii, C.
glabrata, K. lactis, and Y. lypolytica. We can also see that N. crassa
and Sch. pombe are not over-represented in the highest scoring
groups, suggesting that they have less informative genomes.
More importantly, it is clear that including the genomes of S.
bayanus, S. mikatae, or S. paradoxus leads to a decrease in the
accuracy of predictions. These observations correlate well

Figure 4. Optimal Divergence Time to Search for Conservation of Target

Motif of SH3 Domains

We designated seven groups of species with an increasing average
divergence time from S. cerevisiae and calculated for each group the
highest accuracy obtained for restricted windows of coverage. We used
the gold positive and the negative set to calculate the accuracy and
coverage (see Materials and Methods). The seven groups of species are
as follows: (1) S. bayanus, S. paradoxus, S. mikatae, and C. glabrata
(average divergence of 112.5 My from S. cerevisiae); (2) S. paradoxus, S.
mikatae, C. glabrata, and K. lactis (average divergence of 200 My from S.
cerevisiae); (3) S. mikatae, C. glabrata, K. lactis, and C. albicans (average
divergence of 387.5 My from S. cerevisiae); (4) C. glabrata, K. lactis, C.
albicans, and D. hansenii (average divergence of 575 My from S.
cerevisiae); (5) K. lactis, C. albicans, D. hansenii, and Y. lipolytica (average
divergence of 725 My from S. cerevisiae); (6) C. albicans, D. hansenii, Y.
lipolytica, and N. crassa (average divergence of 875 My from S. cerevisiae);
and (7) D. hansenii, Y. lipolytica, N. crassa, and Sch. pombe (average
divergence of 950 My from S. cerevisiae). The individual values for the
divergence time from S. cerevisiae were taken from the literature
[32,42,43]. Although we tried to create groups that would not have
genomes of species with very different separation dates from S.
cerevisiae, it should be noted that because of the small number of
available genomes, the groups are not homogenous. Also, the values of
the divergence time of each species were not always obtained with the
same method. Therefore, this range of values should be viewed critically.
DOI: 10.1371/journal.pcbi.0010026.g004

Figure 5. Most Informative Genomes in the Search for Conservation of

Target Motif of SH3 Domains

We created all possible combinations of two or more genomes of our set
of ten genomes. For each combination we calculated the highest
accuracy obtained for 11 windows of coverage from 15% to 70% at
intervals of 5%. We then calculated the average frequency, over all
coverage windows, of each individual species in all groups of genomes,
in the combinations of genomes scoring within the 20% highest
accuracy values and in the combinations scoring in the lowest 20%
values of accuracy. We then used a t-test to determine, for each species,
whether the average frequencies within the highest and lowest
combinations were significantly different from the frequency in all
possible combinations. *, p , 0.05; **, p , 0.001.
DOI: 10.1371/journal.pcbi.0010026.g005
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with the degree of divergence observed for the SH3 domains
(see Figure 1) and with our proposed range for optimal
divergence time.

In a recent report Eddy [44] used a theoretical model to
study the statistical power of comparative genome sequence
analysis. The model showed that, at close evolutionary
distances, the number of comparative genomes needed to
obtain the same statistical power increases. The model also
suggests that the decline in statistical power for divergence
times above optimal is smaller than for divergence times
below optimal. In general our results support some of the
proposals made by this model. According to the model it
should be possible to obtain a high accuracy with closely
divergent species but it would be necessary to use consid-
erably more genomes at that distance. The author suggests
that, for example, for human/baboon distances it would be
necessary to use about seven times more genomes than at
human/mouse distance to obtain the same statistical strength.
For future work, we are therefore considering extending our
method to include a weighing scheme based on the evolu-
tionary distance between the comparing species and the
target species. We think this could be achieved using an
adaptation of the theoretical model proposed by Eddy [44].

It would be also interesting to study how many genomes
would suffice to accurately predict an SH3 target interaction.
Since the decrease in statistical power for Sch. pombe and N.
crassa is small compared to species closely related to S.
cerevisiae, we calculated the accuracy and coverage after
addition of one or two of these species, to the five species
selected previously, for different conservation scores. In
general, an increase in coverage with little or no decrease
in accuracy was observed (see Table S3). Addition of any of
the closely related species, instead of N. crassa or Sch. pombe,
resulted in a large loss of accuracy with moderate gain in
coverage (results not shown). We believe that the improve-
ment gained by adding species within the optimal divergence
time would be better than that observed with N. crassa and
Sch. pombe. The result generated with the latter two species
suggests only that a sufficient number of genomes was not
reached, since addition of more genomes still improved our
scores. However, at present there are not enough genomes
available to empirically tackle this question of a sufficient
number of genomes for SH3 target prediction.

We believe the main factor determining the optimum
divergence time is the conservation level of the biological
feature. A biological feature that has higher conservation will
require genomes of more divergent species to be accurately
identified. Interaction types that are equally conserved
should be accurately predicted with genomes of species at
the same divergence times. This might mean that the same
genomes could be used to predict interactions for other
protein domains that bind small linear peptides (i.e., PDZ,
WW, SH2, 14–3–3). Other interaction types that are mediated
by larger interaction surfaces are probably more conserved
and therefore might require genomes from more divergent
species.

Although some results [34,35] have shown the importance
of having genomes of recently divergent species in the study
of DNA regulatory regions, recent findings [45] have shown
that regulatory systems can be conserved over hundreds of
millions of years. We argue that the concept of optimal

divergence time presented should also be taken into consid-
eration for protein–DNA interactions.
In this paper we show that for the study of SH3 protein

interactions the genomes with more relevant information are
from species that diverged around 400–950My ago from the
species of interest. As was suggested by Eddy [44], this
optimum might be specific for the particular interaction type
being analyzed. Nevertheless, we believe that our results
should be taken into consideration when identifying other
biological features using comparative genome sequence
analysis.

Predictions of Novel SH3–Linear Peptide Interactions
We used the method described above and the genomes of C.

glabrata, K. lactis, C. albicans, D. hansenii, Y. lipolytica, N. crassa,
and Sch. pombe to predict a set of 69 interactions regarding
consensus sequence conserved in four of the seven genomes
used (see Figure 6 and Table S4 for a complete list of the
predicted interactions). Genomes of species that were over-
represented in groups of genomes scoring within the 20%
highest accuracies or under-represented in groups of
genomes scoring within the 20% lowest accuracies were used.
Some experimental evidence was found to support 37 of
these interactions, all of which occurred between proteins
labeled as belonging to the same compartments. Of the 32
remaining predictions, eight might not be possible since the
putative interaction partners are annotated as having differ-
ent cellular compartments, although in some cases a link
between the two compartments could be possible (see below
for some examples). Benchmarking with the gold positive and
negative sets resulted in an accuracy of 73% and coverage of
37%. The level of conservation was chosen to allow for higher
coverage, but it is important to note that higher accuracy for
particular interactions can depend on the degree of
conservation observed. We have included information about
this in Table S4.
As expected we obtained a highly interconnected network

with a very significant over-representation of proteins
participating in processes typically associated with SH3
domains in S. cerevisiae. GO::TermFinder [46] was used to find
significantly shared GO terms within the list of targets of the
predictions. Amongst the most significant process associa-
tions found were cytoskeleton organization and biogenesis (p
¼ 3.67 3 10�15), morphogenesis (p ¼ 7.62 3 10�12), establish-
ment of cell polarity (p ¼ 1.19 3 10�11), actin cortical patch
assembly (p ¼ 5.09 3 10�9), and bud site selection (p ¼ 1.28 3

10�8).
Some of the proposed interactions were further explored

taking into account which S. cerevisiae biological processes
these proteins were involved in. An interesting example is the
proposed interaction between Abp1p with the P-type
ATPases Dnf1p and Dnf2p. These proteins are required for
phospholipid translocation and they mainly localize to the
plasma membrane and intercellular compartments. The
regulation of the lipid bilayer arrangement by Dnf1p and
Dnf2p was demonstrated to be critical for budding endocytic
vesicles [47]. It is also known that Abp1p is one of the
activators of the Arp2/3 complex and is important in
coupling the actin and membrane dynamics during endocy-
tosis [48]. Following from the proposed interaction seen using
our method, we suggest that Abp1p might target Dnf1p and

PLoS Computational Biology | www.ploscompbiol.org August 2005 | Volume 1 | Issue 3 | e260007

Biologically Relevant SH3 Protein Interactions



Dnf2p to sites of endocytosis to play a role in endocytic
vesicle formation or maintenance.

In order to calculate accuracy and coverage scores, we
initially considered as ‘‘negative’’ interactions between
proteins that did not share the same cellular compartment.
After having obtained our list of predicted interactions, we
decided to investigate them without disregarding these
‘‘negative’’ interactions. This decision was made because the
negative set is based in part on high-throughput measure-
ments that do not take into account the dynamics of cellular
localization. Two proteins might not share a compartment in
a given cellular condition, but this might change in different
cellular states (examples in S. cerevisiae include cell cycle,
pheromone response, and filamentous growth). This reason-
ing actually leads us to think that the localization data on
proteins are underevaluated and, if anything, will result in an
underestimation of our accuracy scores.

Within our set of final predictions, Hse1p-mediated
interactions are examples of those occurring between
proteins marked as belonging to different compartments.
According to our results the SH3 domain of Hse1p has a high
probability of binding to proline-rich regions of Ste20p,
Bck1p, and Las17p. Hse1p was recently reported to be part of
a complex that binds ubiquitin and is important in sorting
proteins in the endosome [49,50]. Knowing that both Ste20p
and Bck1p are involved in the response to mating and that

Hse1p is involved in the trafficking/sorting of the alpha-factor
pheromone receptor, these SH3 domain interactions might
be part of the sorting mechanism of the alpha receptor in the
multivesicular bodies. Activated alpha-factor pheromone
receptors recruit Ste20p by the dissociation of Gbc subunits
(reviewed in [51]). There is some evidence that Ste20p
activation can lead to the phosphorylation of Bck1p in the
mating response [52]. Activated mating receptors are inter-
nalized after phosphorylation and ubiquitination of their
carboxy-terminal tails and are targeted to the vacuole for
degradation [53]. We propose that these internalized vesicles
are decorated with complexes containing Ste20p, Bck1p, and
Las17p and that the interaction of the SH3 domains of Hse1p
with these proteins might be important in the sorting of
internalized mating receptors.

Conclusion
We present here a method to predict biologically relevant

protein interactions mediated by peptide recognition mod-
ules. Conservation of target linear peptides and analysis of
protein disorder can be effectively combined to screen for
biologically relevant interactions that are predicted from
binding matrixes obtained from experimental data. However,
the method has a small coverage and still relies on
experimental determination of the SH3 target consensus
sequence. In the future it should be possible to predict the

Figure 6. Predictions of S. cerevisiae SH3 Interactions

We considered that a potential target consensus sequence, found by pattern matching, in an S. cerevisiae protein would be biologically relevant if it was
within an unstructured region of the S. cerevisiae protein and also conserved in four of the seven comparison genomes used. (C. glabrata, K. lactis, C.
albicans, D. hansenii, Y. lipolytica, N. crassa, and Sch. pombe). Red lines indicate the interactions for which we found some experimental evidence in
protein interaction databases [59–61]; thin black lines indicate interactions between proteins that are labeled as locating to different compartments;
thick black lines indicate interactions for which we found no evidence. There were two S. cerevisiae SH3 domains for which we could not predict any
interaction because of the stringency applied. A complete list of the interactions with function, localization, and binding positions is given in Table S4.
DOI: 10.1371/journal.pcbi.0010026.g006
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target motifs using available structural data and homology
modeling [54,55].

This study provides some evidence for the importance of
intrinsic disorder in the context of protein interactions.
Specifically, binding motifs within disordered protein regions
are more likely to be biologically relevant binding sites than
equivalent sites within ordered regions. To our knowledge
there is no experimental evidence currently available to
support the idea that in general SH3 domains bind within
unstructured regions; therefore, particular cases should be
investigated carefully. Nevertheless, we hope our observations
will contribute to discussion of the role of intrinsically
disordered protein regions.

The analysis carried out demonstrated that there is an
optimal divergence time for the species to be included in
comparative genomics when looking for the conservation of
binding sites of peptide recognition modules. For SH3
domains in yeast, this interval is between 400 and 950 My,
and although these divergence times may be specific to SH3
domains and to yeast evolution, the concept should be taken
into consideration for future comparative studies.

Finally we have used this method to predict novel SH3–
linear peptide interactions for S. cerevisiae. The interaction
map obtained contains information on the binding regions of
both interaction partners and should allow experimentalists
to devise effective and precise system perturbations by
targeting a particular interaction.

Materials and Methods

SH3 domain conservation. We created a phylogenetic tree (see
Dataset S1) produced by the neighbor-joining method from a
ClustalW alignment [56] of the SH3 domains of the 13 yeast species
in our set. The SH3 domains were identified using SMART [57].
Putative orthologs for all S. cerevisiae proteins were determined by the
BLAST reciprocal best hit method [39]. We considered that a putative
ortholog of a S. cerevisiae SH3 domain was not conserved if the two
domains were not in the same branch of the phylogenetic tree.

After eliminating these ‘‘divergent’’ domains, we did multiple
sequence alignments of the groups of orthologous domains. To
determine the binding positions, we included in the alignments the
SH3 domain of Fyn. From visual inspection of crystal structures of
complexes of SH3 domains with ligands, we decided to analyze the
positions Tyr91, Tyr93, Arg96, Thr97, Asp99, Asp100, Asp118,
Trp119, Tyr132, Pro134, and Tyr137 of Fyn that we considered might
influence binding specificity. By manual inspection of the alignments
we extracted the positions of all domains corresponding to the
positions of the Fyn SH3 domain that are important for binding
specificity and determined their conservation. Any substitution that
scored a non-negative value in the blosum62 matrix that would not
result in a reversal of charge was considered to be conserved.

Positive and negative datasets. We considered a positive set of 59
interactions (containing 15 different SH3 domains from 15 different
proteins) defined by Tong et al. [22]; this we called the gold set. Tong
et al. obtained the final set of interactions by the overlap of two sets
of interactions obtained with two different methods. They used phage
display data to create a PSSM and used it to scan the S. cerevisiae
proteome. Using a threshold on the PSSM they selected the first set of
interactions, then they created a second interaction network by yeast
two-hybrid screening and obtained the final network (our gold set) by
the overlap of the two.

We considered a second positive standard, which we called the
platinum set, of higher confidence, with 19 interactions (containing
ten different SH3 domains from ten different proteins) derived from
the overlap of the two-hybrid assays, obtained from Tong et al. [22],
with the MIPS complexes dataset [58].

The two positive datasets overlap only partially (ten interactions
from the platinum set are also in the gold set).

To build our negative dataset we assumed that two proteins that do
not share the same subcellular compartment according to MIPS
localization data [58] cannot interact, and we compiled a list of all S.
cerevisiae proteins pairs that do not share at least one subcellular
compartment.

Since we also used the phage display data from Tong et al. [22] to
derive the consensus sequences recognized by the yeast SH3s used in
this study, the gold set might be biased. We would like to stress that
we did not use a PSSM as in the Tong et al. paper and therefore even
our initial motif-based predictions without any filtering are not the
same as the network obtained by Tong et al. with the phage display
data.

We did not merge the two positive datasets, thus keeping the
platinum one as a truly independent positive dataset. We decided to
also use the gold set because although it is not appropriate to use the
absolute performance value calculated with this set to compare our
method with others, it still served as a check for the relative
performance of different filters of our method.

Accuracy and coverage determination. The ratio between true
positives (TP) and the sum of true positives plus false positives (FP)
was used as a measure of accuracy. True positives were the number of
predicted interactions within a positive set. False positives were the
number of predicted interactions found within the negative set. To
measure the coverage of the methods, we tracked the ratio TP/P,
where P is the total number of positives in the positive set.

Estimated divergence time from S. cerevisiae. The estimated
divergence times of the other yeast species from S. cerevisiae were as
follows: C. glabrata, 300 My; D. hansenii, 800 My; K. lactis, 400 My; Y.
lipolytica, 900 My; C. albicans, 800 My; S. paradoxus, 50 My; S. bayanus, 50
My; S. mikatae, 50 My; N. crassa, 1,000 My; and Sch. pombe, 1,100 My.
These values were based on phylogenetic studies found in the
literature [32,42,43].

Supporting Information

Dataset S1. Phylogenetic Tree of the SH3 Domains in the Study

The phylogenetic tree of all the SH3 domains of the yeast species in
our study.

Found at DOI: 10.1371/journal.pcbi.0010026.sd001 (14 KB DND).

Table S1. Detailed Analysis of the Conservation of Target Consensus
Sequence in Putative Targets of S. cerevisiae SH3 Domains

Found at DOI: 10.1371/journal.pcbi.0010026.st001 (248 KB PDF).

Table S2. Detailed Analysis of the Conservation of Target Consensus
Sequence in Putative Targets of S. cerevisiae SH3 Domains within
Unstructured Regions of Proteins

Found at DOI: 10.1371/journal.pcbi.0010026.st002 (248 KB PDF).

Table S3. Effect of Addition of More Informative Genomes on
Accuracy and Coverage Scores

Found at DOI: 10.1371/journal.pcbi.0010026.st003 (17 KB PDF).

Table S4. List of Predicted Interactions

Found at DOI: 10.1371/journal.pcbi.0010026.st004 (52 KB PDF).
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