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Abstract 
 

The revolutionary growth in the computation speed and memory storage capability has 
fueled a new era in the analysis of biological data.  Hundreds of microbial genomes and 
many eukaryotic genomes including a cleaner draft of human genome have been 
sequenced raising the expectation of better control of microorganisms.  The goals are as 
lofty as the development of rational drugs and antimicrobial agents, development of new 
enhanced bacterial strains for bioremediation and pollution control, development of better 
and easy to administer vaccines, the development of protein biomarkers for various 
bacterial diseases, and better understanding of host-bacteria interaction to prevent 
bacterial infections. In the last decade the development of many new bioinformatics 
techniques and integrated databases has facilitated the realization of these goals. Current 
research in bioinformatics can be classified into: (i) genomics ― sequencing and 
comparative study of genomes to identify gene and genome functionality, (ii) proteomics 
― identification and characterization of protein related properties and reconstruction of 
metabolic and regulatory pathways, (iii) cell visualization and simulation to study and 
model cell behavior, and (iv) application to the development of drugs and anti-microbial 
agents.  In this article, we will focus on the techniques and their limitations in genomics 
and proteomics.  Bioinformatics research can be classified under three major approaches: 
(1) analysis based upon the available experimental wet-lab data, (2) the use of 
mathematical modeling to derive new information, and (3) an integrated approach that 
integrates search techniques with mathematical modeling. The major impact of 
bioinformatics research has been to automate the genome sequencing, automated 
development of integrated genomics and proteomics databases, automated genome 
comparisons to identify the genome function, automated derivation of metabolic 
pathways, gene expression analysis to derive regulatory pathways, the development of 
statistical techniques, clustering techniques and data mining techniques to derive protein-
protein and protein-DNA interactions, and modeling of 3D structure of proteins and 3D 
docking between proteins and biochemicals for rational drug design, difference analysis 
between pathogenic and non-pathogenic strains to identify candidate genes for vaccines 
and anti-microbial agents, and the whole genome comparison to understand the microbial 
evolution. The development of bioinformatics techniques has enhanced the pace of 
biological discovery by automated analysis of large number of microbial genomes.  We 
are on the verge of using all this knowledge to understand cellular mechanisms at the 
systemic level. The developed bioinformatics techniques have potential to facilitate (i) 
the discovery of causes of diseases, (ii) vaccine and rational drug design, and (iii) 
improved cost effective agents for bioremediation by pruning out the dead ends.  Despite 
the fast paced global effort, the current analysis is limited by the lack of available gene-
functionality from the wet-lab data, the lack of computer algorithms to explore vast 
amount of data with unknown functionality, limited availability of protein-protein and 
protein-DNA interactions, and the lack of knowledge of temporal and transient behavior 
of genes and pathways.   



Background 
 
In the last decade, the revolution in computer technology and memory storage capability 
has made it possible to model grand challenge problems such as large scale sequencing of 
genomes and management of large integrated databases over the Internet. This vastly 
improved computational capability integrated with large-scale miniaturization of 
biochemical techniques such as PCR, BAC, gel electrophoresis and microarray chips has 
delivered enormous amount of genomic and proteomic data to the researchers all over the 
world.  This availability of data has led to an explosion of genome and proteome analysis 
leading to many new discoveries and tools that are not possible in wet-lab experiments. 
 
The availability of genomic and proteomics data and improved bioinformatics and 
biochemical tools has raised the expectation of the humanity to be able to control the 
genetics by manipulating the existing microbes.  The advantages are enormous such as 
better diagnosis of the diseases through the use of protein biomarkers, protection against 
diseases using cost effective vaccines [56, 73] and rational drug design, improvement in 
agricultural quality and quantity, and the development of techniques that help us visualize 
and understand the detailed microbial machine at the systemic level. 
 
Since the sequencing of the first complete microbial genome of Haemophilus influenzae 
in 1995 [29], hundreds of microbial genomes have been sequenced and archived for 
public research in GenBank (ftp://ftp.ncbi.nih.gov/genbank/) through the concerted effort 
of federal health agencies such as NIH and DOE in USA, EMBL and EBI in Europe, 
DNA databank of Japan, national labs, academic universities, multiple drug development 
companies such as Celera and non-profit organizations such as TIGR, and companies 
involved in agricultural industry and bioremediation.  The sequencing of human genome 
[68] and other relevant eukaryotic genomes has raised the expectation of understanding 
host pathogen interaction for the development of better vaccines and rational drugs to 
control the gene level and pathway level aberrations that are responsible for pathogenesis.   
 
Except for the availability of bioinformatics techniques, the vast amount of data 
generated by genome sequencing projects would be unmanageable and would not be 
interpreted due to the lack of expert manpower and due to the prohibitive cost of 
sustaining such an effort. In the last decade bioinformatics has silently filled in the role of 
cost effective data analysis.  This has quickened the pace of discoveries, the drug and 
vaccine design [56] and the design of anti-microbial agents [40].  In addition 
bioinformatics analysis has enhanced our understandings about the genome structure and 
the microorganism restructuring process.   
 
Bioinformatics analysis will facilitate and quicken the analysis of systemic level behavior 
of cellular processes, and to understanding the cellular processes in order to treat and 
control microbial cells as factories.   For the last decade, bioinformatics techniques have 
been developed to identify and analyze various components of cells such as gene and 
protein function, interactions, and metabolic and regulatory pathways.  The next decade 
will belong to understanding cellular mechanism and cellular manipulation using the 
integration of bioinformatics, wet lab, and cell simulation techniques.  More recently, 



researchers have started using these techniques for the production of recombinant 
proteins [48].  It is anticipated that in this decade, the semi-automated study of cellular 
behavior at systemic level will accelerate this capability.   
 
  

Review 
 
In the last decade, Bioinformatics has been used for the microbial biotechnology in many 
ways: computationally analyzing the wet-lab data, genome sequencing, identification of 
protein coding segments [6, 24, 41, 64], and genome comparison to identify the gene 
function [4, 5, 11, 25, 35, 46, 53, 70, 71], the development of genomic and proteomics 
databases [8, 9, 16, 21, 33, 49, 62, 63], and inference of phenotypes (higher level 
functions) from genotypes (gene level functions). In order to understand higher level 
functions four major studies have been undertaken: (i) automated reconstruction and 
comparison of metabolic pathways [12, 14, 18, 38, 49, 58, 59, 65], (ii) study of protein-
protein and protein-DNA interactions to understand regulatory pathways [15, 25, 27, 28, 
30, 42, 43, 44, 47, 55, 60, 61, 66], (iii) modeling 2D and 3D structure of proteins [10, 31, 
52, 57, 67], and (iv) modeling the docking of 3D models of proteins with drugs [34].  
Understanding 3D structure of proteins has a major impact in understanding protein-
protein interactions. Protein-protein and protein-DNA interactions will provide a good 
understanding of binding sites in signaling pathways; understanding the interactions 
between proteins and chemical compounds has already facilitated the development of 
drug design.   
 
Three approaches have been used in bioinformatics: (i) use of computational search and 
alignment techniques [4, 5, 53, 70] to compare new genome against the set of known 
genes to annotate the structure and function of genes in a newly sequence genome, (ii) the 
use of mathematical modeling techniques such as data mining, statistical analysis, neural 
networks, genetic algorithm, and graph matching techniques to identify common patterns, 
features and high level functions, and  (iii) an integrated approach that integrates search 
techniques with mathematical modeling.  
 
Genome sequencing 

 
The major contribution of the bioinformatics in genome sequencing has been in the: (i) 
development of automated sequencing techniques that integrate the PCR or BAC based 
amplification, 2D gel electrophoresis and automated reading of nucleotides, (ii) joining 
the sequences of smaller fragments (contigs) together to form a complete genome 
sequence, and (iii) the prediction of promoters and protein coding regions of the genome.   
 
PCR (Polymerase Chain Reaction) or BAC (Bacterial Artificial Chromosome) based 
amplification techniques derive limited size fragments of a genome.  The available 
fragment sequences suffer from nucleotide reading errors, repeats ― very small and very 
similar fragments that fit in two or more parts of a genome, and chimera ― two different 
parts of the genome or artifacts caused by contamination that join end to end giving a 
artifactual fragment.  Generating multiple copies of the fragments, aligning the 



fragments, and using the majority voting at the same nucleotide positions solve the 
nucleotide reading error problem. Multiple experimental copies are needed to establish 
repeats and chimeras. Chimera and repeats are removed before the final assembly of the 
genome-fragments. The joining of the fragments is modeled as a mathematical weighted 
graph where nodes are fragments and the weights of edges are the number of overlapping 
nucleotides, and the fragments are joined based upon maximum overlap using a greedy 
algorithm [46, 70].  In a greedy algorithm, most nodes having maximum (or minimum) 
scores are collapsed first.  To join contigs, the fragments with larger nucleotide sequence 
overlap are joined first. 
 
Automated identification of genes 

 
After the contigs are joined, the next issue is to identify the protein coding regions or 
ORFs (open reading frames) in the genomes.  The identification of ORFs can be done in 
three ways: (1) using Hidden Markov Model (HMM) based techniques such as 
GLIMMER [24] and GeneMark [41], (2) by searching the known database of genes such 
as GenBank (ftp://ftp.ncbi.nih.gov/genbank/) to identify genes, and (3) the use of 
algorithms based on decision trees that identify start codons [64] and stop codons of the 
coding regions.  HMM based techniques develop multiple probabilistic state machines 
each capable of identifying an ORF. Each machine predicts the next nucleotide character 
using a state transition with maximum probability and matches the predicted nucleotide 
character with the current nucleotide character in the actual sequence.  Statistical training 
using known sample sequences derives the probability of state transition.  In the case of 
microbial genomes, the HMM based software such as GLIMMER has provided 95% – 
97% accuracy.   
 
Identifying gene function: searching and alignment 

 
After identifying the ORFs (open reading frames), the next step is to annotate the genes 
with proper structure and function.  The function of the gene has been identified using 
popular sequence search and pair-wise gene alignment techniques.  The four most 
popular algorithms used for functional annotation of the genes are BLAST [4] and its 
variations [5], dynamic programming technique Smith-Waterman alignment [70] and its 
variations, indexing based scheme FASTA [53] and its variations, and BLOCKS [35] that 
uses multiple sequence alignment of conserved domains to identify motifs — 
characterizing patterns of proteins. 
 
BLAST search is based upon expanding multiple probable seed points (longer than four 
nucleotides) that match (with the help of scoring matrices such as BLOSUM or PAM [46, 
70]) to identify the largest matching nonrandom segment.  Scoring matrices have positive 
match-value for the amino acids that have common biochemical or biophysical properties 
and negative match-values if the amino acids do not share biophysical or biochemical 
properties. Substitution matrices such as BLOSUM (BLOcks SUbstitution Matrix) have 
been derived by statistically comparing the frequency patterns of the amino acids 
occurring in conserved domains of protein families.  Nucleotide sequences use a 
nucleotide matrix for scoring that penalizes non-matching positions.  BLAST algorithm 
has near linear time complexity, and the current implementations are fast. However, in 



order to enhance computational efficiency, BLAST algorithm uses most probable 
combinations of nucleotide seeds to index the sequences in the database sacrificing some 
accuracy.    
 
BLAST algorithm has gone through many improvements in heuristics to improve the 
execution speed, accuracy, and the dependence on predefined scoring matrices.  Two 
major improvements are: (i) the use of two or more hits within a matching region before 
extending the high scoring segment, and the use of multiple iteration of matching to 
derive a position specific scoring matrix to be used in place of predefined biochemical 
matrix.  PSI-BLAST (Position Specific Iterative BLAST) [5] is a popular implementation 
of BLAST that uses both these improvements.  The use of two hits improves the 
execution efficiency in the segment extension, and the use of position specific matrix 
improves the search for weakly homologous sequences in evolutionary distant species.  .  
Position specific matrix is built by deriving multiple sequence alignment of the best 
matching segments and analyzing the frequency of the amino acid substitutions in the 
matching segments.  
 
Dynamic algorithms such as Smith-Waterman [70] and other indexing schemes [53] are 
more accurate for pair-wise gene alignment.  The alignment of gene-pairs using dynamic 
algorithms is based upon incremental matching by maximizing the sum of the score of 
the best alignment of the preceding subsequences and the score of matching the current 
amino-acid characters (or nucleotide characters).  The mismatches in amino-acid 
sequences are penalized using scoring matrices such as BLOSUM or PAM [46, 70]; the 
nucleotide sequences use a nucleotide matrix for scoring that penalizes non-matching 
positions.  A gap is inserted to show the insertion and deletion of nucleotides (or amino-
acids).  Gaps are not part of a substitution matrix, and are provided as parameters by 
users.  The presence of a gap also results into score penalty.  There are two major types of 
protein (or gene) alignments using dynamic programming: global and local.  In global 
alignment, the amino-acid (or nucleotide) characters are placed to maximize the overall 
score.  In contrast local alignment finds the segment with the maximum score, and the 
segments with negative scores are ignored.  For comparing amino acid sequences from 
evolutionary distant organisms, local alignment is preferred to take care of large-scale 
amino-acid variations.  Global alignment fares well when small amount of random 
mutation is involved.  Due to the pair-wise comparison of all characters in an amino acid 
sequence to identify best matching subsequence, all dynamic programming techniques 
have quadratic time complexity making them less suitable for large-scale pair-wise 
genome comparisons unless preprocessed by BLAST to remove dissimilar genes [11].   
 
Multiple sequence alignment techniques [22] compare multiple homologous genes (genes 
that have similar sequences) to derive conserved segments and to derive evolutionary 
tree.  The technique uses the integration of pair-wise alignment between two homologs 
and the notion of distance between two nucleotide sequences or between two amino-acid 
sequences.  The notion of distance can be derived either as an edit distance ― number of 
mismatches derived after pair-wise alignment of two sequences, or as the evolutionary 
distance between two microorganisms given by an evolutionary tree. The technique is 
based upon progressive pair-wise comparison to make intermediate alignments between 



nearest neighbors — homologs having shortest distance, and has been implemented as a 
greedy algorithm.   ClustalX [22] is a popular multiple sequence alignment technique that 
has been used to identify conserved portions in a gene, and to develop a new evolutionary 
tree [36]. 
 
A major source of problem in the above sequence comparison techniques is the 
assignment of user defined equal weight to indels (gaps) that undermines the importance 
of a specific amino-acid(s) or a group of amino-acid characters would have. Another 
minor problem is the presence of repeat characters in the sequences as the repeat 
characters only show the functional or structural separation of the component units within 
a gene, and can not be mixed with other amino-acid characters.   
 
Multiple sequence comparison techniques such as BLOCK [35] have been used to 
identify the conserved subsequences in very similar gene sequences, and are good to 
derive motifs.  Motifs ― a set of unique subsequences characterizing a protein ― have 
been found very useful to identify genes with the same functionality.  Motifs are derived 
by identifying the conserved subsequences of the functionally equivalent genes from 
multiple organisms after aligning the sequences.  
 
Protein domain is the basic unit of protein function and is associated with a unique 
pattern (possibly one) of folding (alpha helix, beta sheet or their variations) at the 
structure level.  The researchers have used multiple sequence alignment and HMM to 
identify the regions that are individually homologous to each other in multiple 
homologous genes.  These regions are probable domains.  Currently there are many 
domain related databases such as PRODOM [21], Pfam [16] and SMART [39] (also see 
http://elm.eu.org).  Pfam [16, 63] (and http://pfam.cgb.ki.se) is a database of multiple 
alignments of protein domains or conserved protein regions. The alignments represent 
some evolutionary conserved structure that has implications for the protein's function. 
Profile hidden Markov models (profile HMMs) built from the Pfam alignments are useful 
for automatically recognizing that a new protein belongs to an existing protein family, 
even under weak homology. Currently Pfam is derived automatically by cluster analysis 
of PRODOM database.  
 
The sequence search based techniques assume that best sequence is sufficient to annotate 
the function.  This assumption is generally true.  However, in many cases best sequence 
match fails to identify the function due to: (1) function being localized to a specific area 
in the protein such as hydrophobic region, (2) the function being dependent on the 
presence of specific pattern of amino acids, or (3) function being dependent to a specific 
3D conformational state in a multi domain protein. Sometimes mutation of few 
nucleotides alters the corresponding amino acids resulting into a different 3D 
conformation of a protein.  Another limitation of best match techniques is that they 
cannot identify all possible functions of a multi-domain protein.  A protein may have 
multiple domains, and may be multifunctional.   The problem is more complex as there is 
no direct correlation between the number of domains in a protein and the number of 
functionality [32, 37]. 
 
 



3D structure modeling and docking 

 
A protein may live under one or more low free-energy conformational states depending 
upon its interaction with other proteins.  Under a stable conformational state certain 
regions of the protein are exposed for protein-protein or protein-DNA interactions.  Since 
function is also dependent upon exposed active sites, protein function can be predicted by 
matching the 3D structure of an unknown protein with the 3D structure of a known 
protein [10, 71]. However, 3D structures from X-ray crystallography and NMR 
spectroscopy are limited. Thus there is a need for alternate mechanism to match genes. 
Generally there is close correspondence between gene sequence and 3D structure. In such 
cases sequence matching is sufficient for function annotation.  However, many times 
multiple sequences map to the same 3D structure; the lack of matching of amino acid 
sequences does not exclude same 3D structure.  In such cases matching 2D structure [57, 
66] ― patterns of alpha helix and beta sheets ― and matching 3D structures is needed to 
verify the function of the newly sequenced protein [71].   
 
There are two major approaches to model 3D structure of a protein:  (i) sequence 
homology based prediction and (ii) ab initio (or de novo) method.  The sequence 
homology approach uses sequence alignment to identify the best matching 3D structure 
for different components: conserved portion, loop portion and side chains from the 
database, and threads them to predict the overall 3D structure. The ab initio method is 
based upon energy minimization principle, and predicts the structure from the sequence 
alone [10].  Recent advances in ab initio methods integrate the biochemical and 
biophysical properties such as folding of beta sheets and the information of hydrophobic 
regions to achieve better accuracy. 
 
Docking is a term used to identify best matches between 3D structures of two molecules 
(receptor and ligand) that bind to each other by simulating interacting surfaces and free 
energy minimization at the domain level [34]. Docking problem requires modeling of 
surfaces using spheres (or grids) and identifying the best match that will fit two surfaces 
without excessive intersection.  Many times biochemical information such as binding 
sites is provided.   There are three major problems in docking: (i) for multi-domain 
proteins conformation may change during docking, (ii) docking algorithms have high 
computational overhead that makes large-scale modeling quite slow, and (iii) docking 
algorithms suffer from over prediction that results in a high number of false positives.   
 
Pair-wise genome comparison 

 
After the identification of gene-functions, a natural step is to perform pair-wise genome 
comparisons.  Pair-wise genome comparison of a genome against itself provides the 
details of paralogous genes ― duplicated genes that have similar sequence with some 
variation in function.  Pair-wise genome comparisons of a genome against other genomes 
have been used to identify a wealth of information such as ortholologous genes ― 
functionally equivalent genes diverged in two genomes due to speciation, different types 
of gene-groups ― adjacent genes that are constrained to occur in close proximity due to 
their involvement in some common higher level function, lateral gene-transfer ― gene 
transfer from a microorganism that is evolutionary distant, gene-fusion/gene-fission, 



gene-group duplication, gene-duplication, and difference analysis to identify genes 
specific to a group of genomes such as pathogens, and conserved genes [11, 13].    
 
To derive orthologs and sets of gene-groups, genomes are modeled as an ordered set of 
genes, and a pair of genomes is modeled as a bipartite graph where each node in one set 
is connected to homologous nodes ― similar genes using pair-wise gene-alignment ― in 
the second set.  Orthologs are derived as the best matching homologs. To identify 
homologous gene-group, two neighboring genes in one genome that are homologous to 
two neighboring genes in the other genome are identified, a window consisting of 
neighboring genes is created in both the genomes and slided until the next gene in the 
first genome has no homologous gene in the corresponding neighborhood window in the 
second genome.  After a non-matching gene is identified, the matching genes are 
collected as one gene-group.   
 
The detailed comparative study [11, 12, 14] has shown that: (i) a large percentage of 
these gene-groups are co-transcribed or co-regulated [12, 14], (ii) there are multiple types 
of gene-groups in a genome, (iii) the order of homologous genes in a gene-group is not 
always the same in two microorganisms, (iv) gene-groups are duplicated a lot, (v) all the 
genes in ordered gene-group are embedded in the same pathway, and unordered gene-
groups occur at the junction points of adjacent pathways [12], (vi) larger genomes share 
more genes-groups despite not being evolutionary too close, (vii) gene-duplication and 
gene-insertion/gene-deletion are common means of genome restructuring, and horizontal 
gene-transfer and gene fusion are not uncommon, and (viii) gene duplication occurs 
mainly for the genes involved in cell surface interaction, nutrient transport, and sensor 
proteins.  The rationale for duplication is a need to adapt under different external 
conditions and the use of similar mechanism for multiple sensors and transport proteins.  
The knowledge of genes specific to pathogens, genes inserted/deleted from pathways that 
are homologous to genes in the plasmids, and conserved genes very useful to identify 
candidates for vaccine development and anti-microbial agents [11, 56, 73].    
 
An interesting observation of pair-wise genome comparison studies has been that genome 
restructuring occurs by a combination of insertion/deletion, duplication, and fusion of 
domains as well as genes.  However, the domain level comparative analysis tools are in 
the stage of infancy due to computational complexity and the limited availability of 
domain level functional information about various genes from the wet-labs.   
 
Reconstructing metabolic pathways 

 
Identification of gene functionality has started a new level of bioinformatics research: 
automated reconstruction and comparison of pathways of newly sequence organisms [12, 
14, 18, 38, 49, 50, 58, 59, 65].  There have been many efforts and approaches related to 
pathway reconstruction. The three major approaches can be classified as: (i) global 
network of reactions catalyzed by enzymes, (2) network of gene-groups connected 
through the reactions catalyzed by enzymes embedded in the gene-groups, (3) global 
modeling of chemical reactions in the microbial cell. 
 



The first approach [49] uses the knowledge of known biochemical pathways and enzymes 
[9, 33], identifies the enzyme function of new genes in a newly sequenced genome using 
BLAST based search or using pair-wise genome comparison of evolutionary close 
genomes [65], and matches the product and substrate of chemical reactions catalyzed by 
enzymes to build the network of reactions [18].  This approach is quite powerful.  
However, it has many drawbacks: (i) it can not disambiguate the exact position in 
pathways for homologous genes, (ii) it does not take into account genes occurring in the 
same pathway due to gene-grouping and co-transcription, and (iii) it does not take into 
account the reaction rate. 
 
This knowledge of gene-groups has been used to develop an integrated approach for 
reconstructing metabolic pathways [12, 14, 65].  In this approach there are four steps: (i) 
identifying the enzymes and their functions in a newly sequenced genome using ortholog 
analysis, (ii) identifying the co-transcribed gene-groups ― groups of genes sharing a 
common promoter ― by analyzing the promoter region of the genes, (iii) deriving the 
gene-groups by pair-wise comparison of newly sequenced genome with multiple 
genomes, and (iv) using biochemical knowledge of existing pathways and enzymes [9, 
33] to connect network of gene-groups.  The intergenic distance ― distance between the 
stop codons of the preceding gene and the start codons of the following gene ― in co-
transcribed gene-groups (possible operons) is generally less than 75 nucleotides except 
for the leading gene.  By computationally comparing the intergenic distance most of these 
possible co-transcribed gene-groups are identified. However, the knowledge of co-
transcribed gene-groups in itself is insufficient to identify pathways since (i) co-
transcribed gene-groups may have missing genes due to conservative estimate of cutoff 
threshold, (ii) multiple adjacent co-transcribed gene-groups in the same pathway may be 
separated due to gene insertion/deletion caused by genome restructuring, and (iii) some 
of the regulating genes that regulate pathway and are in close proximity are not picked 
up.  These three problems are reduced by taking union of genes in the same gene-group 
derived from multiple pair-wise genome comparisons with the newly sequenced genome.  
The overall gene-groups are identified by merging the information derived from promoter 
based analysis and pair-wise genome comparison analysis [14].  Since gene-groups in a 
pathway are scattered across the genome, the gene-groups are networked to each other by 
matching the biochemical product and substrates in the reactions catalyzed by the 
enzymes embedded in the gene-groups using enzyme databases [9, 33].  This scheme 
improves the computational efficiency, reduces the ambiguity of homologous genes, and 
includes many regulatory genes involved with a pathway. However, this scheme does not 
model cell level behavior as the notion of reaction rate is missing. 
 
The third approach [50, 58] is based on modeling the biochemical reactions globally 
involving products, byproducts and the effect of cofactors on the reaction rate [59].  The 
model is based upon representing the network of metabolic reaction as a set of vector of 
reactions called extreme pathways that correspond to study state flux distribution in a 
metabolic network needed to synthesize target products. In this technique the whole 
network of pathways is modeled as a matrix where the rows are extreme pathways and 
columns represent specific reactions.  This technique is useful to model the overall 
metabolic behavior within a microbial cell. 



 
Current metabolic pathway techniques are limited by the available gene-functions from 
wet-laboratories.  Another issue is that the identification of metabolic pathways is not 
sufficient unless the reaction rates and the effect of stress response over the reaction rates 
are known.  While there have been recent approaches to model the reaction rate of 
metabolic pathways [59], the complete picture cannot be verified largely due to 
unavailability of gene-functions from wet-labs. 
 
Phenotype similarity and automated pathway comparisons 

 
The next level of study that the researchers have taken is to compare the similar pathways 
to understand the effect of insertion and deletion of genes in various microorganisms and 
to understand the evolution at pathway level [38].   To compare two pathways, the genes 
in the pathway are aligned as follows. Two pathways match completely if every protein 
in the first pathway (or a gene-group within a pathway) has a corresponding homologous 
gene in another pathway (or the gene-group within the pathway).  There is a gap if a 
homologous gene is deleted (inserted), and there is a mismatch if the corresponding 
homologous genes have a low similarity score.  Based upon this modeling, comparison of 
H. pylori and yeast has shown many similar pathways.  More importantly, a 
quantification mechanism has been found to compare two pathways.  
 
Derivation of regulatory mechanism and pathways 

 
The genomics and proteomics research front has progressively moved from metabolic 
pathway reconstruction to the identification of signaling pathways and promoter analysis 
to identify transcription factors for protein-DNA interactions. 
There are four major approaches to study protein-DNA interactions: (i) micro-array 
analysis of gene-expressions under different stress conditions of cells, (ii) statistical 
analysis of promoter regions of orthologous genes (functionally equivalent genes in 
different organisms identified as best homologs), (iii) global analysis of frequency 
patterns of dimers in the intergenic region – promoter region occurring between adjacent 
protein coding regions ― of a genome, and (iv) biochemical modeling at the atomic bond 
level to understand how a protein will bind to nucleotides.  Only the microarray analysis 
technique is based upon experimental data, and other three approaches are based on 
mathematical modeling and sequence analysis. 
 
Micro array analysis [69] measures the relative change in the gene-expressions for a 
stressed (or a stimulated) cell and a change in cellular expression pattern — 
differentiation, cellular cycle, tissue remodeling, sporulation etc ― in response to change 
in stimuli using a two step process: (i) mapping all the genes in the same genome etched 
on a thin glass plate and hybridizing the genes of a healthy cell with etched genes to 
derive the regular gene expression under equilibrium condition, and (ii) hybridizing the 
affected cells with etched genes to derive the gene expression of  affected cells under 
equilibrium condition.  Comparative study of gene expressions under normal condition 
and under a stimulated (or stressed) condition provides the information about the affected 
genes.  Under the assumption that auto regulation in a gene-group and any cyclic self-
regulation is absent, the interaction between protein and transcription factors is 



responsible for the observed increase or decrease of gene-expressions.  This gene-
expression data is analyzed using (i) cluster analysis [69] to identify meaningful patterns 
of gene-expressions, or (ii) data mining techniques ― a statistical technique that 
associates and correlates expressed genes and different stress conditions. 
  
The second approach of statistical promoter analysis [30, 43, 44] first identifies the 
orthologous genes from evolutionary close microorganisms [11] with active pathways 
using pair-wise genome comparisons databases (see http://www.cs.kent.edu /~arvind/ 
intellibio/orthos.html) or using the knowledge of cluster of orthologs (COGS) ― a group 
of genes in a super family archived at NCBI at NIH that has been derived by multiple 
genome comparisons.  In the next step, the upstream region between two genes of the 
orthologs are identified and compared to identify statistically conserved patterns.  Under 
the assumption that functionally equivalent genes in the very similar pathways of 
evolutionary close organisms will have similar regulation mechanism, the transcription 
factors ― regions of promoters involved in enhancing or repressing the gene-expression 
of the associated gene ― for protein-DNA interaction in the promoters of orthologous 
genes would also be very similar.  This analysis has led to discovery of many 
transcription factors.   
 
The third approach [47] has been to extract and statistically analyze the dimers in the 
intergenic region in a whole genome and plot the frequency of occurrence.  The non-
random dimers that occur more frequently are possibly involved in protein-DNA 
interactions.   
 
The biochemical approach [42] studies the protein-DNA interactions at the atomic bond 
level by considering hydrogen bonds in amino-acid base interactions, Van der Wall 
forces at contacts and water mediated bonds at different levels of proximity of two 
molecules.  Based upon the analysis of the bonds and the actual statistical results, it has 
been concluded that amino-acid base interaction plays a major role in binding, Van der 
Wall forces provide stabilization, and protein-DNA interactions are complex and biased: 
different amino-acids have preferences for certain types of bases.  For example, arginine, 

lysine, histidine and serine have preference for guanine. 
 
Currently no researcher has attempted a hybrid approach integrating biochemical 
approach with other four approaches.  An integrated approach will give a better overall 
picture. Another complex problem is that a co-regulated gene may have more than one 
transcription factor; some of these transcription factors may be individually weak and 
may be correlated with other transcription factors.  An approach to identify the weak 
transcription factor is a two step process: (i) first identify the strong related transcription 
factor using one of the previous approaches followed by (ii) a pattern search in the 
neighborhood of the strong pattern [27]. 
   
Figuring out the connectivity in protein-protein interactions to derive signaling pathway 
has been a long drawn challenge.  Recently, in last two years, two approaches have 
emerged: (1) integration of microarray analysis and entropy based modeling to derive 
gene clustering of the genes involved in the same regulatory pathway [2, 7], and (2) 



technique based upon random algorithms maximizing transition probability.  The first 
approach computes the mutual information of all the gene-pairs, and clusters the protein 
groups having more mutual information above a threshold [20]. The mutual information 
is entropy based approach, and is derived by the cumulative sum of the frequency 
patterns of occurrence of gene-pairs.  To derive entropy, gene-expressions are divided 
into discrete histograms, and the mutual information between every gene-pair is 
computed [20].   Higher mutual information means direct correlation of the genes.   It has 
been statistically found that genes that belong to the same pathway tend to group 
together. Using this cluster analysis, many signaling pathways have been identified in 
yeast-based system [15].  The analysis is a general-purpose technique, and can be used 
both in prokaryotic as well as eukaryotic systems.   
 
Even figuring out the connectivity will not be able to answer the transient temporal 
behavior of many genes involved in the regulation mechanism and auto-regulation 
mechanism of operons ― co-transcribed gene-group within a pathway involved in a 
common functionality. The modeling of transient behavior of genes cannot be captured 
by hybridization based microarray analysis since the data corresponds to equilibrium 
state of reactions. To understand the malfunctioning cells and cells of pathogenic 
bacterial strains, the overall organization and behavior including transient behavior and 
stress responses have to be studied. 
 
Microbial evolution revisited 

 
 Bioinformatics researchers have compared extensively multiple genomes to correlate and 
classify the genomes into various families and to study evolution.  It has been established 
by many researchers that overall evolution is a combination of point based mutation 
giving rise to speciation and restructuring of genomes based upon gene duplications, gene 
insertion, gene deletion, gene-fusion/fission, horizontal gene transfer, and domain level 
restructuring [11]. 
 
The evolutionary study efforts can be classified into four approaches: (1) point based 
mutation approaches used to build traditional evolutionary tree using multiple sequence 
alignment of 16SrRNA [72], (2) study of genome restructuring based upon inversion and 
transposition at the gene level [17, 45], and (3) the study based upon whole genome 
comparisons using gene identity of orthologous genes across multiple microbial genomes 
[13]. 
 
The 16SrRNA approach is rooted in the concept of point mutation of conserved genes 
due to their slow mutation rate, uses 16SrRNA database and multiple sequence alignment 
[22], and uses neighbor join algorithm [36] to build an evolutionary tree. Before 
microbial genomes were sequenced, this technique was considered quantitatively sound, 
and using 16SrRNA database three distinct domains ― bacteria, archaea, and eukaryotes 
― were identified.  Archea domain is hyperthermophilic, and its 16SrRNA is somewhat 
different from 16SrRNA of bacteria. 
 
Since 1998, after the availability of multiple microbial genomes, the researchers have 
tried to build the evolutionary tree by comparing other highly conserved genes.  The 



results have shown that the evolutionary tree varies a lot depending upon the choice of 
the conserved genes, and shows no clear distinction between archaea and bacteria.  This 
observation combined with the knowledge of genome restructuring caused by domain 
level and gene level restructuring such as horizontal gene transfer has shaken up the 
traditional evolutionary trees based upon point mutations in 16SrRNA [54].  
 
The second approach uses the genome rearrangement caused by gene shuffling as a 
measure for the genomic distance between the two organisms [17, 45].  Gene shuffling is 
caused by inversion and transposition.  This scheme is based upon the distance measure 
as the breakaway from the standard gene-order in two genomes.  Under this scheme the 
breakaway distance for each orthologous gene is added to give a cumulative score for the 
genome.  This core is used as a distance between two genomes.  Building large scale 
evolutionary tree using this approach was cost prohibitive due to pair-wise comparison 
until recently when a new development in parallel algorithms made such an evolutionary 
tree possible [45] horizontal transfer of genes do not play a role: insertion and deletion 
are not counted in the assumption, and duplications are mapped to a single gene.  It has 
been shown that duplication, insertion, deletion of gene-domains and genes are a major 
component of evolution [11].  Specially duplicated genes are involved in multiple sensor 
and transportation pathways such as ABC transporters, and cannot be ignored. 
 
The third approach [13] is based on comparing overall gene-content of functionally 
equivalent genes to identify the cumulative similarity of two genomes.  The data is 
normalized to take care of different size of genomes.  The major assumption in this 
scheme is that conserved genes are very few and do not give a consensus, and slow 
mutation rate only contributes to good multiple sequence alignment. Whole genome 
comparisons can balance out the error introduced by comparing a single conserved gene.  
The results show that the overall amino-acid composition in the microorganisms does not 
differ significantly between archaea and bacteria to give a separate domain status to 
archaea [13]. In addition, the composition of other hyperthermophilic bacteria cannot be 
distinguished from archaea. 
 
Currently no proteomic level approach has been suggested to classify the genomes.  In 
future, one such approach could be based upon comparative analysis and alignment of 
pathways of multiple genomes [38].  Under this scheme, after the pathways are aligned, a 
combination of the cumulative number insertion and deletion of genes in the pathways, 
gene duplication in the same pathway, and gene shuffling could be used to describe the 
distance between two genomes since all three factors are directly involved in the pathway 
variations.  However, exact mechanism of combining these three components of pathway 
evolution has to be studied.  
  

Conclusions 
 
Despite being a young field, bioinformatics has helped both fundamental microbiology 
and biotechnology through the development of algorithms, tools, and discoveries refining 
the abstract model of microbial cell functioning.  The major impact of the bioinformatics 
has been in automating the microbial genome sequencing, the development of integrated 



databases over the Internet, and analysis of genomes to understand gene and genome 
function.  BLAST based database search and Smith-Waterman based gene-pair alignment 
algorithm and their variations are being used extensively in comparing genes and 
genomes, and have become the first steps to derive the gene-function and the 
functionality of genomes. Significant success has been achieved in comparative genome 
analysis to: (i) identify conserved function within a genome family, (ii) identify specific 
genes in a group of genomes, and (iii) model 3D structures of proteins and docking of 
biochemical compounds and receptors.  These successes have direct impact in the 
development of anti microbial agents, vaccines, and rational drug design.  By integrating 
the knowledge of orthologs and gene-functions, gene-grouping based upon the 
integration of pair-wise genome comparison, and co-transcribed gene-groups, and graph 
based matching of substrates and products catalyzed by enzymes metabolic pathways 
reconstruction has been nearly automated.    
 
The current front has moved to the identification of regulatory pathways, identification of 
protein-protein interactions, protein-DNA interactions, protein-RNA interactions, and 
simulations of metabolic reactions to study the effect of reaction rates, and the analysis of 
experimental data available from micro-array data to study the correlation between the 
gene-expressions and stress conditions.   
 
Most of the bioinformatics techniques are critically dependent upon the knowledge 
derived from wet laboratories and the available computational algorithms and tools.   
Unfortunately, both the resources are currently limited to handle a vast amount of data to 
interpret genomics and proteomics with so many unknowns.  Since there is a limited set 
of gene-functions available from the wet lab data, there are many holes in the complete 
picture of gene functions in many newly sequenced genomes.  A lack of integration of 
bioinformatics research with biochemical knowledge also contributes to the holes in the 
complete picture.   
 
The mathematical modeling approaches are suitable for new discoveries to derive 
candidate genes for vaccine or rational drug design, metabolic pathways, metabolic 
pathway variations, and transcription factors for regulatory pathways.  However 
modeling results contain many false positives and false negatives.  These results need to 
be verified and cured by wet-lab experiments.  However, complete verification is 
becoming humanly impossible due to the unavailability of experts, resources, and 
problems in co-ordination and ever changing bioinformatics databases caused by new 
analysis and discoveries [51].    
 
With the availability of better cell visualization techniques and the abstract genomics 
models based upon current bioinformatics analysis and their integration with existing 
biochemical knowledge, the microbial wet lab experiments will become more focused in 
their goal. The progress in bioinformatics and wet-lab techniques has to remain 
interdependent and focused complementing each other for their own progress and for the 
progress of biotechnology in future.  In future more and more focus would be to apply the 
techniques in an integrated way to manipulate the microbial cells at systemic level. 
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