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Abstract  

Background 

Several supervised and unsupervised learning tools are available to classify functional 

genomics data. However, relatively less attention has been given to exploratory, 

visualisation-driven approaches. Such approaches should satisfy the following factors: 

Support for intuitive cluster visualisation, user-friendly and robust application, 

computational efficiency and generation of biologically meaningful outcomes. This 

research assesses a relaxation method for non-linear mapping that addresses these 

concerns. Its applications to gene expression and protein-protein interaction data 

analyses are investigated 

Results 

Publicly available expression data originating from leukaemia, round blue-cell 

tumours and Parkinson disease studies were analysed. The method distinguished 

relevant clusters and critical analysis areas. The system does not require assumptions 

about the inherent class structure of the data, its mapping process is controlled by only 

one parameter and the resulting transformations offer intuitive, meaningful visual 

displays. Comparisons with traditional mapping models are presented. As a way of 

promoting potential, alternative applications of the methodology presented, an 

example of exploratory data analysis of interactome networks is illustrated. Data from 

the C. elegans interactome were analysed. Results suggest that this method might 

represent an effective solution for detecting key network hubs and for clustering 

biologically meaningful groups of proteins. 

Conclusion 

A relaxation method for non-linear mapping provided the basis for visualisation-

driven analyses using different types of data. This study indicates that such a system 

may represent a user-friendly and robust approach to exploratory data analysis. It may 

allow users to gain better insights into the underlying data structure, detect potential 

outliers and assess assumptions about the cluster composition of the data.  

 

 

 



Background  

Systems biology is a data- and knowledge-driven discipline, which heavily relies on 

automated tools to support the generation and validation of hypotheses. Such tasks 

aim to provide novel and meaningful views of the functional relationships between 

biological components at different complexity levels. Over the past seven years 

hundreds of methods have been reported to analyse these data, with an emphasis on 

gene expression data classification [1, 2]. More recently, the analysis of gene 

regulatory and protein-protein networks has started to attract contributions from 

computer and physical sciences [3, 4, 5]. All of these tasks are linked by a need for 

comparing, classifying and visualising information.  

 

The ever-increasing number and sophistication of techniques may represent an 

obstacle to achieve more meaningful and rigorous data analysis and discovery tasks. 

One important problem is that users may not have the time and knowledge required to 

adequately understand the dynamics and operation of several tools. These deficiencies 

have been reflected, for example, in a lack of sound practices for assessing the 

statistical significance of results and for selecting the most suitable data sets and 

classification models [6, 7]. On the other hand, the emergence of multiple data sets 

and prediction models represents an opportunity for developing an integrative data 

mining paradigm, which is already significantly improving several predictive tasks in 

systems biology [5, 8, 9]. 

 

The problem domains mentioned above have mainly concentrated on the application 

of statistical and machine learning models for classification tasks.  Emphasis has been 

placed on the development of supervised and unsupervised classification methods [2, 

10, 11], as well as on the application of statistical tools for assessing the quality of 

classification results [12, 13]. Relatively fewer efforts have been reported on data 

visualisation techniques to support exploratory analysis.  It has been shown that 

information visualisation techniques may support predictive data mining applications, 

including data clustering [14, 15, 16]. These tasks should complement each other in 

order to achieve higher levels of knowledge integration and understanding. 

Furthermore, visualisation-based exploratory methods may support: a) the 

identification of key patterns in the data, and b) the selection of the most adequate 

models for data pre-processing and/or classification. The former task refers to the 

recognition of key groups of data, outliers and features based on computationally-

inexpensive, user-friendly and robust analyses. Its outcomes may offer guidance to 

conduct the latter task by gaining a better insight into the high-level structure and 

relationships found in the data. Such an exploratory, visualisation-based approach 



may generate useful alternative views for supporting a more intelligent and 

meaningful application of classification models. 

 

One of the traditional approaches to functional genomics information visualisation has 

been the application of clustering-based visualisation techniques. Such an approach 

mainly consists of two steps: a) the implementation of a clustering algorithm, and b) 

the display of the obtained clusters. The resulting clusters may be visualised by 

generating, for example, dendrograms [16], other hierarchical structures [17] and 

maps [14, 18, 19], which highlight or summarise similarity relationships between 

groups of data. Clustering-based visualisation has become a fundamental tool for 

analysing gene and protein expression data. Different variations of hierarchical 

clustering, Kohonen Self Organising Maps (SOM) and Self-Adaptive Neural Networks 

(SANN) are relevant examples of techniques belonging to this approach. Their 

capabilities and applications have been widely reported [2, 15, 20]. They have been 

successfully tested on several classification and decision support problems. However, 

its application to visualisation-driven exploratory analysis is limited by several 

problems: Many of these techniques are not capable of explicitly and automatically 

detecting cluster boundaries; some of them are critically sensitive to several learning 

parameters that need to be selected by the user; some of these solutions were not 

originally designed to tackle cluster-based visualisation tasks of massive collections 

of data described by several thousands attributes; and they traditionally require 

assumptions about  the inherent structure of the data, which may not be always 

possible in exploratory data analyses. Clustering visualisation has also become an 

important task for the analysis of protein-protein interaction networks. Clustering is a 

fundamental mathematical property of networks, which allows the identification of 

key connectivity patterns. Such patterns may be associated with significant functional 

behaviours and modularity [3]. Moreover, it allows researchers to identify relevant 

areas for further statistical or experimental analyses. For instance, hierarchical 

clustering of network nodes (proteins) has been applied to detect functional modules 

in S. cerevisiae [3].  Each node may be represented by a vector of connectivity values 

that reflects the node’s interactions with other network members. Graph theoretic 

approaches have also been applied to detect significant clusters of interconnected 

proteins [21].  

 

Another important data visualisation approach, which may be applied to clustering-

based analysis, comprises the application of non-linear mapping techniques. They are 

based on the idea of transforming the original, n-dimensional input space into a 

reduced, m-dimensional one, where m<n. These methods are also known as non-



linear projection methods or multidimensional scaling (MDS) methods [22]. They 

mainly aim to optimize a function, M, which reflects key aspects of the distance 

structure of the original n-dimensional space. Thus, these methods aim to preserve 

such global properties in the transformed, m-dimensional space. This principle has 

been followed by several models including those proposed by Kruskal [23, 24] and 

Sammon [25]. Principal component analysis (PCA) [26] is another relevant technique 

for reducing n-dimensional data. In this case the resulting transformation accounts for 

the greatest variation of the original space, but without preserving the distances 

observed between the points in the n-dimensional space. MDS, including Sammon’s 

mapping, applications to gene expression analysis have been reported, which 

highlight their advantages for supporting the detection of clusters [27]. PCA may not 

be directly used to visualise clusters. But it may be applied as a pre-processing 

procedure, and its resulting components may be used as inputs to clustering and 

supervised classification models [28]. 

 

Although widely investigated techniques, such as SOM and Sammon’s mapping, are 

usually useful to visualise clusters of high-dimensional data, they present several 

limitations.  For example, the SOM may be highly sensitive to its training parameters, 

which have to be defined by the user. It also requires the user to define map 

topologies, and it does not provide automated mechanisms for cluster boundary 

detection. Its limitations for data exploratory analysis, particularly in relation to data 

topology preservation, have been stressed in [29].  These and other limitations, as well 

as adapted solutions, have been discussed in [14, 15]. Sammon’s method may include 

several data overlaps when the n-dimensional input space contains noisy or weakly 

discriminatory information [30].  Depending of the size of the input data (number of 

points), the number of learning iterations and computational facilities available, 

Sammon’s mapping might be computationally expensive. Empirical analyses have 

shown that Sammon's mapping may easily get stuck at local optima [30]. Moreover, it 

has been demonstrated that this method may be sensitive to the initialisation scheme 

applied [19, 31]. 

 

This paper assesses an alternative, non-linear mapping technique which aims to 

address key limitations exhibited by traditional methods. Its application to clustering-

driven exploratory analysis of gene expression data is investigated. Furthermore, it 

provides the basis for an interactome network clustering visualisation system.  The 

following section summarises relevant results.  

 



Results  

A relaxation method for non-linear mapping was implemented to visualise relevant 

similarity relationships in data originating from gene expression and interactome data. 

Such a method was designed by Chang and Lee [32] to address key limitations 

observed in methods such as those proposed by Sammon [25] and Kruskal [23, 24]. 

These techniques are related because they aim to achieve a space reduction by 

preserving the structure of local distances in the data. However, unlike those 

traditional mapping techniques, the method assessed in this paper adapts a pair of 

points in the transformed m-dimensional space at every processing step, instead of 

adapting all points at every step. Thus, the term “relaxation” is taken from the 

relaxation method for linear equalities [32]. Chang’s and Lee’s method showed to 

outperform Sammon’s mapping both in terms of cluster detection effectiveness and 

computational efficiency. A mapping iteration is defined as a complete sequence of 

adaptation steps involving pairs of points, p(i,j), for each ji ≠ (see Methods for a 

more detailed description).  In this study a point may encode a biological sample 

described by a gene expression profile (e.g. tumour sample), or a protein described by 

its interaction profile. Figure 1 summarises the mapping mechanism of this approach. 

Analysis of gene expression data 

Analyses were performed on three publicly available expression data sets. The first 

one includes 38 samples from a known leukaemia study [33], which are represented 

by 50 expression values. The samples are categorised into two classes: Acute myeloid 

leukemia (AML) and acute lymphoblastic leukemia (ALL). This data set has been 

previously validated by several experimental and in silico methods.  It may be 

considered as an adequate example for illustrating basic capabilities of clustering 

algorithms. The second data set includes samples originating from small, round blue-

cell tumours (SRBCT) [28]. These data consisted of 63 samples categorised into four 

classes: Ewing family of tumors (EWS), rhabdomyosarcoma (RMS), Burkitt 

lymphomas (BL) and neuroblastomas (NB), which are represented by the expression 

values of 2308 genes with suspected roles in processes relevant to these tumours.  The 

third data set offers another example of gene expression analysis complexity: A data 

set consisting of a relatively small number of samples described by thousands of gene 

expression values, without incorporating pre-processing by feature selection or 

transformation procedures. This application comprises 20 samples described by 9504 

gene expression values for both normal brain and a pharmacological model of 

Parkinson's disease [34]. The reader is referred to the section of Methods for a more 

detailed description of the data and their prediction tasks. 

 



Several experiments were performed on each data set to assess possible, key 

advantages and limitations of the mapping approach introduced above. Each 

experiment requires an input file storing a matrix, A, where each entry, aij , represents 

an expression value, j, for a sample, i. The user needs to define only one learning 

parameter, the number of mapping iterations, as defined above. The output of the 

algorithm is the projection of the K samples represented in A on the reduced m-

dimensional space. Mappings were analysed for m = 2 and m = 3, which allowed the 

generation of 2D and 3D visual displays. Experiments were also conducted for several 

numbers of mapping iterations. The results facilitated a high-level understanding of 

fundamental similarity relationships between the samples, which are also consistent 

with previous research. Three important exploratory data analysis tasks were 

accomplished: The automated, unsupervised detection of clusters relevant to the 

natural class structure of the data sets; the visualisation of a coherent preservation of 

local similarity (distance) relationships between samples; and the identification of 

potential outliers.  

 

Figure 2 depicts mapping results for the leukaemia data. Panels (a) to (d) show results 

for 0, 1, 10 and 100 mapping iterations respectively.  Circles are used to represent the 

samples. Labels ‘0’ and ‘1’ refer to ALL and AML samples respectively. In the 

initialisation of the mapping process (0 iterations) the samples are randomly assigned 

to positions in the 2D space. After 10 iterations there is a clear indication of 

separation of samples belonging to different classes. With 100 iterations the ALL 

samples are clustered on the upper left side of the map, and the AML samples are 

clustered at the bottom of this map. Such clusters were also distinguished in different 

experiments. As a consequence of the random initialisation process, clusters may 

occupy different areas on the resulting maps for different experiments using the same 

number of iterations. Nevertheless, the system correctly separated samples in different 

experiments with more than 20 iterations. 

 

Figure 3 shows resulting maps for the SRBCT data with 100 mapping iterations. 

These data were pre-processed as explained in the section of Methods. EWS, RMS, 

BL and NB samples are represented by symbols ‘1’, ‘2’, ‘3’ and ‘4’ respectively. It 

suggests that the mapping process was able to identify key similarity relationships. 

Samples belonging to the same class tend to cluster together. For example, EWS 

samples are mainly located at the bottom of the map.  RMS samples are clustered on 

its left side. The sample ‘1’ (x: 0.54, y: -1.79) that was located on the left side of 

Figure 3 far from the EWS cluster (its natural class) was consistently mapped in this 

fashion by different experiments. Moreover, this sample was also displayed closer to 



RMS samples for different experiments, which might suggest a significant 

relationship between such a sample and the RMS class. Furthermore, a previous study 

using more sophisticated, supervised learning models showed that this sample may be 

difficult to correctly classify [35]. This suggests that the map shown in Figure 3 

highlights a potential outlier in the EWS class data.   

 

Additional experiments using a smaller number of SRBCT classes (only EWS, RMS, 

BL) were performed. This was mainly done to explore the possibility of obtaining 

alternative graphical views of the data. Results are in general consistent with the 

results produced with 4 classes: Samples belonging to the same class were clustered 

together. However, these experiments allow a clearer graphical differentiation of 

classes on the resulting maps. Figure 4 depicts an example obtained with 100 mapping 

iterations. For this and other experiments, it was also possible to detect the outlier that 

was observed in Figure 3. Such an EWS sample is located at the top of the map shown 

in Figure 4.  

 

SOM-based analyses using the SOM Toolbox [36, 37] were also implemented to 

establish comparisons. Figure 5 shows the unified distance matrix (U-matrix) and the 

label map (panel on the right side) for a representative result. The section of Methods 

describes the construction of these maps. The SOM was able to correctly cluster the 

SRBCT samples. However, these standard SOM visualisation techniques do not 

provide clear information on sample-to-sample similarity relationships. Moreover, 

they do not adequately facilitate a direct visualisation of the distribution of samples 

assigned to each node and their associations. Additional file 1 includes the frequency 

map, which is another standard SOM visualisation technique, for these results.  

 

Figure 6 shows results obtained by applying Sammon’s mapping. Symbols ‘1’, ‘2’ 

and ‘3’ represent classes EWS, RMS and BL respectively. This approach is able to 

detect class differences between samples. Sammon’s mapping also isolated the EWS 

sample suggested above as a possible class outlier (right side of the map). Figure 3 

(near x: 1.2, y: -1.5) suggests another sample ‘1’ as a potential outlier. However, the 

Sammon’s mapping did not clearly depict it as a potential outlier because in this case, 

unlike Figure 3, this sample is located closer to class ‘1’ samples (Figure 6, near x: 0, 

y: 0.4). 

 

3D Mapping analyses were also implemented for this SRBCT application. Additional 

files 2 and 3 compare the results originating from the relaxation non-linear and 

Sammon’s mapping methods. Both methods displayed coherent partitions of the data, 



which are consistent with the 2D mapping results presented above. Moreover, 3D 

mappings also suggest relatively strong similarities between EWS and RMS samples 

because of their proximity on the maps.  

 

Figure 7 displays a relaxation non-linear map of the Parkinson’s disease model data. 

Parkinson’s disease and Normal samples are identified by symbols ‘1’ and ‘2’ 

respectively. After 100 mapping iterations, results suggest that the method is able to 

differentiate between these classes. Parkinson’s disease samples mainly fall on the 

upper region of the map (y > 0), and 7 (out of 10) Normal samples are located below 

that area. Figure 8 shows SOM-based results, which adequately distinguish between 

classes.  It also indicates that a few Normal samples may be closer to Parkinson’s 

samples than to the main group of its own class. Figure 8 may offer a clearer 

graphical discrimination between classes. However, the SOM-based results are more 

dependent on the user’s selection of an optimum set of learning parameters (see 

Methods). Additional file 4 shows the frequency map for these results. Although the 

separation of clusters is less clear, Sammon’s mapping (Figure 9) was in general 

capable of grouping same class samples. In this figure symbols ‘1’ and ‘2’ represent 

Parkinson’s disease and Normal samples respectively. 3D maps originating from 

relaxation non-linear and Sammon’s mapping methods are depicted in Additional files 

5 and 6 respectively. Both techniques offer alternative, but consistent exploratory 

views of the cluster structure of this data set. 

Analysis of interactome networks 

As a way of promoting alternative, potential applications of the methodology 

presented, this section illustrates an example of exploratory data analysis of 

interactome networks. The approach proposed encodes a network as a graph of 

interconnected nodes. For a network consisting of N nodes, the mapping tool (from 

now on referred to as interClust) requires an N x N matrix, B, as the input data. In this 

symmetrical matrix each element, bij, represents the connection strength between 

nodes i and j in the graph. Such values may also be interpreted as weights representing 

the relevance of the interaction between a pair of proteins, e.g.: number of hits 

observed in interaction experiments or a path distance between two nodes on the 

graph (indirect interactions). Thus, each row in B may be seen as the connectivity 

profile for a node, i. That is, the connectivity profile of a node becomes this node’s 

coordinates in the n-dimensional, input space.  An accompanying tool, inBuilder, 

automatically generates such a network representation from a list of pairwise protein-

protein interactions and their respective connection strengths predefined by the user. 

The section of Methods provides more information about design and operation 



aspects of this approach. 

 

Before testing this approach on a real interactome data set, a simple example of a 

network (Figure 10) is used to illustrate its application. In this figure the length of the 

links does not reflect distances or connection strengths. All of the direct connections 

are considered equally. This network comprises 25 nodes forming 4 main clusters. In 

this case a cluster is defined as a compact group of interconnected nodes. Figure 11 

shows the results obtained by applying interClust to this network with 20 iterations. 

This map clearly distinguishes the clusters of the network. Moreover, it preserves 

local interaction relationships: i.e. if two nodes have similar connectivity profiles in 

the original space (Figure 10), then they are also close to each other in the resulting 

map. Adequate cluster visualisations were also obtained in experiments with more 

than 5 iterations. 

 

This algorithm was tested on the chromatin interactome in C. elegans. It includes 303 

proteins and 349 interactions. This data set regroups interactions of proteins involved 

in transcriptional regulation at the chromatin level. This functional module is of major 

interest because it is at the crossroads of many biological processes such as 

development, sex determination, cellular differentiation and proliferation. Its 

misregulation may have strong consequences such as tumorigenesis or developmental 

defects [38]. This data set includes both retested [39] and non-retested protein 

interactions obtained by high-throughput two-hybrid screens (unpublished data). 

Figure 12 displays resulting relaxation maps, at different regions and levels of detail, 

obtained with 100 iterations.   

 

Figure 12 indicates a separation of proteins according to their connectivity patterns. 

The network encoding scheme and the non-linear mapping algorithm applied 

distinguished highly-connected proteins (hubs) from the other components of the 

network. Hubs are located in the outer regions of the map. The farther a node is from 

the centre, the more connections it has. Figure 13 displays a partial view of a region 

enriched by hubs, which is well-separated from the main group of proteins.  The hubs 

are also relatively well-separated between them. It reflects the fact that such proteins 

share very few direct, interacting proteins in common. 

 

Additional file 7 depicts some of the hubs automatically isolated by the mapping 

algorithm, as well as a few nodes located near the centre of the map (F15A2.6, 

C34E10.5, C14B9.6). These diagrams were drawn using the InterViewer tool [40]. A 

closer examination of a group of proteins located in the outer regions of the map 



(Figures 12 and 13), for example, reveals that they are involved in key processes such 

as mitosis and meiosis. This differentiation indicates that such hubs may act as 

connection components between different biological processes. This is not a 

surprising finding, but it highlights the capacity of the algorithm to automatically 

detect some of the most biologically-relevant proteins only on the basis of their 

connectivity profiles. Seven of these hubs (Y2H9A.1, F56C9.1, F11A10.2, T12D8.7, 

Y113G7B.23, Y37D8A.9, C53A5.3), for instance, show a significant enrichment of 

phenotypes obtained by depletion of the transcripts by RNA interference (5.6-fold 

enrichment compared to genome-wide levels [41]). Moreover, four of these hubs 

(F56C9.1, F11A10.2, T12D8.7, C53A5.3) are strongly linked to embryonic lethality 

(Emb) by exhibiting a 6-fold enrichment of this property in relation to genome-wide 

levels [41]. 

 

Further analyses on the map suggest that neighboring nodes may reflect functional 

similarity relationships between the corresponding proteins. One example is 

illustrated in Figure 14 (upper area), which focuses on the region surrounding 

T20B12.2, also known as Tbp-1, a key component of the Polymerase II holoenzyme.  

In this region it is possible to identify several components of the core Polymerase II 

enzyme, as well as several related families (histones acetylases and deacetylases, 

nucleosomes positioning enzymes of the Swi/snf family) that share similar 

phenotypes. There is a strong enrichment of phenotypes such as embryonic lethality 

or problems in growth. These phenotypes (like embryonic lethality) are often 

attributed to proteins with high connectivity. Only eleven (out of twenty seven) 

proteins examined in this region exhibit wild type phenotype when they are depleted. 

This cluster shows a 5.4-fold enrichment of phenotypes, a 5.1-fold enrichment of Emb 

phenotype, and a 33.3-fold enrichment of sterile progeny phenotype in comparison to 

genome-wide levels [41]. This cluster also exhibits significant associations with 

sterility, growth defect and problems in larval development. Additional file 8 

describes the composition of this representative cluster. 

Discussion  

With regard to gene expression data, the relaxation non-linear mapping method was 

capable to support an automated, unsupervised detection of relevant clusters of 

samples. Results demonstrated that it may also be useful for the visualisation of local 

similarity relationships between samples and the identification of potential outliers. In 

general its performance was comparable to Sammon’s mapping. One cannot of course 

expect that a single method would always be able to accurately map different types of 

high-dimensional data. However, the application of both techniques is recommended 



as a reliable approach to data exploratory analysis. In this study they offered 

consistent views of the problems under analysis. SOM, as well as many other cluster 

analysis techniques, may be more suitable for application after first gaining an 

adequate insight into the structure and organisation of the data. Such a global 

understanding may be facilitated through the application of different non-linear 

mapping methods. 

 

Even though a comparison with existing network clustering methods was not 

implemented, preliminary results suggest that the approach proposed might represent 

a useful tool for interactome network visualisation and clustering. It distinguished key 

hubs and facilitated the identification of functionally relevant clusters. It showed that, 

not surprisingly, most of the hubs detected are essential for the normal development, 

behaviour and reproduction of C. elegans by exhibiting an enrichment of phenotypes 

obtained from RNA interference. This can be explained by the fact that the partners 

connected to these hubs are involved in numerous fundamental processes such as 

mitosis or meiosis. Hence, the modification of the network caused by the absence of a 

hub may have strong consequences on the topology of the network and the 

organisation of the cellular processes. Isolation of functional clusters (e.g. 

chromosome condensation and segregation of the transcriptional core process) is 

essential to investigate relationships between groups of proteins or modules. Modules 

playing a role in the same process (e.g. chromosome condensation and segregation 

during the mitosis) also tended to be interrelated in the clustering analysis. This 

underlies the fact that these modules are also functionally interconnected and are 

interdependent to stringently regulate the cellular processes. Without these 

connections the process may be misregulated and generate aberrant behaviour (i.e. 

oncogenesis if the mitosis is not well regulated). In this way, interactions that connect 

these modules are likely to be at the intersection of several biological processes and to 

regulate the correct succession of events in a cellular process (e.g. condensation of 

chromosomes before segregation). We do not claim that the tool reported can be used 

as an interaction prediction technique. The example analysed aims to illustrate the 

application of exploratory data analysis for detecting regions, which may be 

biologically meaningful and relevant for assessing the outcomes from protein-protein 

interaction prediction techniques. Such patterns may be useful for guiding future 

computational or experimental analyses to validate interaction hypotheses. 

Meaningful patterns may be associated, for example, with functionally enriched 

regions, as shown in this paper. Moreover, because of the limitations regarding 

predictive accuracy and coverage exhibited by existing single-source techniques, it is 

important to offer user-friendly tools that may help scientists to detect possible, 



spurious associations. Future research should include a more exhaustive statistical 

description of all possible hub candidates detected by the mapping process for this 

and other network examples. Statistical and functional attributes represented by this 

method should be compared with previous findings from large-scale, comprehensive 

studies. Such an investigation was not implemented here because it is outside the 

main scope of this paper. 

 

The preservation of local distance structures is an important property to interpret the 

non-linear mapping techniques studied here. This is the main goal of their data 

transformation mechanisms.  It basically means that the distance between two points, 

dmij, in the transformed m-dimensional space should be very similar to dnij (their 

distance in the original n-dimensional data) if dnij is small. However, if dnij is 

relatively large, dmij is not required to be similar to dnij. A fundamental difference 

between the relaxation non-linear and the original Sammon’s mapping method is that 

the former adapts a point-to-point distance at every processing step, instead of 

adapting all of the distances at every step. 

 

For relatively small data sets the computing times required by the Java-based 

implementation of the relaxation non-linear mapping method were comparable to 

those obtained from Matlab® implementations of SOM and Sammon’s techniques, 

i.e. in the order of seconds.  But for larger data sets, e.g. Parkinson’s disease data, the 

non-linear mapping method may run in the order of minutes. This of course depends 

on the number of mapping iterations and memory resources available. This concern 

may be addressed by implementing an optimised version of the software, perhaps 

using another programming language. Another important solution is the 

implementation of a frame method [32], which has demonstrated to improve the 

computational efficiency of the algorithm without significantly compromising its data 

structure preservation capabilities. We also intend to expand this and related research 

within an open-source data analysis and visualisation platform, such as the TIGR 

Multiexperiment Viewer [42]. 

 

An important aspect of future research is the adaptation of the relaxation non-linear 

mapping method to perform tasks beyond exploratory data analysis. A desirable 

property would be its capacity to generalise solutions for new samples in an 

incremental fashion. That is, the system should be able to add new samples to a map 

without having to re-generate it. One possible solution is the application of an 

artificial neural network to interpolate and extrapolate the mapping as illustrated by 

Mao and Jain [43]. It is also important to develop hybrid systems to combine the 



strengths and advantages demonstrated by various mapping techniques [44]. A two- 

stage approach, for example, represents a feasible solution. In this approach a data set 

may be firstly partitioned into a set of Voronoi spaces using clustering techniques 

such as k-means and SOM, and then independent mapping projections may be 

performed on each area. It has been suggested that such a hybrid model may be 

advantageous especially when dealing with massive data sets [45]. Other 

investigations will involve the assessment and comparison of related techniques [46, 

47] 

 

The mapping algorithm successfully recognised key topological properties and 

functional relationships in an interactome network based on a graph encoding scheme, 

which only considers direct interactions. Moreover, it considered all graph 

connections as equals. Nevertheless, it would be important to implement applications 

in which the network encoding values, bij, may also reflect non-direct, shared 

interactions. This may be done, for example, by defining a graph distance function 

between network nodes. Another input representation scheme may exploit 

information relevant to the significance or confidence assigned to the interactions 

based on experimental evidence.  

 

Since cellular networks are organized in a modular fashion, the identification of these 

modules is crucial to understand relationships between biological processes and offer 

a higher-order, more accessible representation of the interactomes. The clustering 

approach proposed in this paper provides a meaningful, simplified representation of 

complex interactomes. This representation may significantly facilitate exploratory 

analysis of networks for non-specialists in bioinformatics. This type of analysis is 

fundamental to detect key network components, such as hubs, which are implicated in 

many physiological disorders. Identifying these hubs and their associated clusters is 

also an important step toward the functional annotation of these proteins, as well as 

for obtaining possible explanations of their involvement in a specific disease. The 

cluster visualisation tool, interClust, may represent a useful technique to analyse other 

protein-protein interaction networks including a future human interactome.  For 

instance, it may be applied to isolate proteins linked to a human pathology and to 

associate them with a cluster or functional modules (e.g. the transcriptional core 

complex of the Polymerase II enzyme). Another important component of future 

research is the adaptation of network clustering methods to take into account spatio-

temporal aspects of interactions based on, for example, microarrays, in-situ 

hybridization or protein localization data. Non-linear mapping methods may also be 

applied to support the annotation of unknown proteins. This may be done by assigning 



a protein to a functional role that is significantly associated with the cluster under 

consideration. Furthermore, it is of course fundamental to compare this network 

clustering methodology with existing techniques. Thus, such approaches may aid 

researchers in the design of further experiments and the selection of more 

sophisticated bioinformatics analyses. 

Conclusions  

This research studied a user-friendly cluster visualisation approach that is able to 

support the generation of biologically meaningful outcomes. It represents an effective 

and robust exploratory data analysis technique. Comparisons indicate that applying 

more than one mapping approach may improve the confidence of results. Moreover, 

this may facilitate the generation of alternative, meaningful views of the data. 

Relaxation non-linear and Sammon’s mapping techniques may be more suitable for 

exploratory data analysis tasks than SOM. 

 

This study did not aim to add another algorithm to the existing collection of 

supervised and unsupervised classification tools. This methodology is not reported as 

a competing solution to clustering algorithms. Our study shows how an exploratory 

data analysis approach based on non-linear mapping can support the identification of 

relevant, biologically-meaningful patterns. We do not argue that the methodology 

proposed should necessarily offer more accurate results in relation to existing 

classification solutions. We recommend this methodology as a first step towards 

understanding complex data mining problems in functional genomics. Such an 

exploratory approach may also facilitate the selection of more sophisticated methods 

and highlight possible, critical features for successfully implementing clustering-

based studies. This research indicates that the outcomes originating from an 

exploratory, pattern visualisation method may be as meaningful as those produced by 

more sophisticated classification approaches, i.e. SOM. Moreover, the methodology 

proposed does not require the user to define multiple learning parameters. 

 

Exploratory analysis frameworks may facilitate a better insight into a data set before 

applying more sophisticated, problem-specific classification or predictive models. 

Such an insight may be achieved by helping users to recognise key features of the 

underlying structure of the data, detect potential outliers or anomalies and test 

assumptions about the cluster composition of the data.  

 

An adaptation of the relaxation non-linear mapping technique, interClust, represents a 

promising solution to aid researchers to recognise key connectivity and functional 



patterns in interactome networks. Further research is underway to continue assessing 

its application to this area.  

Methods 

Data 

The leukaemia data set includes 38 samples originating from [33]. Each sample is 

represented by 50 expression values. The samples are categorised into two classes: 

Acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). The 

original data sets and experimental protocols can be found at the Broad Institute Web 

site [48]. For each feature standardisation was applied by subtracting each value from 

the mean and dividing it by the standard deviation.  

 

The SRBCT data consisted of 63 samples categorised into four classes: Ewing family 

of tumors (EWS), rhabdomyosarcoma (RMS), Burkitt lymphomas (BL) and 

neuroblastomas (NB), which were represented by the expression values of 2308 

genes. The dimensionality of the SRBCT expression samples was reduced by 

applying PCA.  It has been shown that the application of PCA is important to 

facilitate an adequate discrimination of samples in this data set. The 10 dominant PCA 

components for each case were used as the input to the analysis techniques as 

suggested by [28], who applied a supervised learning approach to classify the samples 

after reduction by PCA.  Using the raw data (without PCA) the relaxation non-linear 

mapping was not able to adequately depict differences between the samples. The 

original data sets and experimental protocols can be found at the National Human 

Genome Research Institute Web site [49]. 

 

The Parkinson’s disease data include 20 samples described by 9504 gene expression 

values for both normal brain (10 samples) and a pharmacological model of 

Parkinson's disease [34]. M. musculus was the organism studied in this disease 

model. The data are available at The Gene Expression Omnibus [50] (accession 

number GDS22). 

 

Additional files 9 to 11 include, respectively, the leukaemia, SRBCT and Parkinson’s 

disease data analysed in this paper. 

The network of interactions was derived from the chromatin interactome in C. 

elegans. It contains 303 proteins and 349 interactions. It comprises components of the 

Polymerase II holoenzyme, histones modifying enzymes, nucleosomes positioning 

proteins and several proteins containing domains know to be essential to this process 



such as the chromodomain, the bromodomain or the SET domain. This is an early 

version of the chromatin interactome, which includes a number of retested [39] as 

well as non-retested interactions determined by a stringent high-throughput two-

hybrid screen. It also contains several interologs [38, 51]. A combination of 

experimental and bioinformatic factors (reporter genes used for the phenotypic tests, 

number of hits per interactions, a blast e-value less than 1E-10 , a PHRED score >20 

for 15% of the ISTs (interaction sequence tags) and the frame verification method) 

were used to provide optimal accuracy.  It is known that the two-hybrid approach has 

the tendency to generate more false positives than the pull-down/Mass spectrometry 

approach, for example. However, in the data set analysed the rate of false positives is 

reduced by using more reporter genes (up to 4 genes, unlike traditional large scale 

two-hybrid screens which commonly use 2 genes). Using 4 reporter genes can reduce 

the rate of false positives up to 50%. Additional file 12 contains this data set.  

Algorithms and tools 

The relaxation non-linear mapping algorithm is summarised in Figure 1 and details on 

its design are reported in [32]. The adaptation of a pair points, i and j, in the 

transformed, m-dimensional map is implemented as follows. Given two points, Pmi 

and Pmj, in the m-dimensional map, the adjusted new values, Pmnew,i and Pmnew,j , are 

calculated using:  
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where dnij and dmij represent the Euclidean distances between the points, i and j, in 

the n- and m-dimensional spaces respectively.  

 

The SOM results were obtained using the SOM Toolbox, which is a Matlab® 

implementation [36, 37]. Each training process consists of two phases. The following 

parameters were used. Initial learning rates equal to 0.5 (first phase) and 0.05 (second 

phase). Learning rates were controlled by an inverse-of-time function. The SOM 

neighborhood radius starts covering one fourth of the map size. The number of 

training epochs was equal to 10 times the number of map nodes (first phase). For the 

second phase it was equal to 4 times the number of training epochs in the first phase. 

A U-matrix depicts the distances between neighbouring map units by displaying a 

grey scale. In a label map a SOM node represents a class based on a majority voting 

strategy for the samples associated with this node. In case of a draw, the first class 

encountered is used. Empty nodes are not labeled. The Sammon’s mapping analyses 



were implemented using the SOM Toolbox with 100 mapping iterations, iteration step 

size equal to 0.2 and the Euclidian distance.  

 

For the interaction data set, the tool inBuilder was used to transform it into interClust 

input format. The cross-platform tools interClust and inBuilder are available for 

academic researchers on request from the authors.  

 

Graphical outputs for the relaxation maps were obtained with the proprietary software 

Statistica©. Additional file 7 was created using InterViewer [40], which is freely 

available at [52]. Analyses were performed on a PC with a Pentium® 4 CPU.  
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Figures 

Figure 1 - Relaxation method for non-linear mapping  

The input to the algorithm is a collection of K points described in an n-dimensional 

space. A mapping iteration refers to a complete sequence of adaptation steps 

involving pairs of points, p(i,j).  A point may encode a biological sample described by 

a gene expression profile (e.g. tumour sample), or a protein described by an 

interaction profile.  

Figure 2  - Visualisation of clusters in leukaemia data for different numbers of 

mapping iterations 

Panels (a) to (d) show results for 0, 1, 10 and 100 mapping iterations respectively.  

Circles are used to represent the samples on the maps. Labels ‘0’ and ‘1’ refer to ALL 

and AML samples respectively.  

Figure 3  - Resulting maps for the SRBCT data 

EWS, RMS, BL and NB samples are represented by symbols ‘1’, ‘2’, ‘3’ and ‘4’ 

respectively. 100 mapping iterations. 

Figure 4  - Resulting maps for the SRBCT data considering only 3 classes 

EWS, RMS and BL samples are represented by symbols ‘1’, ‘2’, ‘3’ respectively. 100 

mapping iterations. 

Figure 5  - SOM-based analyses on the SRBCT data  

U-matrix and label map (panel on the right side). U-matrix depicts the distances 

between neighbouring map units using a grey scale. In the label map a node 

represents a class based on a majority voting strategy for the samples associated with 

this node. EWS, RMS and BL samples are represented by symbols ‘1’, ‘2’, ‘3’ 

respectively. Additional file 1 shows its frequency map. 

Figure 6  - Sammon’s mapping analyses on the SRBCT data  

Symbols "1", "2" and "3" represent classes EWS, RMS and BL respectively. 

Figure 7 – Relaxation non-linear mapping of the Parkinson’s disease model 

data  

Parkinson’s disease and Normal samples are identified by symbols ‘1’ and ‘2’ 

respectively. 100 mapping iterations. 



Figure 8 – SOM of the Parkinson’s disease model data  

U-matrix and label map (panel on the right side). U-matrix depicts the distances 

between neighbouring map units using a grey scale. In the label map a node 

represents a class based on a majority voting strategy for the samples associated with 

this node. Additional file 4 shows its frequency map. 

Figure 9 – Sammon’s mapping of the Parkinson’s disease model data  

Symbols "1" and "2" represent Parkinson’s disease and Normal samples respectively. 

Figure 10 – Example of a network characterized by a number of clusters 

The length of the links does not reflect distances or connection strengths. All of the 

direct connections are considered equally.  

Figure 11 – A resulting map after applying interClust to the network shown in 

Figure 10 

Clusters are identified and local interaction relationships tend to be preserved. 20 

mapping iterations. 

Figure 12 – Relaxation map for the chromatin interactome network  

Each panel depicts different regions and levels of detail, obtained with 100 iterations.  

Figure 13 – Partial view of chromatin interactome map 

Its shows a region enriched by hubs, which is well-separated from the main group of 

proteins.   

Figure 14 – Identification of key functional components based on cluster 

visualisation  

The region surrounding protein T20B12.2 includes several components of the core 

polymerase II enzyme, as well as several related families that share similar 

phenotypes. See Additional file 8 for further descriptions. 

Additional files 

Additional file 1 – SOM frequency map for SRBCT data 

File name: AdditionalFile1.bmp 

File format: Bitmap Image 

It shows the distribution of samples, X(Y), over each node in Figure 5, where X 

represents the class label and Y stands for the number of Class X samples assigned to 

the corresponding node. 



Additional file 2 - 3D visual display originating from relaxation non-linear 

mapping - SRBCT data  

File name: AdditionalFile2.bmp 

File format: Bitmap Image 

EWS, RMS and BL samples are represented by symbols ‘1’, ‘2’, ‘3’ respectively. 

Additional file 3 – 3D Sammon’s mapping results  - SRBCT data  

File name: AdditionalFile3.bmp 

File format: Bitmap Image 

Symbols "1", "2" and "3" represent classes EWS, RMS and BL respectively. 

 

Additional file 4 – SOM frequency map for Parkinson’s disease data 

File name: AdditionalFile4.bmp 

File format: Bitmap Image 

It shows the distribution of samples, X(Y), over each node in Figure 8, where X 

represents the class label and Y stands for the number of Class X samples assigned to 

the corresponding node. 

Additional file 5 – 3D Relaxation non-linear mapping of the Parkinson’s disease 

model data  

File name: AdditionalFile5.bmp 

File format: Bitmap Image 

Parkinson’s disease and Normal samples are identified by symbols ‘1’ and ‘2’ 

respectively. 

Additional file 6 – 3D Sammon’s mapping of the Parkinson’s disease model 

data  

File name: AdditionalFile6.bmp 

File format: Bitmap Image 

Symbols "1" and "2" represent Parkinson’s disease and Normal samples respectively. 

Additional file 7 – Examples of key hubs in the interactome 

File name: AdditionalFile7.bmp 

File format: Bitmap Image 

It depicts some of the hubs automatically isolated by the mapping algorithm, as well 

as a few nodes located near the centre of the map (F15A2.6, C34E10.5, C14B9.6). 

 

 

 



Additional file 8 – Description of protein cluster obtained from Figure 14 

File name: AdditionalFile8.pdf 

File format: PDF 

 

Additional file 9 – Leukaemia data set analysed in this paper 

File name: AdditionalFile9.txt 

File format: text 

Log ratios are used to represent the expression levels. The last column shows the class 

labels.  

 

Additional file 10 – SRBCT data set analysed in this paper 

File name: AdditionalFile10.txt 

File format: text 

Log ratios are used to represent the expression levels. The last column shows the class 

labels. 

 

Additional file 11 – Parkinson’s disease data set analysed in this paper 

File name: AdditionalFile11.txt 

File format: text 

Log ratios are used to represent the expression levels. The last column shows the class 

labels. 

 

Additional file 12 – Chromatin interaction network in C. elegans 

File name: AdditionalFile12.txt 

File format: text 

The last column shows the connection strength in the graph. All connections are 

considered equally. 
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Additional files provided with this submission:

Additional file 1: AdditionalFile1.bmp : 491KB
http://www.biomedcentral.com/imedia/1086483956515781/sup1.bmp
Additional file 2: AdditionalFile2.bmp : 826KB
http://www.biomedcentral.com/imedia/1052977441515781/sup2.bmp
Additional file 3: AdditionalFile3.bmp : 34KB
http://www.biomedcentral.com/imedia/7538952495157868/sup3.bmp
Additional file 4: AdditionalFile4.bmp : 803KB
http://www.biomedcentral.com/imedia/1957636433515787/sup4.bmp
Additional file 5: AdditionalFile5.bmp : 826KB
http://www.biomedcentral.com/imedia/1350807908515793/sup5.bmp
Additional file 6: AdditionalFile6.bmp : 30KB
http://www.biomedcentral.com/imedia/8017149495157877/sup6.bmp
Additional file 7: AdditionalFile7.bmp : 1531KB
http://www.biomedcentral.com/imedia/2822441345157878/sup7.bmp
Additional file 8: AdditionalFile8.pdf : 137KB
http://www.biomedcentral.com/imedia/1555447562515787/sup8.pdf
Additional file 9: AdditionalFile9.txt : 22KB
http://www.biomedcentral.com/imedia/1001808258515787/sup9.txt
Additional file 10: AdditionalFile10.txt : 7KB
http://www.biomedcentral.com/imedia/1348435946515788/sup10.txt
Additional file 11: AdditionalFile11.txt : 1795KB
http://www.biomedcentral.com/imedia/1071025285515794/sup11.txt
Additional file 12: AdditionalFile12.txt : 6KB
http://www.biomedcentral.com/imedia/2026291355157884/sup12.txt
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