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Colocalization of proteins that are part of the same signal trans-
duction pathway via compartmentalization, scaffold, or anchor
proteins is an essential aspect of the signal transduction system in
eukaryotic cells. If interaction must occur via free diffusion, then
the spatial separation between the sources of the two interacting
proteins and their degradation rates become primary determinants
of the time required for interaction. To understand the role of such
colocalization, we create a mathematical model of the diffusion
based protein–protein interaction process. We assume that mR-
NAs, which serve as the sources of these proteins, are located at
different positions in the cytoplasm. For large cells such as Dro-
sophila oocytes we show that if the source mRNAs were at random
locations in the cell rather than colocalized, the average rate of
interactions would be extremely small, which suggests that local-
ization is needed to facilitate protein interactions and not just to
prevent cross-talk between different signaling modules.

protein diffusion � protein mobility � intracellular reaction � protein
localization

Interesting biological processes are not the result of the activity
of a single protein. Instead, they result from controlled and

coordinated activities of multiple proteins (1), which may or may
not be synthesized from mRNA molecules that are close to each
other. Recent experimental progress in mapping the organism-
wide protein–protein interaction network has produced a surge
of interest in functional inference based on connectivity struc-
ture of cellular proteins. The edges in these networks represent
protein–protein interactions that have spatial and temporal
dimensions. The existence of mutual binding sites is necessary
for interactions; however, this is not sufficient, because the actual
binding process requires diffusion that may be too slow for the
lifetime of these interacting proteins. This is particularly true if
the spatial volume of the cellular environment is relatively large
and signaling proteins are in small numbers and�or have a short
half-life.

For �80% of the yeast transcriptome, there is less than one
mRNA transcript per cell (2), and for 95% of the human
transcriptome there are 0.5–5 mRNA transcripts per cell (3).
Because the rate of translation is proportional to the number of
promoter sites and mRNA molecules, the small numbers of
transcripts imply relatively infrequent translational events. It has
been shown experimentally that in eukaryotic cells, stochasticity
of transcriptional events propagates to the translational process
and results in large variability in the number of proteins per cell
even in a clonal population (4). Little theoretical work has been
done to understand the consequences of stochastic f luctuation of
protein concentration on protein–protein interactions, which
form the basis of the majority of biological signaling pathways.
In particular, very little is known about the dependence of
protein interaction dynamics on the half-life and distance be-
tween the origins of interacting proteins. If proteins had an
extremely long half-life, then protein interaction would be
certain even in large cells such as Xenopus (average radius of 600
�m), Drosophila oocytes (average radius of 300 �m), or neuronal

cells (length range of 1–5 mm). In fact, the half-lives of proteins
in a living cell range from a few seconds to many days (5), and
the protein abundance in yeast can range from �50 to �1 million
molecules per cell (6).

It has been well documented that in eukaryotes, members of
signaling pathways often are organized into multiprotein assem-
blies and localized via anchor and scaffold proteins (7, 8). In
Drosophila and Xenopus oocytes, spatial and temporal control of
protein synthesis during oogenesis and early embryogenesis
underlie the establishment of polarity and subsequent patterning
of the body axes (9, 10), and 75% of the yeast proteome is found
in 22 distinct subcellular locations (11). It is commonly thought
that this colocalization is an insulation mechanism that prevents
‘‘cross-talk’’ between signaling pathways. To verify this claim and
to understand the role of colocalization and signal complex
formation, we create a mathematical model of a free diffusion-
based protein–protein interaction in the absence of colocaliza-
tion of the interacting proteins or of their mRNA sources.

The aim of this study is to find the average rate of interactions
between two protein species that were made from mRNA
transcripts that are allowed to diffuse to a random position in the
cytoplasm. This quantitative estimate of the interaction proba-
bilities of freely diffusing proteins will help us understand the
need for cellular localization and the relative importance of
physical parameters such as diffusion coefficient, protein syn-
thesis, and degradation rate. The outline of this article is as
follows: first, we describe the model of diffusion-dependent
protein–protein interaction; then we derive the expected rate of
interactions when the point sources of proteins are located a
certain distance from each other; we next verify this claim via
simulation; then, approaching our key concern, we derive the
expected rate of interactions when mRNA point sources can be
located at random in a cell of radius R; finally, we discuss the
implications of our result for understanding the need for local-
ized accumulation of interacting proteins.

Description of the Model
We limit our discussions to freely diffusing signaling proteins
such as protein kinase and phosphatase. We make the following
assumptions in our model. (i) Ribosomes, RNases, and other
factors involved in protein degradation and synthesis have long
half-lives relative to the signaling proteins under consideration
and occur in large copy numbers. (ii) Protein translation is
constitutive, and the rate of protein degradation does not vary
significantly over the cell. (iii) The mRNA transcripts serve as a
point source for the proteins for which they code. (iv) mRNAs
coding for freely diffusing cytoplasmic signaling proteins are
located randomly in the cytoplasm (13). (v) The process of
translation is such that the probability of proteins being made in
the time interval (t, t � dt) is independent of the number of
proteins made before time t. (vi) The process of degradation is
such that the probability that a protein is degraded in the time
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interval (t, t � dt) is independent of the number of proteins
degraded before time t.

Assumption i implies that protein synthesis and degradation
activities are distributed uniformly throughout the cell. Assump-
tion ii implies that the rate of translation, �, and the rate of
degradation, �, are time-independent. Assumption iii is justified
as freely diffusing proteins are made from mRNAs that are not
bound to endoplasmic reticulum and have multiple ribosomes on
them; there can be �10 on average. This structure, known as the
‘‘polysome,’’ is rather large and diffuses little as a result (12).
Assumptions v and vi imply that the process of protein degra-
dation and synthesis satisfy the Markov assumption and form a
pair of competing Poisson processes.

Fig. 1 shows the model of the protein interaction process that
we use. As soon as a protein is translated it undergoes Brownian
motion in the three-dimensional cellular environment. At any
given time, there is a small constant probability that this protein
may be degraded. If at any time two different types of proteins
come close enough to each other for the first time, then we
assume that interaction has taken place. Once a protein moving
under Brownian motion has visited a point, it visits the neigh-
borhood of this point many times; therefore it is sufficient to just
consider the first time the two Brownian paths come within a
small distance of each other. We do not explicitly model the
mRNA movement, because mRNA is believed to be local-
ized and this process involves many steps that are not well under-
stood (14).

Expected Rate of Interactions
Using the protein interaction model described in the previous
section, we would like to derive the probability that two proteins
that are synthesized at a certain distance apart from each other
will ever interact before either one of them is degraded. Before
we derive the probability of interaction, we note the changes that
occur in the cellular environment from a perspective of a protein
of type I, which is born at time t0. Because the protein degra-
dation process is Markovian and the death rate is constant, this
protein will have an exponentially distributed age, � (15). As the
system evolves, we must keep track of the positions of all the
proteins of type II that were born before and during the time
interval (t0, t0 � �). Note that some of the proteins of type II that
are born after time t0 could die before the time t0 � �, whereas

some could live past the time t0 � �. The transience of the
Brownian paths caused by random birth and death make this a
complicated problem. From now on we refer to protein synthesis
as a birth process and protein degradation as a death process.
From the nature of the problem, it is clear that we must work
with the sample paths of each individual protein rather than that
of the population of the proteins of each type as a whole.

We denote the position of proteins j of type i by

Bij�t� � ��iWxi
�t�, �iWyi

�t�, �iWzi
�t��T

for i � 1, 2, which represents a three-dimensional nondrifting
and unbiased Brownian motion, where the origins of each type
of protein are at a distance r away from each other. Wi(t) is a
one-dimensional standard Brownian motion such that for 0 �
s � t the increment W(t) 	 W(s) have a Gaussian distribution
with mean equal to 0 and variance equal to �2(t 	 s) with
diffusion parameter � � 
2Di where Di is the diffusion coef-
ficient of protein i. By nondrifting we mean that there are no
external fields, and by unbiased we mean that the protein takes
steps in every direction with the same probability and the step
sizes in each direction have an identical distribution. Deriving
the expected rate of pairs of Brownian trajectories that come
within 	 of each other is very hard analytically if we include the
cell and the nuclear boundaries. Therefore, we neglect the
boundaries and derive an estimate, which should provide a good
first approximation to the real case, especially for large cells, or
when half-life of protein is short.

Let Xij(t) be the difference between position of protein i of
type I and protein j of type II at time t. Because the difference
of two Gaussian processes is another Gaussian process, we get
that

X� ij�t� � B� i1�t� 
 B� j2�t� � ��1
2 � �2

2 W� �t�

is also a Gaussian process with diffusion parameter

��1
2 � �2

2 .

An important property of unbiased independent Brownian
motion is that the process has spherical symmetry, which means
that we only need to keep track of the magnitude of the

Fig. 1. Model of protein interactions. Proteins are of two types: I and II. Protein of type I is translated from mRNA at rate �1, and that of type II is translated
at rate �2. Protein of type I is degraded at rate �1 and that of type II is degraded at rate �2. The product of degradation is denoted by empty braces. As soon as
a protein is made, it diffuses according to a three-dimensional Brownian process. If paths of interacting proteins come within distance 	 of each other, then these
proteins are considered to have interacted (	 is about a protein diameter).
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difference of position. Letting Rij(t) � (1��)�Xij(t)�, we reduce
the three-dimensional process, Xij(t), to a one-dimensional dis-
tance process. Protein interaction in terms of the Bessel process
is illustrated in Fig. 2. We note that R(t) is a standard Bessel
process and satisfies the Ito stochastic differential equation
dR(t) � [dt�R(t)] � dW(t).

The probability that the Bessel process, R(t), is in interval [r,
r � dr] given that it started from r0 is given by p(r, r0, t)dr, where
p(r, r0, t) is the transition density. If the diffusion parameter � �
1, then the probability shown above has to be scaled to p(r��,
r0��, t)dr��. As shown in ref. 16, the transition density of the
standard Bessel process is given by

p�r, r0, t� �
r
r0
� 2

�t
e	

r2�r0
2

2t sinh �rr0

t � . [1]

Let f	(r, �) denote the probability that the two proteins of
different types, starting from distance r apart, will meet before
either one of them is degraded. Formally, f	(r, �) � P[�	 �
�� R(0) � r], where �	 is the random time required for these
proteins to diffuse to within a distance of 	 of each other, and
�� is the minimum of their ages. Because the ages of each protein
is exponentially distributed, �� is exponentially distributed with
parameter � � �1 � �2.

It is a standard fact that for a process on (0, �) with generator

L �
�

r


r
�

�2

2
2

r2

killed at a rate �, the probability of reaching (0, 	), f	(r, �),
satisfies

Lf	�r, �� 
 �f	�r, �� � 0

on (	, �) and f	(	, �) � 1 (16). We show in Appendix a direct
heuristic way to derive f	(r, �) and show that for r � 	

f	�r, �� �
	

r
e�		r��2�. [2]

If the diffusion parameter � � 1, then the probability that �R(t)
starting at r with death rate � ever comes within 	 of the origin
is f	(r��, �). If M(t, r0) denotes the expected rate of interactions
or 	 meetings in time interval [0, t] of proteins born at different
times in this interval with initial separation of r0 between their
mRNA origins, then the mean is given by m(r0) � limt3�[M(t,
r0)�t]. Keeping in mind that we must consider both the cases in
which protein of each type is born first, m(r0) is given by

m�r0� � lim
t3�

1
t �

i�1

2 �
t1�0

t

�1dt1�
t2�0

t1

�2e	�i�t1	t2�dt2

��
r�0

�

p� r
�i

,
r0

�i
, t1 
 t2� f	� r

�
, �� dr

�i
. [3]

The exponential term, e	�i(t1	t2), in the above equation is the
probability that the protein born first is not degraded until after
the time the protein of other type is born. The resulting equation
for the mean rate of interactions is given by

m�r0� �
�1�2	���r0�

r0
, [4]

where the term �(r0)is given by

��r0� � �
i�1

2 1

�i�2�1
�e	dr0 
 e	dir0

di 
 d
�

r0e	dr0 � e	d1r0

di � d � ,

if �1 � �2 and �1 � �2. When �1 � �2 and �1 � �2,

��r0� � �
i�1

2 1

�i�2�1
� r0e	dr0 �

r0e	dr0 � e	d1r0

di � d � ,

where di � 
2�i��i, d � 
2��1 � �2���, �i � 
2Di, � �

2�D1 � D2� and Di is the diffusion coefficient of protein of
type i. In the derivation of the above equation we used the
assumption that the interaction distance, 	, is much smaller than
the separation between the mRNA point sources, r0.

To verify Eq. 4 we simulated the interaction process with and
without the cell boundary. The most important consideration
when doing a discrete simulation of a continuous time process is
the choice of an appropriate time step. Usually, the time step is
chosen to be much smaller than the time scale of the most
frequent events of interest, so that the probability of more than
one event occurring during a single time step is negligible.
Furthermore, to detect an interaction event, the distance trav-
eled by a diffusing particle must be much smaller than the
distance required for two proteins to interact. We used an
adaptive step method for which time steps are chosen depending
on the minimum of all pairs of distances between interacting
particles.

By using a time step of 2 �s, interactions and births were
counted after the elapse of a pre-steady-state time of 100 min,
and then the simulation was run for an additional 1,000 min of
real time. The reason for such a long simulation is that we are
estimating a very small probability, and as a result a much longer
run is needed to get a parameter estimate with a variance smaller
than the estimate itself. Thirty-five simulations were done for

Fig. 2. Illustration of the Bessel process that represents the three-
dimensional problem of protein location as a one-dimensional problem of
distance process. This figure describes events that can occur in the lifetime of
a protein of type I that can interact only with another protein of type II. a,
Protein P of type I is born at some time, �0. As soon as it is born, it finds that
there are certain proteins of type II that are alive. The time evolution of the
distance is represented by R1(t). b, At time �1, a protein of type II is born. Notice
that distance r0, which is the initial distance between this newly born protein
of type II and P, varies as P undergoes Brownian motion. Again, the time
evolution of the distance between protein P and the protein of type II born at
�1 is represented by R2(t). c, Before this protein gets a chance to come close
enough to P, it gets degraded. d, Protein of type II born at time �2 is able to
interact with P. Formally, we say that the Bessel process R3(t) is absorbed at 	.
e, Protein of type II born at �3 does not get enough time to interact with
protein P, because P is degraded at time �5.
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each separation distance with point sources symmetric about the
center of the cell.

As can be seen in Fig. 3, for a cell radius of 100 �m (less than
half the size of a Drosophila oocyte) the formula accurately
predicts the average rate of interactions per protein lifetime
found by simulations. The reason why the formula and the
simulation do not agree well for r0 � 5 �m is that we made a
simplification that 	 �� r0 in the derivation of Eq. 4. As a result,
as r0 ceases to be large compared with 	, the estimate worsens.
Furthermore, as the cell gets smaller (radius �100 �m), the
estimation deteriorates as proteins live long enough to be able to
travel longer than the diameter of the cell; interestingly they still
don’t ‘‘forget’’ where they were made and show a strong depen-
dence on the initial separation.

Expected Rate of Interactions for a Randomly Located Pair of
Origins
Now that we know that the formula is a good approximation for
cells with a radius �100 �m, we ask the question we initially set
out to answer. Suppose that the mRNAs of each type of protein
were not colocalized but diffused out from the nucleus into the
cytoplasm at a random position (13) such that any location in the
cytoplasm is equally likely; what would be the average rate of
interactions over all possible distances between the point
sources? Let R denote the radius of the cell (assumed to be
spherical). For a large cell we can safely neglect the volume of
the nucleus, because it would be quite small relative to the
volume of the cell. Let r be the distance between two points
picked uniformly in a cell of radius R, then it can be shown (17)
that the probability that this distance lies in the interval [r, r �
dr] is given by

h�r� �
3r2

R3 

9r3

4R4 �
3r5

16R6 .

Thus, we can calculate the expected rate of interactions over all
possible distances in [0, 2R] with n1 and n2 mRNAs of each type,
respectively, as

mR � n1n2�
0

2R

h�r�m�r�dr

� �
0

2R�3r2

R3 

9r3

4R4 �
3r5

16R6��1�2	���r�
r

dr. [5]

This integral was evaluated analytically, and a plot was made for
several values of protein degradation rate and cell radii in the
range of 200–600 �m by using a diffusion coefficient of 10	8

cm2�s (18–20) and four mRNA transcripts of each type (2, 3).
Fig. 4 shows that the mean rate of interactions increases linearly
with the half-life; however, even when the half-life is as large as
900 min (or 15 h) and there are four mRNAs of each type, the
mean rate of interactions is �0.04. A value of 0.04 says that only
1 in 25 proteins ever interact with their intended partner before
they are degraded.

Discussion
Our goal in this article was to show that in a large cell, when
proteins have a short half-life, there is an insignificant amount
of cross-talk, because proteins would interact too few times to
relay any significant signal. We approached this problem by
modeling a protein interaction process without colocalization of
mRNA point sources and have derived a relationship (Eq. 4) that
estimates the expected rate of interactions between two freely
diffusing proteins that are synthesized at separate locations from
each other. The functional form of this equation, [�1�2	��(r0)]�
r0, is intuitive: increases in birth rate (�i), the interaction distance
(	), and diffusion parameter (�) increase the average rate of
interactions, whereas the increase in distance between the
mRNA origins decreases the mean rate of interactions. The
parameter �(r0) accounts for the transiency of paths and depends
nonlinearly on the protein half-life and the distances between the
sources, r0, of interacting proteins. The main result of this article
is shown in Fig. 4, which clearly shows that, even for a large
protein half-life of 15 h, only 1 in 25 proteins are expected to
interact. Thus, we infer that colocalization is just as important
for increasing the probability of interactions of intended signal-

Fig. 3. The average rate of interactions as a function of distance between
mRNAs. Thirty-five simulations were performed for each separation, with a
protein synthesis rate of one per 3.5 min, a protein half-life of 15 min, and a
diffusion coefficient of 1 �m2�s for both types. An interaction distance of 100
Å was used. (a) No boundary case. (b) Spherical cell with radius 150 �m. (c)
Spherical cell with a radius of 100 �m. (d) Spherical cell with a radius of 75 �m.
The error bars are at mean �1 standard deviation. Heavy dashed lines repre-
sent the predicted value from Eq. 4, which assumes no cell boundary.

Fig. 4. Expected rate of interactions over all possible separations of mRNA
sources as a function of half-life. The following parameters were used in Eq.
5: a protein synthesis rate (�1 and �2) of one per 2 min, number of mRNAs of
type I and II (n1 and n2) of four each, a diffusion coefficient (D) of 10	8 cm2�s
for both types, an interaction distance (	) of 100 Å, and five values of half-life
(�), which are shown in the legend in minutes.
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ing proteins as it is to suppress cross-talk between signaling
pathways.

If the cellular boundary had been taken into consideration, it
would not have been possible to obtain a closed-form formula for
the mean rate of interactions. One of our assumptions is that
proteins are constitutively expressed, but often transcription and
translation are under tight regulatory control. Furthermore, for
an interaction to result in an exchange of phosphate, for example,
a protein must bind with its interacting partner in a lock-and-key
type conformation; as a result, proteins must interact with each
other many times before a collision with proper orientation and
energy results in an actual reaction. The reasons described above
imply that the mean rate of interactions in vivo most likely would
agree well with the estimate shown in Fig. 4.

A signaling process having relay proteins with a short half-life
gives the cell more control over its activity and range. Because
of the short half-life, proteins won’t diffuse too far and be
involved in an unintended process, resulting in minimization of
cross-talk between signaling modules. However, one can see in
Fig. 4 that, even for modest distances between the mRNA
origins, in large cells, for proteins with short half-lives, the mean
rate of interactions per protein lifetime is low. If it were not for
localization and signal complex formation, a significant propor-
tion of proteins would die unproductively (i.e., without interact-
ing) and a tremendous amount of energy would be wasted.

Even if the cellular environment were not crowded and did not
contain spatial barriers (21–23), diffusion alone would not be
sufficient for carrying out cellular processes at a significant rate
in cells �50 �m in radius. The limitations of the short-range
nature of diffusion may not afflict small secondary messengers
(such as cAMP, inositol 1,4,5-trisphosphate, or Ca2�) (24), which
can diffuse many times faster than proteins; however, the cell
must use some mechanism to enrich the local concentration of
short-lived interacting proteins. Anchor (8) and scaffold proteins
(25) are some of the ways cells surmount the limitations of
diffusion. Design of a reliable signaling system using interme-
diates that freely diffuse is a challenging engineering problem
that evolution has solved by spatially constraining the positions
of slowly diffusing intermediates while using faster diffusing
intermediates (i.e., secondary messengers) to propagate signal
over a larger distance. This design significantly increases the
reliability and timing of individual signaling links within a signal
transduction pathway, which otherwise would be plagued by
undesirable large fluctuations in timing of time-critical cellular
functions. The estimate of the average rate of protein interac-
tions derived in this article shows clearly that, in large cells with
a low number of mRNA transcripts (2, 3), unlocalized proteins

with short half-lives most likely will not interact sufficiently nor
rapidly enough to transmit a biologically meaningful signal.
Thus, we are led to conclude that the role of localization is not
only to prevent cross-talk between different signaling pathways
but also to increase the probability of interactions of proteins
that are within the same pathway.

Appendix: Derivation of Probability of Interaction f�(r, �)
Let f(r) � f	(r, �) be the probability that the standard three-
dimensional Brownian motion starting at r with death rate �
comes within 	 of the origin before death. Let dt denote the
length of a small time interval, then in time dt the process has
moved to f(r � dr). Because 1 	 �dt is the probability of protein
not being degraded in time dt, we have a recursive formulation
using the mean value property of Brownian motion

f�r� � �1 
 �dt�E�f�r � dr��, [6]

where E [�] is the expectation operator. We do a second-order
Taylor expansion of Eq. 6 and use the stochastic differential
equation for dr, to get

f�r � dr� � f�r� � f ��r�	k 
 1
2r

dt � dW�t�
 �
2
2

f ��r�

� 	�R 
 1
2r � 2

�dt�2 �
k 
 1

r
dW�t� dt � �dW�t��2
 .

Because dt is small, (dt)2  0 and dW(t) � dt  0; however, the
variance term is significant because it is proportional to time and
cannot be neglected. Noting that E(dW(t)2) � dt and E[dW(t)] �
0, we get the following second-order differential equation:

f ��r� �
k 
 1

r
f ��r� 
 2�f�r� � 0.

Using the boundary conditions f(	) � 1 and f(�) � 0, we can
solve this equation (26) and find that the solution is (for three
dimensions)

f�r� �
	

r
e	�r		��2� , [7]

where � � �1 � �2.
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