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Abstract 
_______________________________________________________________________________ 

Background: After complete sequencing of a number of genomes the focus has now 
turned to proteomics. Advanced proteomics technologies such as two-hybrid assay, 
mass spectrometry etc. are producing huge data sets of protein-protein interactions 
which can be portrayed as networks, and one of the burning issues is to find protein 
complexes in such networks. The enormous size of protein-protein interaction (PPI) 
networks warrants development of efficient computational methods for extraction of 
significant complexes. 
 
Results: This paper presents an algorithm for detection of protein complexes in large 
interaction networks. In a PPI network, a node represents a protein and an edge 
represents an interaction. The input to the algorithm is the associated matrix of an 
interaction network and the outputs are protein complexes. The complexes are 
determined by way of finding clusters, i. e. the densely connected regions in the network. 
We also show and analyze some protein complexes generated by the proposed 
algorithm from typical PPI networks of Escherichia coli and Saccharomyces cerevisiae. A 
comparison between a PPI and a random network is also performed in the context of the 
proposed algorithm. 
 
Conclusion: The proposed algorithm makes it possible to detect clusters of proteins in 
PPI networks which mostly represent molecular biological functional units. Therefore, 
protein complexes determined solely based on interaction data can help us to predict the 
functions of proteins, and they are also useful to understand and explain certain 
biological processes. 
_______________________________________________________________________________ 

 

Background 
 

Large-scale experiments are producing huge data sets of protein-protein interactions making it 

increasingly difficult to visualize and analyze the information contained in these data [1]. Being 

able to apply computational methods can alleviate a lot of problems in this regard. Therefore, a 

general trend is to represent the interactions as a network/graph and to apply suitable graph 

algorithms to extract necessary information. In the post-genomic era, one of the most important 

issues is to find protein complexes from the protein-protein interaction (PPI) networks. Protein 

complexes can help us to predict the functions of proteins [2], and they are also useful to 

understand and explain certain biological processes. The results obtained from different 

technologies for detection of high-throughput protein-protein interactions such as yeast two 

hybrid assay (Y2H) and mass spectrometry of purified complexes, say tandem affinity 

purification (TAP) [3] and high-throughput mass-spectrometric protein complex identification 

(HMS-PCI) [4] show some variations. For example, the common PPI between the two different 

mass-spectrometry approaches stands at 1,728 pairs, which correspond to 27.5% of PPI 

detected by TAP and 19.2% of PPI detected by HMS-PCI. These variations imply that many of 

the experimentally determined interactions might be false positives or the experiments are not 

complete yet. Hence, generation of protein complexes based on interaction networks of 

separate or combined data sets is helpful because the interactions that are involved in 

complexes are likely to be true.  

 

In the present study, we assume that the interaction network is an undirected simple graph. A 

graph is undirected if its edges are not directed and a graph is simple if it has no parallel edge 



or self loop. It is suggested that clusters or locally dense regions of an interaction network 

represent protein complexes. However, the term “locally dense region” implies a very flexible 

concept. Some well-known clustering methods are k-core, k-block, k-plex and n-clan clustering 

[5-7]. These strategies are based on the number of node degrees or the number/length of paths 

between two nodes within the cluster. A k-core is a maximal subgraph such that each node in 

the subgraph has at least degree k. A k-plex is a subgraph such that each node in the subgraph 

has at least degree | |N k− , where | |N is the size of the subgraph. A k-block is a maximal 

subgraph such that each pair of nodes in the subgraph is connected by k node-disjoint paths. An 

n-clan is a subgraph such that the distance between any two nodes is not greater than n for 

paths within the subgraph. Generating clusters based on fixed values of n or k is too restrictive 

and is not very helpful for detecting protein complexes in interaction networks.  

 

Already a number of approaches have been proposed for detection of protein complexes in PPI 

networks. The sequential constructive method of [1] makes use of the concepts of clustering 

coefficient and k-core graphs. Another approach described in [8] use hierarchical clustering. 

However they introduced the concept of secondary distances instead of considering the path 

length as the distance between a pair of proteins because of the fact that such distances among 

proteins are constrained and often cause distance ties. The approach of [9] starts by composing 

an initial random clustering and then iteratively moving one node from one cluster to another in 

a randomized fashion to improve the clustering’s cost. Once the clusters are generated, they are 

filtered based on cluster size, density and functional homogeneity keeping in mind the criteria 

of the known biological complexes. Another approach related to analyzing protein complexes 

is super-paramagnetic clustering [10].  

 

By intuition we realize that densely connected regions of a graph are clusters. However 

ensuring density alone is not enough. The graphs of Fig. 1(a) and (b) consists of 8 nodes each 

and both are of density 0.5 (a formal definition of density is in the next section). But Fig. 1(a) 

seems to be a single cluster while Fig. 1(b) is divided into two clusters consisting of node sets 

{a, b, c, d, e} and {f, g, h}. The proposed algorithm can tackle this problem by keeping track of 

the periphery of a cluster by monitoring cluster property (a formal definition of cluster property 

is in the next section) of a neighbor with respect to a cluster. Therefore, in short the algorithm 

detects densely connected regions of a graph that are separated by sparse regions. As a whole 

we consider that clusters are local phenomena in a network (if we imagine the presence of non-

overlapping clusters) and we find that periphery is a property of a cluster. Also density is an 

overall measure of cohesiveness of the nodes of a cluster. Therefore we used the concepts of 

density and periphery tracking in the proposed algorithm. It is likely that two nodes that belong 

to the same cluster have more common neighbors than two nodes that do not. We used this 

notion in seed selection and priority node selection in the cluster formation process.  

 

The proposed algorithm 
Terminology  
A protein-protein interaction network is considered as an undirected simple graph ( , )G N E=  

that consists of a finite set of nodes N  and a finite set of edges E . Before details of the 

algorithm, we define some terminologies used in this paper. 



Definition 1. Density 
k

d of any cluster k is the ratio of the number of edges present in the 

cluster ( | |
k

E ) and the maximum possible number of edges in the cluster ( max| |
k

E ) and is 

represented by (1). 
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Here, | |
k

N  is the size of the cluster, i. e. the number of nodes in the cluster. The density of a 

cluster is a real number ranging from 0 to 1. 

Definition 2. The cluster property 
nk

cp  of any node n with respect to any cluster k of density 

kd  and size kN is defined by (2). 

nk

nk

k k

E
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d N
=

×
                               (2) 

Here, | |
nk

E is the total number of edges between the node n and each of the nodes of cluster k. 

In Fig. 1(a), the cluster property of node f with respect to cluster {a, b, c, d, e} is 

57.0
57.0

2
≈

×
while in Fig. 1(b) the cluster property of node f with respect to cluster {a, b, c, d, 

e} is 
1

0.2
1 5

=
×

. A higher value of cluster property of a neighbor indicates that it is part of the 

cluster while a lower value indicates that it is part of the periphery. The graph of Fig. 1(b) can 

be separated into two clusters by using the concept of cluster property. 

Definition 3. The weight
uv

w  of an edge ( , )u v E∈ is the number of the common neighbors of 

the nodes u  and v . 

Definition 4. The weight 
n

w of a node n  is the sum of the weights of the edges connected to 

the node i.e. n nuw w=∑  for all u  such that ( , )n u E∈ . 

 

The flow-chart of the algorithm 
The flowchart of the algorithm is shown in Fig. 1(d) and it is divided into five major steps: 

Input & initialization, Termination check, Seed selection, Cluster formation and Output & 

update. We now discuss each step. 

Input & initialization: The input to the algorithm is an undirected simple graph and hence the 

associated matrix of the graph is read first. It is also necessary to provide a value of minimum 

density we allow for the generated clusters and a minimum value for cluster property that 

determines the nature of periphery tracking. From now on, these input values of density and 

cluster property will be referred to as din and cpin respectively. Clustering can be performed 

several times using different input values for din and cpin, which allows the suitable set of 

clusters to be chosen from among a number of options. The cluster ID, k is initialized to 1. 

Termination check: Once a cluster is generated, it is removed from the graph. The next 

cluster is then formed in the remaining graph and the process goes on until no edge is left in the 

remaining graph. For a graph with no edge, the degree of each node is zero. When such 

situation arrives, the algorithm terminates. 

Seed selection: Each cluster starts at a deterministic single node which we call the seed 

node. The highest weight node is considered as the seed node. However, if the highest node-

weight is zero, the highest degree node is considered as the seed node. The weights of nodes 



are determined by summing up the weights of incident edges and the weights of edges are 

calculated by matrix multiplication. Let M  be the associated matrix of G . Obviously the 

dimension of M  is | |N . It can be proved that 2( )
uv

M for u v≠ represents the number of paths 

of length two between the nodes u and v . A little thought reflects that this is actually the 

number of common neighbors of the nodes u  and v , i.e. the weight of the edge (if one exists) 

between u  and v . The timing complexity of matrix multiplication is of the order 3(| | )O N . 

However, we need only those elements of 2M for which 1
uv

M = . So the complexity of finding 

weights of the edges can be reduced to (| | | |)O N E× . The weight of every node is calculated 

by summing up the weights of its connecting edges and the complexity of finding the weights 

of all the nodes is of the order 2(| | )O N . The highest weight node is then determined as the 

seed. 

Cluster formation: The cluster starts as a single node and then grows gradually by adding 

nodes one by one from its neighbors. The neighbors of a cluster are the nodes connected to any 

node of the cluster but not part of the cluster. It is very important to add priority neighbors to 

the cluster first to guide the cluster formation in a proper way. The priority is determined based 

on two measures: (1) the sum of the weights of the edges between a neighbor and each of the 

nodes of the cluster and (2) the number of edges between a neighbor and each of the nodes of 

the cluster. Therefore, a double sorting is performed to sort the neighbors. The running time to 

perform this job is of the order 2(max(| | | |,| | ))
k n

O N N N× , where | |
k

N is the size of the cluster 

and | |
n

N  is the size of the neighbors. Therefore, the worst case running time for this job would 

be polynomial of the order 2| |N . 

 

Furthermore, we use some fine-tuning in the sorting process when cluster length is more than 

one but all neighbors are connected to the cluster by only single edge. In the following example 

we explain the purpose of fine-tuning. Fig. 1(c) shows a dotted-line encircled cluster, say at 

some instant of the cluster formation process, and its neighbors a, b and c. All three neighbors 

are of equal priority if sorting is performed according to the two measures mentioned above. 

However, by common sense we realize that b or c should be given more priority. The fact is 

that other than the single edge link with the cluster, b or c is also connected to the cluster by a 

link of length 2 that goes outside of the cluster. Based on this fact, we fine-tune the sorting of 

the neighbors such that b or c comes up as the highest priority neighbor. However when fine-

tuning is used to sort the neighbors, we use half the value of 
in

cp  for periphery checking and 

thus help to form some sparse clusters. The timing complexity of the fine-tuning process is of 

the order (| | | | | |)
k n

O N N N× × . Theoretically, the value of | |
k

N  or | |
n

N can approach near to 

| |N but | | | | | |
k n

N N N+ ≤ . In most practical cases | |
k

N  and | |
n

N  can be considered as 

constants. Furthermore, the fine-tuning process is performed only under special conditions and 

not every time when a node is added to a cluster. 

 

In a simple graph the number of paths of length 1 between any two nodes is at best 1. The 

number of common neighbors between any two nodes is actually equal to the number of paths 

of length 2 between them. In fact, we consider the paths of length 1 and length 2 to determine 

the priority of a neighbor with respect to a cluster. In case more than one neighbor are of equal 

highest priority, we choose any one of them as the highest priority node while sorting. The 



performance of the sorting can somewhat be improved by taking into consideration the paths of 

length 3 and 4 and so on. However, that increases the computational burden substantially. In 

the present work, we do not consider this and the proposed algorithm works well for graphs 

that have a nice cluster structure, i. e. the graphs that have densely connected regions separated 

by sparse regions.  

We check two things before adding a node to a cluster. First, we make sure that addition of the 

node to the cluster does not cause the density 
k

d of the cluster to fall below din, the input 

density. Second, we check whether the node is part of the cluster or part of the periphery. If a 

node is part of the cluster it should be connected to a reasonable number of edges within the 

cluster. For example for a cluster of density
k

d , each node on an average should be connected to 

(| | 1)
k k

d N× − edges within the cluster, where | |
k

N is the size of the cluster. We do not add a 

neighbor to a cluster if its cluster property is less than 
in

cp . We can choose the value of 

in
cp from within the range 0 1

in
cp< ≤ .  

 
Output & update: Once a cluster is generated, it is printed and graph G  is updated by 

removing the present cluster, i.e. the nodes belonging to the present cluster and the incident 

edges on these nodes are removed from G . The cluster ID, k is updated by adding 1 to it. 

 

The procedure for generating and sorting the neighbors is performed every time a node is added 

to a cluster. The total number of nodes in the network is | |N  and therefore, the worst-case 

timing complexity of the algorithm is polynomial of the order 3(| | )O N . 

 

Generation of overlapping clusters 
The algorithm represented by the flow-chart of Fig. 1(d) generates non-overlapping clusters 

because once a cluster is generated it is removed from the graph and the next cluster is 

generated in the remaining graph. However, we can also generate overlapping clusters based on 

the same clustering concept. To do so, we extend the generated non-overlapping clusters by 

adding nodes to them from among their first neighbors in the original graph (not in the 

remaining graph). In this process, the restrictions of threshold density and periphery property 

are similarly conserved. 

 

Results and discussion 
We applied the proposed algorithm to typical PPI networks of E. coli, S. cerevisiae and a 

random network. In the following subsections the results are discussed from different angles of 

consideration. 

 

Complexes in the E. coli PPI network 
The network of E. coli proteins consists of 363 interactions involving a total of 336 proteins as 

shown in Fig. 2. We have collected these interactions from DIP [11]. This is not too big a 

network and we have chosen this to demonstrate the performance of the algorithm through 

visualization. Twenty-two complexes of size ≥3 are obtained when clustering is performed 

using din=0.70 and cpin=0.50 with non-overlapping mode, which are shown connected by thick 

red edges (in other words, each complex is separated from its surroundings, by thin black 

edges) in Fig. 2. It is easy to check that the algorithm very effectively separates densely 



connected regions of the graph. It is important to note that each of the complexes contains 

mostly similar function proteins. For the sake of comparison, by applying k-core clustering, we 

find that the highest k-core of this network is a 5-core sub-graph consisting of RpoA, RpoB, 

RpoZ, RpoC, RpoD and Rsd. This is similar to complex 1 of Fig 2 i.e. the highest k-core can 

detect only one complex. The 4-core sub-graph is consisting of GroEL, RpoA, RpoB, RpoZ, 

NusA, RpoC, RpoD, DnaX, Rsd, HolA, HolB, HolD, HolC, RpoN and  FliA, which roughly 

encompasses the complex 1 and complex 4 and therefore some other algorithm is necessary to 

isolate them. The other k-core (k<4) sub-graphs further complicate the situation. So from Fig. 2 

it is evident that the proposed graph clustering is useful for discretely extracting molecular 

biological functional units in protein-protein interaction networks. 

 

Comparison of PPI and random networks 
Producing different but statistically reasonable outputs when the algorithm is applied to 

different type of networks would be supportive in favor of the performance of the algorithm. 

Hence we compare PPI and random networks in terms of number and size of complexes in 

them generated by the present algorithm. For this purpose, we use the yeast S. cerevisiae PPI 

network because unlike the E. coli network of Fig. 2, it contains a large number of protein-

protein interactions which is good enough for statistical analysis. We extract a set of 12487 

unique binary interactions involving 4648 proteins by discarding self-interactions of the PPI 

data obtained from [12]. For the sake of rational comparison, we prepared a random graph of 

the same size (consisting of the same number of nodes and edges) of the yeast PPI network. 

Erdös and Rényi first studied random networks in the late 1950s and showed that the degree 

distribution of a random network for a large | |N  approximately follows Poisson’s distribution 

( ( ) / !)kp k e kλλ−= [13, 14]. It is reported that the degree distribution of a PPI network 

follows the power law ( ( ) ~p k k γ− ) [15]. Fig. 3(a) shows the degree distribution of the S. 

cerevisiae PPI network and that of the generated random network used in this work (plotted 

using log-log scale). The degree distribution of the random network in Fig. 3(a) resembles 

Poisson’s distribution, which is consistent with Erdös-Rényi network model. The degree 

distribution of the yeast PPI network is consistent with the power law distribution. 

 

In total we generated 10 overlapping and 10 non-overlapping sets of complexes by using 

cpin=0.5 and din = 0.1, 0.2, 0.3,…,0.9 or 1.0 for both the PPI and the random networks. Out of 

these, the complexes concerning the yeast PPI will be referred to as ‘20 sets of yeast 

complexes’ in the rest of this paper. Fig 3(b) shows the relation between din and the total 

number of complexes. The random graph has more complexes than the yeast PPI in the region 

din>0.3 (Fig.3(b)). The distribution of the complexes generated using din =0.7 is shown in Fig. 

3(c). 2-protein complexes are much more in the random graph. However bigger complexes 

(size ≥ 3) are much more in the yeast PPI. It is further evident from Fig. 3(d) that most of the 

high-density complexes in the random graph are simple complexes consisting of 2 or 3 nodes 

each because the size of the biggest complex in the high-density region is very small. Even in 

the low-density region, the size of the biggest cluster is much lower compared to that of the 

yeast PPI network indicating that there is almost no cluster structure in the random graph. Also 

we calculated and found that the traditional clustering coefficient (an average measure of the 

level of interconnection among the neighbors of a node in the context of the whole network) of 

the random network (0.0012) is much lower than that of the yeast PPI network (0.1801). A 

cluster of size 2 that represents just one interaction is a trivial cluster. Hence, we counted the 



clusters of size ≥3 in both the random and the PPI networks (Fig. 3(e)). Many 3-protein 

complexes with 2 edges (density 0.66) are generated when din=0.6 is used. Such 3-protein 

complexes are far more common in random graphs. This is evident from the sudden drop after 

din=0.6, because when din=0.7 is used the aforementioned type of 3-protein complexes are not 

generated. The average size of the generated complexes is higher in low-density regions but it 

is lower in high-density regions for both the random and the yeast PPI network (Fig. 3(f)). 

However, for random graph it is higher than that of the yeast PPI network in low-density region 

but very rapidly decreases with increasing density and eventually becomes lower (~3) 

compared to that of the yeast PPI network. This trend also implies that the cluster structure is 

almost absent in the random graph. 

 

The effect of cpin on clustering 
We used cpin=0.5 for the experiments discussed in previous sections. However the variation of 

cpin can also affect the outcome of the clustering. To observe the overall effects of cpin, we 

utilized the PPI network of yeast because it is reasonably big. From Fig. 4, it is evident that if 

very high cpin is used the variation of din does not affect much. Similarly, if very high din is 

used, the variation of cpin does not have much effect. If high value is used for either cpin or din, 

the generated clusters are of high density but smaller in size and hence relatively more in 

number (Fig. 4(a)). However, many such clusters are trivial clusters consisting of only two 

proteins and therefore the number of clusters of size ≥3 are lower in sets generated using high 

values for cpin or din (Fig. 4(b)). The highest number of clusters of size ≥3 is obtained in case of 

cpin=0.5 and din=0.6. Many clusters in this case are 3-protein clusters of density 0.66. The size 

of the biggest cluster and the average size of the clusters are larger when both cpin and din are 

low and these values are low when either cpin or din is high (Fig 4(c) and (d)). For cpin<0.5 the 

variation of din has noticeable effect on clustering and this effect quickly reduces for cpin>0.5 in 

the case of the yeast PPI. In general, from the periphery tracking point of view, we consider 

that a reasonable and balanced value for cpin is 0.5 because it is in the middle of the parameter 

space. However it can be said that the larger the value of cpin the more spherical the structure of 

the generated complexes. 

 

Analysis on the predicted complexes of yeast 
Some members of the 20 sets of yeast complexes (mentioned in the section entitled 

“Comparison of PPI and Random Networks”) are common in more than one set and some are 

unique to a single set. Each of the generated complexes may have its own significance. 

However it is beyond the scope of this paper to discuss the biological significance of all these 

complexes (available at [16]). Here, we compare the predicted complexes with known 

complexes to find out how they match, evaluate the quality of the predicted complexes in a 

general sense and describe a bit detail of a group of specific complexes. 

 

Comparison with the known complexes 
We obtained a list of known complexes together with constituent protein names from [17]. The 

distribution of these complexes with respect to size is shown in Fig. 5(a), which implies that 

many of the known complexes are small in size. There are a total of 317 manually annotated 

complexes but for the present experiments we consider only 216 complexes that consists of two 

or more proteins each. We use the same scoring scheme used in [1] to determine how 



effectively a predicted complex matches a known complex. The overlap score between a 

predicted and a known complex is calculated by using (3). 

  
2

i

a b
ω =

×
            (3) 

Here, i  is the size of the intersection set of a predicted complex with a known complex, a  is 

the size of the predicted complex and b  is the size of the known complex. In Fig. 5(b), we 

show the plot of the number of matched known complexes with respect to the minimum 

overlap score for the 20 sets of yeast complexes. In [1] it is assumed that a predicted complex 

more or less matches a known complex if its overlapping score is above 0.2. In Fig. 5(b), the 

best result at overlapping score ω=0.2 (127 matches) is obtained for two sets generated using 

din=0.9 with overlapping and non-overlapping modes. Complexes produced by using high din 

are many in number but smaller in size and most of the known complexes are also of small size 

(Fig. 5(a)). Hence best matching is obtained for sets generated using high din values. However, 

the union of the matched known complexes for all the sets denoted by solid square dots are 

reasonably larger than matched known complexes of any single set and not all but many of the 

20 sets have unique contributions to it. Therefore generating complexes using different values 

of din is useful for protein complex prediction. However, concerning a single set more matching 

can be expected for a set produced using high din value. 

 

For each of the sets, the number of matched known complexes is somewhat higher than the 

number of corresponding predicted complexes. This implies that in some cases more than one 

known complexes match with a single predicted complex. Fig. 5(c) illustrates this for 

complexes having an overlapping score above 0.2. A similar trend has been reported in [1]. 

 

The outcome of the prediction greatly depends on the input network. In general it can be 

suggested that the larger the amount of interaction data the larger the amount of information 

contained in the network and the better the predictions. We applied our algorithm to MIPS 

(Munich Information center for Protein Sequences) interaction data (12487 interactions 

involving 4648 proteins). In [1] one of the data sets consists of 15143 interactions involving 

4825 proteins collected from MIPS and several other sources. Both of these data sets are not 

exactly the same and a direct comparison of the results is not possible. However, with any 

single combination of parameters, in [1] 63 MIPS complexes have been predicted with 

overlapping score above 0.2 while in the present work 127 MIPS complexes have been 

predicted with overlapping score above 0.2. So far we realize, 840 parameter combinations 

were explored to find out the best combination in [1], while we explored only 20 combinations. 

Therefore, ensuring density and simultaneously checking periphery is a suitable strategy to find 

out protein complexes from interaction networks. 

 

Overall quality of the predicted complexes 
It has been stated in [2] that 65% of 2709 interactions (involving a total of 2039 proteins) 

occurred between protein pairs with at least one common function. Similar results have been 

reported in [18]. Though the majority of the interactions are between similar function protein 

pairs, there are many instances of interactions between proteins of different functions. But, it is 

reasonable to assume that interactions that are part of a complex are between similar function 

protein pairs. In other words, it can be said that the quality of a predicted complex is good if it 

contains mostly similar function proteins. To examine the quality of the predicted complexes, 



we estimate the relative amount of interactions that are between similar function protein pairs 

out of intra-complex interactions for the 20 sets of yeast complexes using (4). 

 
i

n
i

i
n
i

AI

SFI
RA

0

0

=

==
U

U

             (4) 

Here, n  is the number of complexes of size ≥3 in a set, 
i

SFI  is the number of interactions of 

cluster i , that are between protein pairs of identical functional class, and 
i

AI is the number of 

all interactions in cluster i  of the corresponding set. We considered 15 functional classes from 

MIPS (see the names of these 15 classes in the legend of Fig. 7(a)). Fig. 6 shows the relation 

between RA and din. There is a sudden rise from din=0.6 to din=0.7. Thus the complexes having 

density 0.7 or more have high statistical significance. When complexes are generated using 

din=0.6, many of the complexes consist of three proteins and two interactions (density 0.66). On 

the other hand when din=0.7 is used, the aforementioned type of 3-protein complexes are 

excluded. Therefore, it may be concluded that many of the interactions contained in 3-protein 

complexes of density 0.66 are not interactions between similar function protein pairs. The 

functions of all the proteins involved in the network or complexes are not yet known. It is 

noticeable that the percentage of interactions between similar function protein pairs is higher in 

high-density complexes and this percentage might increase if the functions of all the proteins 

were known. Hence it can be concluded that the interactions that form high-density clusters in 

PPI networks represent functional complexes and can be considered as true interactions with 

high probability. 

 

Details of a group of predicted complexes 
In this section, we illustrate the presence of similar function proteins in complexes using 

specific examples and thus point up that the proposed algorithm can be used for prediction of 

protein functions. Fig 7(a) presents information on the complexes that are of size ≥6 of the set 

generated using din=0.7, cpin=0.50 and non-overlapping mode. The heights of the columns of a 

histogram are proportional to the number of proteins of a complex belonging to the 

corresponding functional classes. A protein may belong to more than one functional class. The 

highest column/columns of a histogram are colored as red. It is noticeable that in most of the 

cases the red columns are very near to the maximum possible height indicating that most of the 

proteins of any complex have one or more common function/functions. To further prove that 

the accumulation of proteins of a given functional group in a complex did not happen merely 

by chance, we calculated p-values of these complexes using (5), which is based on hyper 

geometric distribution. 
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Here N, C and F are the sizes of the whole network, a complex and a functional group in the 

network respectively and k is the number of proteins of the functional group in the complex. 

The smallest p-value with Bonferroni correction [19] corresponding to each complex is shown 

in Fig. 7(a) and the very low p-values indicate the statistical significance of the complexes. 



 

Given the fact that proteins of a particular complex are of similar function, if we apply the 

present algorithm to interaction networks consisting of known and unknown function proteins 

then it is likely that function-unknown proteins will form cluster with similar and function-

known proteins. This may enable us to predict the function of proteins. For example, let us 

consider the complex 19 of Fig. 7(a), whose network is shown in Fig. 7(b). Protein YDR425w 

of this complex is related to cellular transport and YIP1, YGL198w, YGL161c and GCS1 are 

related to vesicular transport. Hence, we predict the function-unknown protein YPL095c of this 

complex is a transport related protein most likely related to vesicular transport. By analyzing all 

the generated complexes in a similar way the functions of many other function-unknown 

proteins can be predicted. 

 

Conclusions 
In this paper we have described an algorithm to detect protein complexes in large interaction 

networks where a node represents a protein and an edge represents an interaction. We represent 

the interaction network as an undirected simple graph and then generate clusters in it by 

ensuring density and checking periphery of the clusters. The input to the algorithm is the 

associated matrix of an interaction network and the outputs are protein complexes whose 

densities are more or equal to a threshold value. The worst case timing complexity of the 

algorithm is polynomial of the order 3(| | )O N , where | |N is the number of nodes of the 

network. We show the performance of the algorithm by applying it to two typical PPI networks 

of E. coli and S. cerevisiae. We find that similar function proteins usually cluster together 

which represent molecular biological functional units. Therefore, it is possible to predict the 

functions of proteins by applying the algorithm to a network that contains both function known 

and function unknown proteins. A comparison of PPI and random network is also performed in 

the context of the proposed algorithm and it is observed that the organization of a PPI network 

is different from that of a random network. 

 

Methods 
The protein interaction data of E. coli was collected from [11] and that of the yeast was 

collected from [12]. Interaction data is generally represented as pairs of interacting proteins or 

in other words they are the edges of the interaction network. First we discarded self-interactions 

and generated the adjacency matrix of the entire network. The previously discussed cluster-

generating algorithm has been implemented in java programming. It is roughly a 600 line 

program and this program takes the adjacency matrix of the network and protein list as inputs 

and generates the clusters. It takes around 20 minutes on an IBM PC with 1.7 GHz processor 

and 1.5 GB RAM to generate clusters from the PPI network of the yeast, which consists of 

4648 proteins and 12487 interactions. The data of the known protein complexes was 

downloaded from [17]. All the experiments discussed under the section ‘Results and 

Discussion’ were performed by java programming. However the high precision p-values were 

calculated using Python programming. 
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Figures 
 

Figure 1 Concepts of the proposed method. (a) and (b) Two typical graphs of the same size and 

density. (c) A typical cluster and its neighbors. (d) Flow-chart of the proposed algorithm. 

 

Figure 2 A protein-protein interaction network of E. coli showing high-density complexes of 

size ≥3 detected by the proposed algorithm. Functions of the proteins of 10 largest complexes 

are as follows: complex 1, components of RNA polymerase (RpoA, RpoB, RpoC, Rsd, RpoZ 

RpoD, RpoN, FliA); complex 2, components of ATP synthetase (AtpA, AtpB, AtpE, AtpF, 

AtpG, AtpH, AtpL); complex 3, components of DNA polymerase (DnaX, HolA, HolB, HolD, 

and HolC); complex 4, proteins involved in cell division (FtsQ, FtsI, FtsW, FtsN, FtsK and 

FtsL); complex 5, components of ribonucleoside-diphosphate reductase (NrdA, NrdB, NrdE, 

NrdF); complex 6, chaperons (DnaK, GrpE, DnaI) and a heat-shock sigma factor (RpoH), 

complex 7, component of protein translocase (SecA, SecE, SecY, SecG); complex 8, DNA 

mismatch repair proteins (MutL, MutS, MutH, UvrD); complex 9, components of fumarate 

reductase (FrdA, FrdB, FrdC, FrdD); and complex 10, proteins associated with molybdopterin 

biosynthesis (MoeA, MoeB, MobB, Mog). 11 to 22 are 3-protein complexes, which mostly 

consist of similar function proteins. 

 

Figure 3 Comparison of yeast PPI network with a random network in the context of (a) degree 

distribution, (b) total number of complexes, (c) distribution of the complexes generated using 

din=0.7 with respect to size, (d) size of the biggest complex, (e) the number of complexes of 

size ≥3 and (f) the average size of the complexes of size ≥3. We generated 10 overlapping (Ov) 

and 10 non-overlapping (NO) sets of complexes by using 10 different values of din for both the 

networks. We then calculated the aforementioned quantities for each of the generated sets and 

plotted them. 

 

Figure 4 The effect of cpin on clustering. Twenty sets of non-overlapping clusters are generated 

from the yeast PPI using cpin=0.1, 0.3, 0.5, 0.7, 0.9 and for each of these values of cpin using 

din=0.1, 0.6, 0.7, 0.9. We then calculated and plotted (a) the total number of clusters, (b) the 

number of clusters of size ≥3, (c) the average size of the clusters of size ≥3, and (d) the size of 

the biggest cluster with respect to cpin. 

 



Figure 5 Comparison of predicted complexes with known complexes. (a) Distribution of 

known complexes with respect to size. (b) Number of matched known complexes with respect 

to the minimum overlapping score for all 20 sets. The triangular dots (connected by dotted line) 

show the average and the solid square dots (connected by thick solid line) show the union of 

the matched known complexes. (c) Number of matched known complexes with respect to 

number of predicted complexes for 20 sets. Each point is labeled by corresponding mode of 

clustering, i. e. non-overlapping (NO) or overlapping (Ov) and din value. 

 

Figure 6 Relative amount of interactions involving similar function protein pairs in 20 sets of 

yeast complexes against corresponding din values. 

 

Figure 7 Complexes that are of size ≥6 of the set generated using din=0.7, cpin=0.50 and non-

overlapping mode. (a) ID, size N, density d, p-value (with Bonferroni correction), a 

corresponding histogram and the names of the constituent proteins of each complex. The 

histogram of a complex shows the distribution of its member proteins with respect to 15 

functional classes: (1) Cell cycle and DNA processing, (2) Protein with binding function or 

cofactor requirement (structural or catalytic), (3) Protein fate (folding, modification, 

destination), (4) Biogenesis of cellular components, (5) Cellular transport, transport facilitation 

and transport routes, (6) Metabolism, (7) Interaction with the cellular environment, (8) 

Transcription, (9) Energy, (10) Cell rescue, defense and virulence, (11) Cell type 

differentiation, (12) Cellular communication/signal transduction mechanism, (13) Protein 

activity regulation, (14) Protein synthesis, and (15) Transposable elements, viral and plasmid 

proteins. A protein may belong to more than one functional class. The scaling of a histogram is 

according to the size of the corresponding complex. The highest column/columns of a 

histogram are colored as red. (b) The network of the complex 19 of Fig 7(a). 
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