
This Provisional PDF corresponds to the article as it appeared upon acceptance. The
fully-formatted PDF version will become available shortly after the date of publication, from the

URL listed below.

Development and implementation of an algorithm for detection of protein
complexes in large interaction networks

BMC Bioinformatics 2006, 7:207 doi:10.1186/1471-2105-7-207

Md. Altaf-Ul-Amin (amin-m@is.naist.jp)
Yoko Shinbo (y-shinbo@is.naist.jp)

Kenji Mihara (mihara-kenji@jpo.go.jp)
Ken Kurokawa (ken@is.naist.jp)

Shigehiko Kanaya (skanaya@gtc.naist.jp)

ISSN 1471-2105

Article type Methodology article

Submission date 12 November 2005

Acceptance date 14 April 2006

Publication date 14 April 2006

Article URL http://www.biomedcentral.com/1471-2105/7/207

Like all articles in BMC journals, this peer-reviewed article was published immediately upon
acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright

notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

BMC Bioinformatics

© 2006 Altaf-Ul-Amin et al., licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:amin-m@is.naist.jp
mailto:y-shinbo@is.naist.jp
mailto:mihara-kenji@jpo.go.jp
mailto:ken@is.naist.jp
mailto:skanaya@gtc.naist.jp
http://www.biomedcentral.com/1471-2105/7/207
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0

Development and implementation of an algorithm for detection
of protein complexes in large interaction networks

Md. Altaf-Ul-Amin, Yoko Shinbo, Kenji Mihara, Ken Kurokawa and Shigehiko Kanaya

*

Department of Bioinformatics and Genomics

Graduate School of Information Science
Nara Institute of Science and Technology (NAIST)

8916-5 Takayama, Ikoma, Nara 630-0101, JAPAN

* Corresponding author

Email addresses:

 MAA: amin-m@is.naist.jp

 YS: y-shinbo@is.naist.jp

 KM: mihara-kenji@jpo.go.jp

 KK: ken@is.naist.jp

 SK: skanaya@gtc.naist.jp

Abstract

Background: After complete sequencing of a number of genomes the focus has now
turned to proteomics. Advanced proteomics technologies such as two-hybrid assay,
mass spectrometry etc. are producing huge data sets of protein-protein interactions
which can be portrayed as networks, and one of the burning issues is to find protein
complexes in such networks. The enormous size of protein-protein interaction (PPI)
networks warrants development of efficient computational methods for extraction of
significant complexes.

Results: This paper presents an algorithm for detection of protein complexes in large
interaction networks. In a PPI network, a node represents a protein and an edge
represents an interaction. The input to the algorithm is the associated matrix of an
interaction network and the outputs are protein complexes. The complexes are
determined by way of finding clusters, i. e. the densely connected regions in the network.
We also show and analyze some protein complexes generated by the proposed
algorithm from typical PPI networks of Escherichia coli and Saccharomyces cerevisiae. A
comparison between a PPI and a random network is also performed in the context of the
proposed algorithm.

Conclusion: The proposed algorithm makes it possible to detect clusters of proteins in
PPI networks which mostly represent molecular biological functional units. Therefore,
protein complexes determined solely based on interaction data can help us to predict the
functions of proteins, and they are also useful to understand and explain certain
biological processes.

Background

Large-scale experiments are producing huge data sets of protein-protein interactions making it

increasingly difficult to visualize and analyze the information contained in these data [1]. Being

able to apply computational methods can alleviate a lot of problems in this regard. Therefore, a

general trend is to represent the interactions as a network/graph and to apply suitable graph

algorithms to extract necessary information. In the post-genomic era, one of the most important

issues is to find protein complexes from the protein-protein interaction (PPI) networks. Protein

complexes can help us to predict the functions of proteins [2], and they are also useful to

understand and explain certain biological processes. The results obtained from different

technologies for detection of high-throughput protein-protein interactions such as yeast two

hybrid assay (Y2H) and mass spectrometry of purified complexes, say tandem affinity

purification (TAP) [3] and high-throughput mass-spectrometric protein complex identification

(HMS-PCI) [4] show some variations. For example, the common PPI between the two different

mass-spectrometry approaches stands at 1,728 pairs, which correspond to 27.5% of PPI

detected by TAP and 19.2% of PPI detected by HMS-PCI. These variations imply that many of

the experimentally determined interactions might be false positives or the experiments are not

complete yet. Hence, generation of protein complexes based on interaction networks of

separate or combined data sets is helpful because the interactions that are involved in

complexes are likely to be true.

In the present study, we assume that the interaction network is an undirected simple graph. A

graph is undirected if its edges are not directed and a graph is simple if it has no parallel edge

or self loop. It is suggested that clusters or locally dense regions of an interaction network

represent protein complexes. However, the term “locally dense region” implies a very flexible

concept. Some well-known clustering methods are k-core, k-block, k-plex and n-clan clustering

[5-7]. These strategies are based on the number of node degrees or the number/length of paths

between two nodes within the cluster. A k-core is a maximal subgraph such that each node in

the subgraph has at least degree k. A k-plex is a subgraph such that each node in the subgraph

has at least degree | |N k− , where | |N is the size of the subgraph. A k-block is a maximal

subgraph such that each pair of nodes in the subgraph is connected by k node-disjoint paths. An

n-clan is a subgraph such that the distance between any two nodes is not greater than n for

paths within the subgraph. Generating clusters based on fixed values of n or k is too restrictive

and is not very helpful for detecting protein complexes in interaction networks.

Already a number of approaches have been proposed for detection of protein complexes in PPI

networks. The sequential constructive method of [1] makes use of the concepts of clustering

coefficient and k-core graphs. Another approach described in [8] use hierarchical clustering.

However they introduced the concept of secondary distances instead of considering the path

length as the distance between a pair of proteins because of the fact that such distances among

proteins are constrained and often cause distance ties. The approach of [9] starts by composing

an initial random clustering and then iteratively moving one node from one cluster to another in

a randomized fashion to improve the clustering’s cost. Once the clusters are generated, they are

filtered based on cluster size, density and functional homogeneity keeping in mind the criteria

of the known biological complexes. Another approach related to analyzing protein complexes

is super-paramagnetic clustering [10].

By intuition we realize that densely connected regions of a graph are clusters. However

ensuring density alone is not enough. The graphs of Fig. 1(a) and (b) consists of 8 nodes each

and both are of density 0.5 (a formal definition of density is in the next section). But Fig. 1(a)

seems to be a single cluster while Fig. 1(b) is divided into two clusters consisting of node sets

{a, b, c, d, e} and {f, g, h}. The proposed algorithm can tackle this problem by keeping track of

the periphery of a cluster by monitoring cluster property (a formal definition of cluster property

is in the next section) of a neighbor with respect to a cluster. Therefore, in short the algorithm

detects densely connected regions of a graph that are separated by sparse regions. As a whole

we consider that clusters are local phenomena in a network (if we imagine the presence of non-

overlapping clusters) and we find that periphery is a property of a cluster. Also density is an

overall measure of cohesiveness of the nodes of a cluster. Therefore we used the concepts of

density and periphery tracking in the proposed algorithm. It is likely that two nodes that belong

to the same cluster have more common neighbors than two nodes that do not. We used this

notion in seed selection and priority node selection in the cluster formation process.

The proposed algorithm
Terminology
A protein-protein interaction network is considered as an undirected simple graph (,)G N E=

that consists of a finite set of nodes N and a finite set of edges E . Before details of the

algorithm, we define some terminologies used in this paper.

Definition 1. Density
k

d of any cluster k is the ratio of the number of edges present in the

cluster (| |
k

E) and the maximum possible number of edges in the cluster (max| |
k

E) and is

represented by (1).

max

| | 2 | |

| | | | (| | 1)

k k
k

k k k

E E
d

E N N

×
= =

× −
 (1)

Here, | |
k

N is the size of the cluster, i. e. the number of nodes in the cluster. The density of a

cluster is a real number ranging from 0 to 1.

Definition 2. The cluster property
nk

cp of any node n with respect to any cluster k of density

kd and size kN is defined by (2).

nk

nk

k k

E
cp

d N
=

×
 (2)

Here, | |
nk

E is the total number of edges between the node n and each of the nodes of cluster k.

In Fig. 1(a), the cluster property of node f with respect to cluster {a, b, c, d, e} is

57.0
57.0

2
≈

×
while in Fig. 1(b) the cluster property of node f with respect to cluster {a, b, c, d,

e} is
1

0.2
1 5

=
×

. A higher value of cluster property of a neighbor indicates that it is part of the

cluster while a lower value indicates that it is part of the periphery. The graph of Fig. 1(b) can

be separated into two clusters by using the concept of cluster property.

Definition 3. The weight
uv

w of an edge (,)u v E∈ is the number of the common neighbors of

the nodes u and v .

Definition 4. The weight
n

w of a node n is the sum of the weights of the edges connected to

the node i.e. n nuw w=∑ for all u such that (,)n u E∈ .

The flow-chart of the algorithm
The flowchart of the algorithm is shown in Fig. 1(d) and it is divided into five major steps:

Input & initialization, Termination check, Seed selection, Cluster formation and Output &

update. We now discuss each step.

Input & initialization: The input to the algorithm is an undirected simple graph and hence the

associated matrix of the graph is read first. It is also necessary to provide a value of minimum

density we allow for the generated clusters and a minimum value for cluster property that

determines the nature of periphery tracking. From now on, these input values of density and

cluster property will be referred to as din and cpin respectively. Clustering can be performed

several times using different input values for din and cpin, which allows the suitable set of

clusters to be chosen from among a number of options. The cluster ID, k is initialized to 1.

Termination check: Once a cluster is generated, it is removed from the graph. The next

cluster is then formed in the remaining graph and the process goes on until no edge is left in the

remaining graph. For a graph with no edge, the degree of each node is zero. When such

situation arrives, the algorithm terminates.

Seed selection: Each cluster starts at a deterministic single node which we call the seed

node. The highest weight node is considered as the seed node. However, if the highest node-

weight is zero, the highest degree node is considered as the seed node. The weights of nodes

are determined by summing up the weights of incident edges and the weights of edges are

calculated by matrix multiplication. Let M be the associated matrix of G . Obviously the

dimension of M is | |N . It can be proved that 2()
uv

M for u v≠ represents the number of paths

of length two between the nodes u and v . A little thought reflects that this is actually the

number of common neighbors of the nodes u and v , i.e. the weight of the edge (if one exists)

between u and v . The timing complexity of matrix multiplication is of the order 3(| |)O N .

However, we need only those elements of 2M for which 1
uv

M = . So the complexity of finding

weights of the edges can be reduced to (| | | |)O N E× . The weight of every node is calculated

by summing up the weights of its connecting edges and the complexity of finding the weights

of all the nodes is of the order 2(| |)O N . The highest weight node is then determined as the

seed.

Cluster formation: The cluster starts as a single node and then grows gradually by adding

nodes one by one from its neighbors. The neighbors of a cluster are the nodes connected to any

node of the cluster but not part of the cluster. It is very important to add priority neighbors to

the cluster first to guide the cluster formation in a proper way. The priority is determined based

on two measures: (1) the sum of the weights of the edges between a neighbor and each of the

nodes of the cluster and (2) the number of edges between a neighbor and each of the nodes of

the cluster. Therefore, a double sorting is performed to sort the neighbors. The running time to

perform this job is of the order 2(max(| | | |,| |))
k n

O N N N× , where | |
k

N is the size of the cluster

and | |
n

N is the size of the neighbors. Therefore, the worst case running time for this job would

be polynomial of the order 2| |N .

Furthermore, we use some fine-tuning in the sorting process when cluster length is more than

one but all neighbors are connected to the cluster by only single edge. In the following example

we explain the purpose of fine-tuning. Fig. 1(c) shows a dotted-line encircled cluster, say at

some instant of the cluster formation process, and its neighbors a, b and c. All three neighbors

are of equal priority if sorting is performed according to the two measures mentioned above.

However, by common sense we realize that b or c should be given more priority. The fact is

that other than the single edge link with the cluster, b or c is also connected to the cluster by a

link of length 2 that goes outside of the cluster. Based on this fact, we fine-tune the sorting of

the neighbors such that b or c comes up as the highest priority neighbor. However when fine-

tuning is used to sort the neighbors, we use half the value of
in

cp for periphery checking and

thus help to form some sparse clusters. The timing complexity of the fine-tuning process is of

the order (| | | | | |)
k n

O N N N× × . Theoretically, the value of | |
k

N or | |
n

N can approach near to

| |N but | | | | | |
k n

N N N+ ≤ . In most practical cases | |
k

N and | |
n

N can be considered as

constants. Furthermore, the fine-tuning process is performed only under special conditions and

not every time when a node is added to a cluster.

In a simple graph the number of paths of length 1 between any two nodes is at best 1. The

number of common neighbors between any two nodes is actually equal to the number of paths

of length 2 between them. In fact, we consider the paths of length 1 and length 2 to determine

the priority of a neighbor with respect to a cluster. In case more than one neighbor are of equal

highest priority, we choose any one of them as the highest priority node while sorting. The

performance of the sorting can somewhat be improved by taking into consideration the paths of

length 3 and 4 and so on. However, that increases the computational burden substantially. In

the present work, we do not consider this and the proposed algorithm works well for graphs

that have a nice cluster structure, i. e. the graphs that have densely connected regions separated

by sparse regions.

We check two things before adding a node to a cluster. First, we make sure that addition of the

node to the cluster does not cause the density
k

d of the cluster to fall below din, the input

density. Second, we check whether the node is part of the cluster or part of the periphery. If a

node is part of the cluster it should be connected to a reasonable number of edges within the

cluster. For example for a cluster of density
k

d , each node on an average should be connected to

(| | 1)
k k

d N× − edges within the cluster, where | |
k

N is the size of the cluster. We do not add a

neighbor to a cluster if its cluster property is less than
in

cp . We can choose the value of

in
cp from within the range 0 1

in
cp< ≤ .

Output & update: Once a cluster is generated, it is printed and graph G is updated by

removing the present cluster, i.e. the nodes belonging to the present cluster and the incident

edges on these nodes are removed from G . The cluster ID, k is updated by adding 1 to it.

The procedure for generating and sorting the neighbors is performed every time a node is added

to a cluster. The total number of nodes in the network is | |N and therefore, the worst-case

timing complexity of the algorithm is polynomial of the order 3(| |)O N .

Generation of overlapping clusters
The algorithm represented by the flow-chart of Fig. 1(d) generates non-overlapping clusters

because once a cluster is generated it is removed from the graph and the next cluster is

generated in the remaining graph. However, we can also generate overlapping clusters based on

the same clustering concept. To do so, we extend the generated non-overlapping clusters by

adding nodes to them from among their first neighbors in the original graph (not in the

remaining graph). In this process, the restrictions of threshold density and periphery property

are similarly conserved.

Results and discussion
We applied the proposed algorithm to typical PPI networks of E. coli, S. cerevisiae and a

random network. In the following subsections the results are discussed from different angles of

consideration.

Complexes in the E. coli PPI network
The network of E. coli proteins consists of 363 interactions involving a total of 336 proteins as

shown in Fig. 2. We have collected these interactions from DIP [11]. This is not too big a

network and we have chosen this to demonstrate the performance of the algorithm through

visualization. Twenty-two complexes of size ≥3 are obtained when clustering is performed

using din=0.70 and cpin=0.50 with non-overlapping mode, which are shown connected by thick

red edges (in other words, each complex is separated from its surroundings, by thin black

edges) in Fig. 2. It is easy to check that the algorithm very effectively separates densely

connected regions of the graph. It is important to note that each of the complexes contains

mostly similar function proteins. For the sake of comparison, by applying k-core clustering, we

find that the highest k-core of this network is a 5-core sub-graph consisting of RpoA, RpoB,

RpoZ, RpoC, RpoD and Rsd. This is similar to complex 1 of Fig 2 i.e. the highest k-core can

detect only one complex. The 4-core sub-graph is consisting of GroEL, RpoA, RpoB, RpoZ,

NusA, RpoC, RpoD, DnaX, Rsd, HolA, HolB, HolD, HolC, RpoN and FliA, which roughly

encompasses the complex 1 and complex 4 and therefore some other algorithm is necessary to

isolate them. The other k-core (k<4) sub-graphs further complicate the situation. So from Fig. 2

it is evident that the proposed graph clustering is useful for discretely extracting molecular

biological functional units in protein-protein interaction networks.

Comparison of PPI and random networks
Producing different but statistically reasonable outputs when the algorithm is applied to

different type of networks would be supportive in favor of the performance of the algorithm.

Hence we compare PPI and random networks in terms of number and size of complexes in

them generated by the present algorithm. For this purpose, we use the yeast S. cerevisiae PPI

network because unlike the E. coli network of Fig. 2, it contains a large number of protein-

protein interactions which is good enough for statistical analysis. We extract a set of 12487

unique binary interactions involving 4648 proteins by discarding self-interactions of the PPI

data obtained from [12]. For the sake of rational comparison, we prepared a random graph of

the same size (consisting of the same number of nodes and edges) of the yeast PPI network.

Erdös and Rényi first studied random networks in the late 1950s and showed that the degree

distribution of a random network for a large | |N approximately follows Poisson’s distribution

(() / !)kp k e kλλ−= [13, 14]. It is reported that the degree distribution of a PPI network

follows the power law (() ~p k k γ−) [15]. Fig. 3(a) shows the degree distribution of the S.

cerevisiae PPI network and that of the generated random network used in this work (plotted

using log-log scale). The degree distribution of the random network in Fig. 3(a) resembles

Poisson’s distribution, which is consistent with Erdös-Rényi network model. The degree

distribution of the yeast PPI network is consistent with the power law distribution.

In total we generated 10 overlapping and 10 non-overlapping sets of complexes by using

cpin=0.5 and din = 0.1, 0.2, 0.3,…,0.9 or 1.0 for both the PPI and the random networks. Out of

these, the complexes concerning the yeast PPI will be referred to as ‘20 sets of yeast

complexes’ in the rest of this paper. Fig 3(b) shows the relation between din and the total

number of complexes. The random graph has more complexes than the yeast PPI in the region

din>0.3 (Fig.3(b)). The distribution of the complexes generated using din =0.7 is shown in Fig.

3(c). 2-protein complexes are much more in the random graph. However bigger complexes

(size ≥ 3) are much more in the yeast PPI. It is further evident from Fig. 3(d) that most of the

high-density complexes in the random graph are simple complexes consisting of 2 or 3 nodes

each because the size of the biggest complex in the high-density region is very small. Even in

the low-density region, the size of the biggest cluster is much lower compared to that of the

yeast PPI network indicating that there is almost no cluster structure in the random graph. Also

we calculated and found that the traditional clustering coefficient (an average measure of the

level of interconnection among the neighbors of a node in the context of the whole network) of

the random network (0.0012) is much lower than that of the yeast PPI network (0.1801). A

cluster of size 2 that represents just one interaction is a trivial cluster. Hence, we counted the

clusters of size ≥3 in both the random and the PPI networks (Fig. 3(e)). Many 3-protein

complexes with 2 edges (density 0.66) are generated when din=0.6 is used. Such 3-protein

complexes are far more common in random graphs. This is evident from the sudden drop after

din=0.6, because when din=0.7 is used the aforementioned type of 3-protein complexes are not

generated. The average size of the generated complexes is higher in low-density regions but it

is lower in high-density regions for both the random and the yeast PPI network (Fig. 3(f)).

However, for random graph it is higher than that of the yeast PPI network in low-density region

but very rapidly decreases with increasing density and eventually becomes lower (~3)

compared to that of the yeast PPI network. This trend also implies that the cluster structure is

almost absent in the random graph.

The effect of cpin on clustering
We used cpin=0.5 for the experiments discussed in previous sections. However the variation of

cpin can also affect the outcome of the clustering. To observe the overall effects of cpin, we

utilized the PPI network of yeast because it is reasonably big. From Fig. 4, it is evident that if

very high cpin is used the variation of din does not affect much. Similarly, if very high din is

used, the variation of cpin does not have much effect. If high value is used for either cpin or din,

the generated clusters are of high density but smaller in size and hence relatively more in

number (Fig. 4(a)). However, many such clusters are trivial clusters consisting of only two

proteins and therefore the number of clusters of size ≥3 are lower in sets generated using high

values for cpin or din (Fig. 4(b)). The highest number of clusters of size ≥3 is obtained in case of

cpin=0.5 and din=0.6. Many clusters in this case are 3-protein clusters of density 0.66. The size

of the biggest cluster and the average size of the clusters are larger when both cpin and din are

low and these values are low when either cpin or din is high (Fig 4(c) and (d)). For cpin<0.5 the

variation of din has noticeable effect on clustering and this effect quickly reduces for cpin>0.5 in

the case of the yeast PPI. In general, from the periphery tracking point of view, we consider

that a reasonable and balanced value for cpin is 0.5 because it is in the middle of the parameter

space. However it can be said that the larger the value of cpin the more spherical the structure of

the generated complexes.

Analysis on the predicted complexes of yeast
Some members of the 20 sets of yeast complexes (mentioned in the section entitled

“Comparison of PPI and Random Networks”) are common in more than one set and some are

unique to a single set. Each of the generated complexes may have its own significance.

However it is beyond the scope of this paper to discuss the biological significance of all these

complexes (available at [16]). Here, we compare the predicted complexes with known

complexes to find out how they match, evaluate the quality of the predicted complexes in a

general sense and describe a bit detail of a group of specific complexes.

Comparison with the known complexes
We obtained a list of known complexes together with constituent protein names from [17]. The

distribution of these complexes with respect to size is shown in Fig. 5(a), which implies that

many of the known complexes are small in size. There are a total of 317 manually annotated

complexes but for the present experiments we consider only 216 complexes that consists of two

or more proteins each. We use the same scoring scheme used in [1] to determine how

effectively a predicted complex matches a known complex. The overlap score between a

predicted and a known complex is calculated by using (3).

2

i

a b
ω =

×
 (3)

Here, i is the size of the intersection set of a predicted complex with a known complex, a is

the size of the predicted complex and b is the size of the known complex. In Fig. 5(b), we

show the plot of the number of matched known complexes with respect to the minimum

overlap score for the 20 sets of yeast complexes. In [1] it is assumed that a predicted complex

more or less matches a known complex if its overlapping score is above 0.2. In Fig. 5(b), the

best result at overlapping score ω=0.2 (127 matches) is obtained for two sets generated using

din=0.9 with overlapping and non-overlapping modes. Complexes produced by using high din

are many in number but smaller in size and most of the known complexes are also of small size

(Fig. 5(a)). Hence best matching is obtained for sets generated using high din values. However,

the union of the matched known complexes for all the sets denoted by solid square dots are

reasonably larger than matched known complexes of any single set and not all but many of the

20 sets have unique contributions to it. Therefore generating complexes using different values

of din is useful for protein complex prediction. However, concerning a single set more matching

can be expected for a set produced using high din value.

For each of the sets, the number of matched known complexes is somewhat higher than the

number of corresponding predicted complexes. This implies that in some cases more than one

known complexes match with a single predicted complex. Fig. 5(c) illustrates this for

complexes having an overlapping score above 0.2. A similar trend has been reported in [1].

The outcome of the prediction greatly depends on the input network. In general it can be

suggested that the larger the amount of interaction data the larger the amount of information

contained in the network and the better the predictions. We applied our algorithm to MIPS

(Munich Information center for Protein Sequences) interaction data (12487 interactions

involving 4648 proteins). In [1] one of the data sets consists of 15143 interactions involving

4825 proteins collected from MIPS and several other sources. Both of these data sets are not

exactly the same and a direct comparison of the results is not possible. However, with any

single combination of parameters, in [1] 63 MIPS complexes have been predicted with

overlapping score above 0.2 while in the present work 127 MIPS complexes have been

predicted with overlapping score above 0.2. So far we realize, 840 parameter combinations

were explored to find out the best combination in [1], while we explored only 20 combinations.

Therefore, ensuring density and simultaneously checking periphery is a suitable strategy to find

out protein complexes from interaction networks.

Overall quality of the predicted complexes
It has been stated in [2] that 65% of 2709 interactions (involving a total of 2039 proteins)

occurred between protein pairs with at least one common function. Similar results have been

reported in [18]. Though the majority of the interactions are between similar function protein

pairs, there are many instances of interactions between proteins of different functions. But, it is

reasonable to assume that interactions that are part of a complex are between similar function

protein pairs. In other words, it can be said that the quality of a predicted complex is good if it

contains mostly similar function proteins. To examine the quality of the predicted complexes,

we estimate the relative amount of interactions that are between similar function protein pairs

out of intra-complex interactions for the 20 sets of yeast complexes using (4).

i

n
i

i
n
i

AI

SFI
RA

0

0

=

==
U

U

 (4)

Here, n is the number of complexes of size ≥3 in a set,
i

SFI is the number of interactions of

cluster i , that are between protein pairs of identical functional class, and
i

AI is the number of

all interactions in cluster i of the corresponding set. We considered 15 functional classes from

MIPS (see the names of these 15 classes in the legend of Fig. 7(a)). Fig. 6 shows the relation

between RA and din. There is a sudden rise from din=0.6 to din=0.7. Thus the complexes having

density 0.7 or more have high statistical significance. When complexes are generated using

din=0.6, many of the complexes consist of three proteins and two interactions (density 0.66). On

the other hand when din=0.7 is used, the aforementioned type of 3-protein complexes are

excluded. Therefore, it may be concluded that many of the interactions contained in 3-protein

complexes of density 0.66 are not interactions between similar function protein pairs. The

functions of all the proteins involved in the network or complexes are not yet known. It is

noticeable that the percentage of interactions between similar function protein pairs is higher in

high-density complexes and this percentage might increase if the functions of all the proteins

were known. Hence it can be concluded that the interactions that form high-density clusters in

PPI networks represent functional complexes and can be considered as true interactions with

high probability.

Details of a group of predicted complexes
In this section, we illustrate the presence of similar function proteins in complexes using

specific examples and thus point up that the proposed algorithm can be used for prediction of

protein functions. Fig 7(a) presents information on the complexes that are of size ≥6 of the set

generated using din=0.7, cpin=0.50 and non-overlapping mode. The heights of the columns of a

histogram are proportional to the number of proteins of a complex belonging to the

corresponding functional classes. A protein may belong to more than one functional class. The

highest column/columns of a histogram are colored as red. It is noticeable that in most of the

cases the red columns are very near to the maximum possible height indicating that most of the

proteins of any complex have one or more common function/functions. To further prove that

the accumulation of proteins of a given functional group in a complex did not happen merely

by chance, we calculated p-values of these complexes using (5), which is based on hyper

geometric distribution.

∑
−

=

−=

−

−

1

0

1
k

i

C

N

iC

FN

i

F

P
 (5)

Here N, C and F are the sizes of the whole network, a complex and a functional group in the

network respectively and k is the number of proteins of the functional group in the complex.

The smallest p-value with Bonferroni correction [19] corresponding to each complex is shown

in Fig. 7(a) and the very low p-values indicate the statistical significance of the complexes.

Given the fact that proteins of a particular complex are of similar function, if we apply the

present algorithm to interaction networks consisting of known and unknown function proteins

then it is likely that function-unknown proteins will form cluster with similar and function-

known proteins. This may enable us to predict the function of proteins. For example, let us

consider the complex 19 of Fig. 7(a), whose network is shown in Fig. 7(b). Protein YDR425w

of this complex is related to cellular transport and YIP1, YGL198w, YGL161c and GCS1 are

related to vesicular transport. Hence, we predict the function-unknown protein YPL095c of this

complex is a transport related protein most likely related to vesicular transport. By analyzing all

the generated complexes in a similar way the functions of many other function-unknown

proteins can be predicted.

Conclusions
In this paper we have described an algorithm to detect protein complexes in large interaction

networks where a node represents a protein and an edge represents an interaction. We represent

the interaction network as an undirected simple graph and then generate clusters in it by

ensuring density and checking periphery of the clusters. The input to the algorithm is the

associated matrix of an interaction network and the outputs are protein complexes whose

densities are more or equal to a threshold value. The worst case timing complexity of the

algorithm is polynomial of the order 3(| |)O N , where | |N is the number of nodes of the

network. We show the performance of the algorithm by applying it to two typical PPI networks

of E. coli and S. cerevisiae. We find that similar function proteins usually cluster together

which represent molecular biological functional units. Therefore, it is possible to predict the

functions of proteins by applying the algorithm to a network that contains both function known

and function unknown proteins. A comparison of PPI and random network is also performed in

the context of the proposed algorithm and it is observed that the organization of a PPI network

is different from that of a random network.

Methods
The protein interaction data of E. coli was collected from [11] and that of the yeast was

collected from [12]. Interaction data is generally represented as pairs of interacting proteins or

in other words they are the edges of the interaction network. First we discarded self-interactions

and generated the adjacency matrix of the entire network. The previously discussed cluster-

generating algorithm has been implemented in java programming. It is roughly a 600 line

program and this program takes the adjacency matrix of the network and protein list as inputs

and generates the clusters. It takes around 20 minutes on an IBM PC with 1.7 GHz processor

and 1.5 GB RAM to generate clusters from the PPI network of the yeast, which consists of

4648 proteins and 12487 interactions. The data of the known protein complexes was

downloaded from [17]. All the experiments discussed under the section ‘Results and

Discussion’ were performed by java programming. However the high precision p-values were

calculated using Python programming.

Authors’ contribution
Md. Altaf-Ul-Amin and Shigehiko Kanaya developed and implemented the clustering

algorithm. Yoko Shinbo, Kenji Mihara and Ken Kurokawa designed and performed the

experiments. Shigehiko Kanaya supervised the work as a whole.

Acknowledgements
We are grateful to Dr. Ulrich Güeldener for his discussions on the format and other information on

protein-protein interaction and protein complex data of MIPS.

References
1. Bader GD and Hogue CWV, An automated method for finding molecular complexes in

large protein interaction networks. BMC Bioinformatics 2003, 4:2

2. Schwikowski B, Utez P and Fields S A Network of protein-protein interactions in Yeast.

Nature Biotechnology 2000, 18: 1257-1261.

3. Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM,

Michon AM , Cruciat CM, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H,

Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B,

Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G,

Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G and Superti-Furga G

Functional organization of the yeast proteome by systematic analysis of protein

complexes. Nature 2002, 415: 141-147

4. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett

K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M,

Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K,

Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH,

Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen

J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW,

Figeys D and Tyers M Systematic identification of protein complexes in Saccharomyces

cerevisiae by mass spectrometry. Nature 2002, 415:180-183

5. Seidman SB Network structure and minimum degree. Social Networks 1983, 5:269-287

6. Edachery J, Sen A, and Brandenburg FJ Graph clustering using distance-k cliques.

Graph Drawing 1999, pp. 98-106

7. Matula DW k–Components, clusters and slicings in graphs. SIAM Journal on Applied

Mathematics1972, 22: 459–480

8. Arnau V, Mars S and Marin I Iterative Cluster Analysis of Protein Interaction Data.

Bioinformatics 2005, 21:364-378

9. King AD, Pržuli N and Jurisica I Protein Complex Prediction via cost-based clustering.

Bioinformatics 2004, 20:3013-3020

10. Spirin V and Mirny LA Protein complexes and Functional modules in molecular

networks. Proc. Natl. Acad. Sci. USA 2003, 100:12123-12128

11. Website title [http://dip.mbi.ucla.edu/]

12. Website title [ftp://ftpmips.gsf.de/yeast/PPI/]

13. Erdös P and Rényi A On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.

Sci. 1959, 5:17-60

14. Wang XF and Chen G Complex Networks: Small-World, Scale-Free and Beyond. IEEE

circuits and systems magazine 2003, First quarter:6-20

15. Jeong H, Mason SP, Barabasi AL and Oltvai ZN Lethality and Centrality in protein

networks. Nature 2001, 411: 41-42

16. Website title [http://kanaya.naist.jp/ProteinComplexes]

17. Website title [ftp://ftpmips.gsf.de/yeast/catalogues/complexes/]

18. Hishigaki H, Nakai K, Ono T, Tanigami A and Tagaki T Assessment of prediction

accuracy of protein function from protein-protein interaction data. Yeast 2001, 18:

523-531

19. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G GO::TermFinder-

open source software for accessing Gene Ontology information and finding

significantly enriched Gene Ontology terms associated with a list of genes.

Bioinformatics 2004, 20:3710-3715

Figures

Figure 1 Concepts of the proposed method. (a) and (b) Two typical graphs of the same size and

density. (c) A typical cluster and its neighbors. (d) Flow-chart of the proposed algorithm.

Figure 2 A protein-protein interaction network of E. coli showing high-density complexes of

size ≥3 detected by the proposed algorithm. Functions of the proteins of 10 largest complexes

are as follows: complex 1, components of RNA polymerase (RpoA, RpoB, RpoC, Rsd, RpoZ

RpoD, RpoN, FliA); complex 2, components of ATP synthetase (AtpA, AtpB, AtpE, AtpF,

AtpG, AtpH, AtpL); complex 3, components of DNA polymerase (DnaX, HolA, HolB, HolD,

and HolC); complex 4, proteins involved in cell division (FtsQ, FtsI, FtsW, FtsN, FtsK and

FtsL); complex 5, components of ribonucleoside-diphosphate reductase (NrdA, NrdB, NrdE,

NrdF); complex 6, chaperons (DnaK, GrpE, DnaI) and a heat-shock sigma factor (RpoH),

complex 7, component of protein translocase (SecA, SecE, SecY, SecG); complex 8, DNA

mismatch repair proteins (MutL, MutS, MutH, UvrD); complex 9, components of fumarate

reductase (FrdA, FrdB, FrdC, FrdD); and complex 10, proteins associated with molybdopterin

biosynthesis (MoeA, MoeB, MobB, Mog). 11 to 22 are 3-protein complexes, which mostly

consist of similar function proteins.

Figure 3 Comparison of yeast PPI network with a random network in the context of (a) degree

distribution, (b) total number of complexes, (c) distribution of the complexes generated using

din=0.7 with respect to size, (d) size of the biggest complex, (e) the number of complexes of

size ≥3 and (f) the average size of the complexes of size ≥3. We generated 10 overlapping (Ov)

and 10 non-overlapping (NO) sets of complexes by using 10 different values of din for both the

networks. We then calculated the aforementioned quantities for each of the generated sets and

plotted them.

Figure 4 The effect of cpin on clustering. Twenty sets of non-overlapping clusters are generated

from the yeast PPI using cpin=0.1, 0.3, 0.5, 0.7, 0.9 and for each of these values of cpin using

din=0.1, 0.6, 0.7, 0.9. We then calculated and plotted (a) the total number of clusters, (b) the

number of clusters of size ≥3, (c) the average size of the clusters of size ≥3, and (d) the size of

the biggest cluster with respect to cpin.

Figure 5 Comparison of predicted complexes with known complexes. (a) Distribution of

known complexes with respect to size. (b) Number of matched known complexes with respect

to the minimum overlapping score for all 20 sets. The triangular dots (connected by dotted line)

show the average and the solid square dots (connected by thick solid line) show the union of

the matched known complexes. (c) Number of matched known complexes with respect to

number of predicted complexes for 20 sets. Each point is labeled by corresponding mode of

clustering, i. e. non-overlapping (NO) or overlapping (Ov) and din value.

Figure 6 Relative amount of interactions involving similar function protein pairs in 20 sets of

yeast complexes against corresponding din values.

Figure 7 Complexes that are of size ≥6 of the set generated using din=0.7, cpin=0.50 and non-

overlapping mode. (a) ID, size N, density d, p-value (with Bonferroni correction), a

corresponding histogram and the names of the constituent proteins of each complex. The

histogram of a complex shows the distribution of its member proteins with respect to 15

functional classes: (1) Cell cycle and DNA processing, (2) Protein with binding function or

cofactor requirement (structural or catalytic), (3) Protein fate (folding, modification,

destination), (4) Biogenesis of cellular components, (5) Cellular transport, transport facilitation

and transport routes, (6) Metabolism, (7) Interaction with the cellular environment, (8)

Transcription, (9) Energy, (10) Cell rescue, defense and virulence, (11) Cell type

differentiation, (12) Cellular communication/signal transduction mechanism, (13) Protein

activity regulation, (14) Protein synthesis, and (15) Transposable elements, viral and plasmid

proteins. A protein may belong to more than one functional class. The scaling of a histogram is

according to the size of the corresponding complex. The highest column/columns of a

histogram are colored as red. (b) The network of the complex 19 of Fig 7(a).

a

b c

d

e

g f

h

a

b

c
d

e
f

g

h

(a) (b)

Input an undirected simple graph G.

Set thresholds din and cpin

and initialize cluster ID k = 1.

Generate degrees of the nodes of G.

Determine the highest node degree (Dh).
Dh= 0

Start at highest weight node

of G as cluster k.

dk > din

No

Yes
cpp(k-p) > cpin

Yes

No

Deduct the last added node from cluster k.

No

End

All neighbors of

cluster k are checked
No

Yes

Print cluster k.
G ← G – cluster k

k ← k+1.

Yes

(d)

In
p
u
t

&

in
it
ia

liz
a
ti
o
n

(c)

a

b

c

Generate weight of each node of G.

highest node weight= 0
No Yes

Start at highest degree node

of G as cluster k

Generate the neighbors of the cluster k in G

and sort them according to priority (if applicable, use fine tuning).

Add the highest priority neighbor (p) to cluster k.

Add the next priority

neighbor (p) to cluster k.

T
e
rm

in
a
ti
o
n

c
h
e
c
k

S
e
e
d
 s

e
le

c
ti
o
n

C
lu

s
te

r
fo

rm
a
ti
o
n

O
u

tp
u

t
&

u
p
d
a
te

Figure 1

GroEL

RecA

CI

UmuD UmuC

MucA MucB

Ssb

Fis

RecF

RpoA

RecO

RecR

Eno RhlB

Rsd

RpoZ

Pnp

DnaK

GrpE

Rne

DnaJ

RpoH

RpoD

MelR

FecA

BglG

ExbD

ZipA

RpoB

FliA

RpoC

NusA

RpoE

RseA

FepA

Ada

RpoS

HscC

Crp

BglF

FecI

FecR

TonB

ExbB

Lpp

BtuB

TolB

OmpA

FhuA

Pal

TolB(pr) CeaC CeiC

YbgF

LamB

OmpF

TolA

TolQ

TolR

OmpC

PhoE

MinD

NusG Rho

MinC

MinE

RecX

DinI

LexA
IlvI

YigB

ThrS TufA

Tdh
ThiH

ThiD ThiG

SspB

RpsB

RplL

RplI

RcsB

Glf

GlyS

GatD

GatZ

GadA

GapA

LipA

LolD

LpdA

MetE

MetF

MetK

NagD

Upp

YjjU

PyrB

PurC

PstB

Pta

PrnP

LeuA

PheS

PheT

GatY

GroS

GyrA

ClpXDadA

AroGBioFFtnA

AroH

SbcB

FtsI

SecY SecA

OxaA

FtsA

FtsN

FtsW

FtsK

FtsQ

FtsLFtsZ

MinC

DicB

HolB

DnaN

SulA

HolD

Tus

DnaC

DnaE

DnaB

SecB

SecESecG

17009N

FfH

HolC

DnaXHolA

DnaA

RepA Pir

DnaG

FliF

Hns

GpB

HolEDnaQ

ClpP

NarJ NarG

ClpA ClpS

FliG FliM

CheAFliN

CheY CheZ

ArcB

Mlc

GlgP

PtsG Crr

PtsH

GlpK

LacY

AtpB

AtpG

AtpE

AtpL

AtpH

AtpA

AtpF

AtpB(A)
YfhFHscB

HscA

FdxNifU

IscS

NrdE
NrdF

NrdB
NrdA

FrdB
FrdA

FrdD
FrdC

MutS
UvrD

MutH
MutL

Vsr

GlnB

GlnK

AspA

GlnL

GlnG

MoeA
Mog

MobA
MobB

SdhB
SdhA

SdhD

SdhC

MalF
MalE

MalK

MalG

RpsT
SpeA

SpeF
RpmH

HlyD

TolC

HlyB

HlyA

Abc2

RecB

Gam

SbcC

SbcD

HsdS

HsdR

HsdM

TatA

TatB

TatC

MoaE

MoaD

MoaB

CusB

CusF

CusC

CcmE

CcmF

CcmH

TraV

TraK

TraB

TrxB

TrxA

Cdk2

MalY

MalT

Aes

MelA

HupA

HupB

AckA

PtsI

EnvZ

OmpR

InfA

InfB

EvgA

EvgS

HslV

HslU

TrpB

TrpA

MazG

Era

SucD

SucC

SopA

SopB

DsbC

DsbD

PapD

PapK

GcvA

GcvR

CheR

Tar

NadA

NarB

CarA

CarB

CysN

CysD

GalU

GalF

RuvB

RuvA

RpsJ

NusB

PspA

PspF

CeiE7

ColE7

AcrA

AcrB

HisJ

HisQ

UvrY

BarA

BtuD

BtuC

ParC

SeqA

XerD

XerC

Col

CeiE9

PabA

PabB

PntA

PntB

EbgC

EbgA

RelE

RelB

ArsA

ArsB

6217N

6216N

GyrI GyrB

RpoN

CytR

RseB

Cd44

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17 18

19 20 21

22

Figure 2

Random

Yeast Data

Random

Yeast Data

S
iz

e
 o

f
th

e
b

ig
g
es

t
co

m
p

le
x

T
h

e
n

u
m

b
er

 o
f

co
m

p
le

x
es

 (
si

ze
 >

 2
)

A
v

er
a

g
e

si
ze

 o
f

co
m

p
le

x
es

(s

iz
e
 >

 2
)

lo
g
 (

co
u

n
t)

log (degree)

din

din
din

din

(a) (b)

(d)

(e) (f)Random (NO)
Random (Ov)

Yeast (NO)

Yeast (Ov)

Random (NO)
Random (Ov)

Yeast (NO)

Yeast (Ov)

Random (NO)
Random (Ov)

Yeast (NO)

Yeast (Ov)

T
h

e
to

ta
l

 n
u

m
b

er
 o

f
co

m
p

le
x

es

T
h

e
n

u
m

b
er

 o
f

co
m

p
le

x
es

Size of Cluster

Yeast Data

Random(c)

din=0.7

Figure 3

0

500

1000

1500

0

500

1000

0

5

10

15

0

100

200

300

0.0 0.5 1.0

cpin

T
h

e
to

ta
l

n
u

m
b

er
 o

f
co

m
p

le
x

es
T

h
e

n
u

m
b

er
 o

f
co

m
p

le
x

es

(s
iz

e
3

)

A
v

er
a

g
e

si
ze

 o
f

co
m

p
le

x
es

S
iz

e
o
f

th
e

b
ig

g
es

t
co

m
p

le
x

(a)

(b)

(c)

(d)

din = 0.1

din = 0.6

din = 0.7

din = 0.9

din = 0.1

din = 0.6

din = 0.7

din = 0.9

Figure 4

0

50

100

1 10080604020

Size of complex

N
u

m
b

er
 o

f
k

n
o
w

n
 c

o
m

p
le

x
e
s (a)

0

50

100

150

200

250

Overlapping score ()

N
u

m
b

e
r
 o

f
m

a
tc

h
e
d

 k
n

o
w

n
 c

o
m

p
le

x
e
s

0.20.0 0.4 0.6 0.8 1.0

(b)

50

100

150

50 100 150
Number of Predicted Complexes

N
u

m
b

er
 o

f
K

n
o
w

n
 C

o
m

p
le

x
es

Ov,0.10

Ov,0.20

Ov,0.30

Ov,0.40

Ov,0.60

Ov,0.50

Ov,0.70
Ov,0.80

Ov,1.0

Ov,0.90

NO,0.10

NO,0.20

NO,0.30
NO,0.40

NO,0.60

NO,0.50

NO,0.70 & NO,0.80

NO,1.0
NO,0.90

(c)

Figure 5

1.0

Overlapping mode
Non-overlapping mode

0.20.0 0.4 0.6 0.8 1.00.20.0 0.4 0.6 0.8 1.0

0.8

0.6

0.4

0.2

0.0

din

R
e
la

ti
v
e
 a

m
o
u

n
t

o
f

in
te

ra
c
ti

o
n

 (
R

A
)

Figure 6

ID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1 5 10 15

17

13

14

14

12

12

11

9

8

8

8

8

8

7

7

7

7

6

6

6

6

6

6

6

6

6

6

6

28 0.71

0.72

1.00

0.83

0.71

0.94

0.71

0.98

0.72

0.93

0.72

0.71

0.71

0.71

0.95

0.76

0.71

0.71

0.80

0.80

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.73

0.73

CTF4,CTF8,CTF18,CTF19,CIN1,CIN2,CIN8,GIM3,GIM4,GIM5,MAD1,MAD2,MAD3,BUB1,BUB3,

PAC2,PAC10,ARP6,BIK1,BIM1,CHL1,CSM3, DCC1,HTZ1,KAR3,SCC1-73,TUB3,YKE2

CHS3,CHS5,CHS7,BNI1,BNI4,RVS161,RVS167,ARC40,ARP2,BCK1,CLA4,FKS1,KRE1,SKT5,SLT2,

SMI1,SWI4

TAF17,TAF25,TAF60,TAF61,TAF90,SPT3,SPT7,SPT8,SPT20,ADA2,GCN5,HFI1,NGG1,TRA1

LSM1,LSM2,LSM3,LSM4,LSM5,LSM6,LSM7,LSM8,DCP1,KEM1,MRNa,PAT1,SNRNa,U6

RAD27,RAD50,CDC45-1,ELG1,ESC2,HPR5,MMS4,MRC1,POL32,RRM3,SGS1,TOF1,TOP3

TRS20,TRS23,TRS31,TRS33,TRS65,TRS85,TRS120,TRS130,BET3,BET5,GSG1,KRE11

COG5,COG6,COG7,COG8,ARL1,ARL3,GOS1,GYP1,RIC1,SWF1,TLG2,YPT6

APC1,APC2,APC4,APC5,APC9,APC11,CDC16,CDC23,CDC26,CDC27,DOC1

CDC73,CTI6,DEP1,LEO1,SAP30,SET2,SIF2,SWR1,VPS71

CFT1,CFT2,FIP1,PAP1,PFS2,PTA1,YSH1,YTH1

MED2,MED4,MED7,MED8,PGD1,RPB3,SOH1,SRB4

BEM1,BEM2,BOI1,BOI2,CDC24,CDC42,MSB1,STE20

ARP1,ASE1,CLB4,JNM1,KAR9,KIP3,NIP100,PAC11

CDC4,CDC34,CDC53,CLN1,CLN2,CLN3,SIC1,SKP1

CDC3,CDC10,CDC11,CDC12,GIN4,SEP7,SHS1

CKA1,CKA2,CKB1,CKB2,CDC7-1,RHO3,TOP2

SNR3,SNR10,SNR11,SNR189,GAR1,NHP2,NOP10

SPC19,SPC24,NNF1,NUF2,SMC1,TID3,YDR295c

YGL161c,YGL198w,GCS1,YDR425w,YIP1,YPL095c

PRP5,PRP9,PRP11,PRP21,NOG2,YNR053c

NUP49,NUP57,APG17,NIC96,NSP1,SEC35

KTR3,LAS17,SLA1,YFR024c,YOR284w,YSC84

ECM31,GCD7,NIP29,TEM1,YJL199c,YPL070w

ERB1,HAS1,NIP7,NOP7,NUG1,SSF1

SEC2,SEC4,SEC10,SEC15,MYO2,SMY1

MYO3,MYO5,BBC1,BZZ1,UBP7,VRP1

DBF2,DBF20,CDC15,LTE1,MOB1,SPO12

HHF1,HHF2,HHT1,HHT2,SPT6,STH1

CBF1,CEP3,CHL4,CTF13,MCM21,MIF2

N d Function Class Gene Name

YIP1

GCS1

YGL161c

YPL095c

YGL198w

YDR425w

(a) (b)

3.9x10-17

9.0x10-13

1.7x10-11

1.1x10-6

3.7x10-4

3.4x10-11

4.0x10-6

2.1x10-10

1.9x10-5

4.8x10-7

3.4x10-5

3.1x10-9

4.5x10-7

6.8x10-7

3.5x10-6

5.4x10-3

1.3x10-4

3.5x10-6

9.5x10-4

1.3x10-7

6.3x10-10

1.0x10-4

4.8x10-1

2.3x10-3

2.4x10-5

1.0x10-4

1.2x10-3

1.8x10-5

2.3x10-5

Corrected

P-value

Figure 7

