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Protein–protein interactions are central to most biological processes.
Although much recent effort has been put into methods to identify
interacting partners, there has been a limited focus on how these
interactions compare with those known from three-dimensional (3D)
structures. Because comparison of protein interactions often involves
considering homologous, but not identical, proteins, a key issue is
whether proteins that are homologous to an interacting pair will
interact in the same way, or interact at all. Accordingly, we describe
a method to test putative interactions on complexes of known 3D
structure. Given a 3D complex and alignments of homologues of the
interacting proteins, we assess the fit of any possible interacting pair
on the complex by using empirical potentials. For studies of interact-
ing protein families that show different specificities, the method
provides a ranking of interacting pairs useful for prioritizing experi-
ments. We evaluate the method on interacting families of proteins
with multiple complex structures. We then consider the fibroblast
growth factoryreceptor system and explore the intersection between
complexes of known structure and interactions proposed between
yeast proteins by methods such as two-hybrids. We provide confir-
mation for several interactions, in addition to suggesting molecular
details of how they occur.

A major goal of functional genomics is to determine protein
interaction networks for whole organisms. Large-scale studies

have identified hundreds of potentially interacting proteins or
complexes in yeast (1–3). Computational methods have used gene
fusion (4, 5), gene order (6), phyletic distribution (7), or a combi-
nation of approaches (5) to predict functional associations (and
putative interactions) between thousands of proteins, and efforts
are underway to catalog interaction data contained within the
literature (8, 9).

Despite attempts to identify putative interactions, little attention
has been paid to one of the best sources of protein interaction data:
complexes of known three-dimensional (3D) structure. Decades of
x-ray crystallography have produced hundreds of structures for
protein complexes, and these structures provide a rich source of
data for learning principles of how proteins interact and for
validating interactions determined by other methods. Although the
number of complexes of known 3D structure is relatively small, it
is possible to expand this set by considering homologous proteins.

Any interaction, whether known from two-hybrids, crystallogra-
phy, or another method, will typically involve two or more proteins
that themselves are members of homologous families. A major
problem in genome annotation efforts is to understand when it is
possible to transfer functional information, determined by experi-
ment, from one protein to its homologues. Recent years have seen
progress in predicting whether details such as enzymatic specificity
or binding sites can be extrapolated to other members of a protein
family (e.g., refs. 10 and 11), although similar studies on protein–
protein interactions have been limited. It is not known whether it
is generally possible to say that proteins homologous to a known
interacting pair will interact in the same way, or indeed interact at
all. For example, cytokines in the same family can be either
promiscuous or highly specific regarding the receptors they prefer
(e.g., ref. 12), and some homologues do not bind receptors at all
(e.g., ref. 13). Moreover, analysis of interactions within the protein

databank suggests considerable variation in the interaction partners
preferred by particular protein families (14). Clearly detailed stud-
ies are required to understand when it is possible to infer an
interaction between proteins when one is known to occur between
homologues.

Here, we present a method to model putative interactions on
known 3D complexes and to assess the compatibility of a proposed
protein–protein interaction with such a complex. After identifying
the residues that make atomic contacts in a known crystallographic
complex, we look to homologues of both interacting proteins to see
whether these interactions are preserved by means of empirical
potentials. This method permits us to score all possible pairs
between two protein families, and say which are likely to interact.
We apply the method to the fibroblast growth factoryreceptor
system, and explore the intersection between all complexes of
known 3D structure and interactions between yeast proteins pro-
posed by methods such as two-hybrids. We demonstrate and discuss
the importance of incorporating 3D structure information into
studies of protein–protein interactions.

Methods
Overview of the Methodology. Our initial analysis of complexes of
known 3D structure showed that interactions between proteins
occurred through a variety of main-chain and side-chain contacts
(Fig. 1) as described in part previously (15). This prompted us to
derive empirical potentials for amino acids to be involved in
particular side-chain to side-chain and side-chain to main-chain
contacts at protein–protein interfaces (see below).

For a complex of known structure, we identify residues making
atomic contacts at the interface of the two proteins. We then use
the potentials to score the compatibility of any homologous intra-
species pair of sequences, and calculate a statistical confidence
based on a comparison to scores for a background of sequences that
are unlikely to make favorable complexes (see below). In the
sections that follow, we refer to scores as being significant if their
probability to occur by chance is #0.01 or #0.1 when compared
with the background.

Database of 3D Protein Complexes. To construct a nonredundant
database of interacting protein domains, we used BLAST2 (16) to
compare sequences from representatives of the SCOP database
(17) of protein structures to those from the Pfam database of
protein domain families (18). We defined links between the two
databases as matches with an expectation E-value #0.01. We then
searched for instances where different Pfam domains matched
different chains that were in contact (any atom distance ,5Å) in the
same structure. We manually grouped the final, nonredundant set
of 356 unique interacting pairs of different Pfam families into broad
classes: (i) enzyme inhibitors; (ii) cytokine receptors; (iii) signaling
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complexes; (iv) hetero-multimers; (v) immune system complexes
(i.e., antibodyyantigen or MHC complexes); and (vi) other protein–
protein interactions.

Derivation of Empirical Potentials for Protein–Protein Interactions.
Empirically derived potentials incorporate thermodynamic effects
without explicitly having to model proteins, which makes them
useful in protein fold-recognition and protein–protein docking
(e.g., refs. 19 and 20). We derived main-chain to side-chain and
side-chain to side-chain potentials from the complexes above. We
defined interacting residues by requiring one or more of: hydrogen
bonds (NOO distances # 3.5 Å), salt bridges (NOO distances #
5.5 Å), or van de Waals interactions (COC distances # 5 Å). We
also require a relative accessibility of the unbound proteins $10%
to exclude buried side-chains. We found a total of 4,517 side-chain
to main-chain and 3,316 side-chain to side-chain contacts. We then
defined the empirical potentials by using a molar-fraction random
state model based on the observed tendency of residues to be on
protein surfaces:

Sab 5 log10SCab

Eab
D Eab 5 T

naOa 5 1
20 na

nbOb 5 1
20 nb

where na and nb are the total number of amino acids a and b and
T is the total number of interacting pairs. Eab is the molar expected
frequency for the a 2 b pair, Cab is the number of observed contacts
between residues a and b and Sab the log-odds score. We assess the
compatibility of a potential complex by evaluating a total score as
the sum of Sab values for all interacting residue pairs identified in
the crystallographic complex. Sab values are evaluated only if Cab .
0 and Eab . 5 to ensure sufficient data. Otherwise Sab is set to 20.5
and 21.0 for side-chain to main-chain and side-chain to side-chain
potential, respectively, which are approximately the negative of the
largest values. High scoring complexes are evaluated by this func-
tion to be more favorable.

Assigning Statistical Significance and Evaluation. To assess whether
an interface contains a sufficient number and type of contacts to be
used further, we generated 1,000 random sequences for each
interacting protein, based on surface residue frequencies. We
scored them on the known complexes by using the empirical
potentials on the interacting residues identified from the crystal-
lographic complex. We used random sequences because we could
not systematically extract information about noninteracting pairs of
proteins homologous to a known complex, because such informa-
tion is scant and subjective. Only when the known complex gave a
score with Z $ 2.3 (2.3 standard deviations above the mean;
significance #1023) did we consider it suitable for further use. This
process effectively removes complexes where there are few inter-
actions or that are mediated mainly through main-chain to main-
chain contacts.

To test the method, we extracted 59 pairs of homologous,
nonidentical complexes of known structure, and scored one com-
plex by using the other. We ignored immune system complexes as
different interacting partners are expected (e.g., immunoglobulins).
To ensure the integrity of the potentials we performed the test as
a jack-knife (leave-one-out) procedure during this process.

Evaluating Potential Interactions. Given a new potential interaction,
we first assign the two components to one or more Pfam domains
by using BLAST2 to see whether any complex 3D structure for this
pair exists in the database described above. If one or more
complexes are found, we align the new sequences to their homo-
logues of known structure, and apply the empirical potentials and
statistical significance to assess the fit of the interaction.

Fig. 1. Interaction types across the four classes.

Table 1. Accuracy of the method on interacting families of proteins with multiple complex structures

Domain 1 % Id range (interface) Domain 2 % Id range (interface) Nc T P , 0.01 P , 0.1

Signaling 16 16 16
G-a 97 (88) Guanylate cyclase 99 (100) 2 2 2 2
RhoGAP 99–100 (90–100) ras 50–100 (82–100) 4 12 12 12
RhoGDI 87 (96) ras 51 (78) 2 2 2 2

Cytokines–Receptors 12 12 12
FGF receptor 71–99 (62–100) FGF 53–100 (60–100) 4 12 12 12

Peptidases–Inhibitors 172 83 112
Peptidase S8 40–84 (35–84) Potato inhibitor 36–100 (38–100) 4 12 5 10
TIMP 42 (36) Peptidase M10 47 (50) 2 2 2 2
Trypsin 27–99 (22–100) Kunitz BPTI 38–100 (28–100) 10 70 21 37
Trypsin 12–100 (10–100) Kazal 27–100 (0–100) 10 20 2 3
Trypsin 85 (88) Kringle 80 (83) 2 4 4 4
Trypsin 65–100 (61–100) Squash 57–100 (44–100) 6 24 12 19

Other 2 1 1
Colicinypyocin 56 (30) HNH endonuclease 47 (17) 2 2 1 1
Elongation factor
TU

69 (100) Elongation factor TS 27 (14) 2 NyA NyA NyA

Domain 1yDomain 2 show the two interacting families. % Id range, Overall (and interface) sequence identity ranges between the proteins in the family. Nc,
Number nonidentical complexes of known structure for each family. T, Number of predictions for which the template complex gave significant scores. P , 0.01
and P , 0.1, Number of pairs identified with significances of ,0.01 and ,0.1, respectively. NyA, Not applicable.
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Data Sources and Availability. We obtained protein 3D coordinate
data from the protein databank (20) (http:yywww.rcsb.org) and
yeast protein–protein interactions from the Munich Information
Center for Protein Sequences Database (MIPS; ref. 21; http:yy
mips.gsf.de), which collates interactions from a number of sources
[including the Yeast Proteome Database, YPD (22)]. Data from
two large-scale yeast two-hybrid experiments (1, 2) were taken from
the web sites http:yydepts.washington.eduysfieldsyypoproject and
http:yygenome.c.kanazawa-u.ac.jpyY2Hy.

All data used in this study are available at http:yywww.russell.
embl-heidelberg.deyaddoinfoy.

Results and Discussion
Evaluation of the Method. To evaluate the ability of the method to
predict whether a pair of proteins homologous to a known complex
could interact, we identified all examples of similar, but not
identical, complex 3D structures. Essentially, these are examples
where two or more 3D structures are known for interactions
between the same homologous families. For example, structures are
known for two different trypsin homologues (trypsin and protein-
ase B) in contact with different ‘‘Kunitz’’ inhibitors (tryptase and

ovomucoid inhibitor). The examples were diverse, coming from 20
different protein family pairs. For clarity, we divided them into
classes: cytokineyreceptor, signaling, peptidaseyinhibitor, and
other (see Methods).

First, we found that, on average, 70% of pairs of residues in
contact were common to these homologous complexes (cytokiney
receptor 92%; signaling 89%; peptidaseyinhibitor 59%; other 66%)
and thus might, in the absence of a known structure, be identified
by homology. We then used the potentials to score one complex by
using the other; the results are summarized in Table 1. For
cytokineyreceptor, signaling, and other systems, all modeled com-
plexes have a significant score, compared with 65% for peptidases
and inhibitors. The poorer results for the peptidaseyinhibitor
complexes are likely because they interact via many main-chain to
main-chain contacts (see ref. 15 and Fig. 1). Indeed, for 13 of 36
peptidaseyinhibitor complexes, the crystal structure itself did not
score significantly (see Methods), compared with only 3y18 from the
three other classes. Inhibitors need to bind tightly to the target
proteases, and this binding may be achieved by constrained main-
chain conformations (15). Cytokineyreceptor and signaling domain
interactions are more transient, with lower affinities (24), and
involve more side-chain contacts.

Fig. 2. The FGFR system. ALSCRIPT (37) alignment and MOLSCRIPT (38) structure figures showing the FGF (Upper)yreceptor (Lower) interaction. Sequences are denoted
by SWISSPROT or PDB identifiers. Residues are colored according to property conservation: hydrophobic, yellow background; small, blue background; and polar, red
characters. Residues in the known structure (FGF-2yFGFR-1; PDB code 1cvs (26) participating in side-chain to side-chain contacts are shown and colored: positive, blue;
negative, red; hydrophobic, yellow; and tyrosine, green. Residues participating in side-chain to main-chain contacts are boxed. Contacts between side-chains are listed.
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There is no clear correlation between the performance of the
method at modeling interacting interfaces and sequence similarity
(data not shown). Even at low sequence identities (see Table 1), we
are able to use one complex to predict most of the correct side-chain
to side-chain and side-chain to main-chain interactions that occur
in another.

The evaluation above considers only instances where different
pairs of proteins are known to interact in the same way. It is clearly
also important to consider examples where pairs of proteins ho-
mologous to a complex structure are known definitely not to
interact. A search of the literature demonstrated that there are only
a few instances like this, one of which is discussed in the section
below. Note that many interaction detection methods, for example
two-hybrids, can provide only possible positive examples, and do
not rule out interactions.

Fibroblast Growth Factors and Receptors. We sought an example
from the literature to illustrate the operation and accuracy of the
method. Some of the most intensively studied interactions are those
between fibroblast growth factors (FGFs) and receptors. FGFs play
key roles in morphogenesis, development, angiogenesis, and wound
healing. There are more than 20 human FGFs that bind to one or
more of 7 FGF receptors (FGFR1c, -1b, -2c, -2b, -3c, -3b, and -4;
c and b denote isoforms IIIc & IIIb formed by alternative splicing;
ref. 25). Four different structures are known, involving all possible
interactions between FGF-1 & FGF-2 and receptors FGFR-1c and
FGFR-2c (26–28). Fig. 2 shows the identified interacting residues
for the FGF-1yFGFR-1c complex. These results agree closely with
those reported (26), although the method finds several others,
including a hydrogen bond between Tyr-24 and Lys-163 and many
hydrophobic interactions. Table 1 shows that the method success-
fully predicts all four complexes starting from any of the others (12
predictions in total) with significance ,0.01. FGFs adopt a b-trefoil
fold, and have been proposed to be ancient relatives of IL-1, a
cytokine that binds to a receptor in a similar fashion to FGFs, and
to proteins sharing no apparent functional similarity, such as actin
bundling proteins, toxins, and protease inhibitors (29). The method
correctly gives poor scores to all of these molecules when modeled

onto the FGF receptors (.0.1), although, interestingly, IL-1a
scores highest, possibly reflecting the similarity with FGFyreceptor
system as is known from the IL-1byreceptor structure (30).

Ornitz et al. performed a study of FGFR specificity by measuring
mitogenic activity of FGFR-inducible BaF3 cell lines (12). They
assayed the binding of FGFs 1–9 to all 7 receptors as a percentage
relative to the affinity of FGF-1, which binds well to all of them (i.e.,
100%). From this study, there are 252 different interactions that can
be predicted (4 FGFyreceptor structures, 7 receptors, and 9 FGFs).
For 112 of these, the experimentally determined binding affinity
relative to FGF-1 is ,10% (which we term ‘‘low affinity’’); for the
other 140, the binding is $10% (‘‘high’’). Our method predicts 158
interactions with highly significant values (#0.01), 105 of which are
high affinity interactions. In addition, 59 of the 94 predictions that
have low significance values ($0.1) are low affinity, giving an
overall prediction accuracy of 65%. There is good agreement
between the predicted scores and the observed affinities, showing
a correlation between molecular interaction details and macromo-
lecular observations. This result is despite other factors that may be
involved in determining the strength of the FGFR interaction (e.g.,
differing heparin affinities).

The interactions between FGF-2 with receptors FGFR-2b or
FGFR-3b are consistently predicted to be significant despite being
low affinity. The lack of affinity is thought to be the result of a
deletion that changes the hydrophobic core of the receptor (27). We
make no attempt to model such changes here. Further improve-
ments may come from explicit modeling of loops or side-chain
conformations.

An intriguing recent finding within the FGF family is that several
members are not extracellular growth factors, but intracellular
signaling molecules. FGFs-12, -13, -11, and -14 have recently been
renamed as FGF homologous factors (FHF) 1–4, because, despite
a high sequence identity to FGFs (up to 42%), they do not bind to
FGF receptors, being instead associated with intracellular mitogen-
activated protein (MAP) kinases (13). Encouragingly, our method
gives poor scores to all of the interactions between FHFs and the
FGF receptors. Inspection shows that substitutions in these proteins
lead to the loss of many key contacts discussed above (see Fig. 2).

Fig. 3. Yeast interactions mapped onto known 3D complexes. Yeast proteins are given by their YPD names, codes, and Pfam families. Thick lines denote interactions
significant at #0.01, thin lines 0.01–0.1, and dashed lines .0.1.
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Interrogating the Yeast Protein Interaction Network. The many
interactions proposed between yeast proteins provide a large set to
be studied by our method. Fig. 3 shows those interactions that are
homologous to a known 3D complex and how they are scored by the
method. Of the 2,590 interactions proposed (by two-hybrids, co-
immunoprecipitation, cross-linking, etc.; see Methods) only 59
could be mapped onto our set of interacting complexes. For 23 of
these, despite being homologous to a 3D complex, we found that the
two interacting domains were not in direct atomic contact (see
Methods). For the 36 remaining interactions, we identified domains
in direct contact, thus suggesting the molecular basis for the
interaction. We ignored one crystallographic structure (chapero-
nin-TCP1 complex) that did not score significantly itself when
compared with random sequences, leaving the 35 interactions
shown. Considering data from the large scale two-hybrid studies, 7
of the 1,466 interactions proposed by Uetz et al. (1) and 2 of the 841
from Ito et al. (2) could be mapped on to this set (labeled in Fig.
3). The low intersection between these interactions and known 3D
structures agrees with that discussed previously (14), and also
broadly agrees with that seen when comparing two-hybrid data to
predictions made from gene-fusions (31).

Fig. 3 shows instances of interaction promiscuity where the

method gives significant scores only to some of the proposed
interactions. This result suggests that the approach could be used to
rank interacting pairs that are to be investigated by further exper-
imental means. Significant scores indicate those interactions that
are likely to be most compatible with a known 3D structure, and
thus where a model will give most accurate details regarding, for
example, site-directed mutagenesis experiments. For those where
the score is not significant, the interaction may either be weak, or
may involve detailed loop or side-chain changes not considered
here.

Most experimental and computational methods for predicting
interactions are unable to discern direct physical interactions from
those involving intermediate proteins. Sometimes this result can be
clarified simply by mapping proposed interactions onto 3D struc-
tures. For example, a cyclinycyclin-dependent kinase regulatory
subunit (CKS) interaction was proposed by yeast two-hybrids (1).
Although no cyclinyCKS 3D complex is known, separate structures
have been determined for cyclin dependent kinase 2 (CDK2) in
complex with cyclin A and CKS. Superimposing the kinases shows
the cyclin and CKS domains to be more than 15 angstroms apart.
Whereas we cannot completely rule out the presence of N- or
C-terminal extensions, absent from the crystal structures, that could

Fig. 4. The kinaseycyclase system in yeast. Sequences are denoted by YPD or PDB codes. The known structure [1fin (35)] is that of human CDK2 (Upper)ycyclin A
(Lower). Details are otherwise as for Fig. 2.
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bridge this distance, the structures suggest that the proposed
CKSycyclin interaction may involve CDK2 as an intermediary.

Several of the interactions shown in Fig. 3 are those between
kinases and cyclins, which is a system that shows considerable
promiscuity. Multiple cyclins control eukaryotic cell division by
regulating CDKs. However, it is unclear whether all are required for
cell cycle progression, because there is evidence for considerable
redundancy in function (32, 33). Differential activation of CDKs by
cyclins could occur through differences in affinities, but may also be
a result of differences in expression, protein associations, or sub-
cellular localizations. We applied our method to see whether the
scoring system could model the promiscuity within this system.

The structure of a human CDK2ycyclin A is the only kinasey
cyclin complex known in atomic detail (explaining its absence from
Table 1). However, sequence comparison permits 14 of the 22
known yeast kinaseycyclin interactions (34) to be modeled on this
complex. Our method identifies all key interacting residues de-
scribed previously (35) in addition to others (e.g., Lys-278-Asp-9
hydrogen bond, Arg-122-Gln-141 salt-bridge; Fig. 4). There is often
little similarity between the yeast and human proteins in the known
complex, considering either overall sequence identities (CDKs
38–58%, cyclins 3–32%) or only residues on the interacting surfaces
(CDKs 24–78%, cyclins 10–38%). Nevertheless, we find significant
scores for all 14 interactions and for 12 scores have significances
#0.01. The kin28yccl1 pair is the most different from the human
complex (24% and 10% identity on the interacting surface for the
CDK and cyclin, respectively). Although some key interactions are
lost in the kin28yccl1 complex with respect to CDK2ycyclin A (e.g.,
Lys-278–Asp-9 changes to Val-278–Lys-9), others show a good
correlation between the substitutions in the interacting partners
(e.g., Arg-122–Tyr-13 and Gln-141 in CDK2ycyclin A changes to
Phe-122–Ile-13 and Ile-122 in kin28yccl1). Despite the low degree
of identity, our method is able to model the new interacting residues
and correctly predicts the interaction between these two proteins
with confidence.

Considering the 28 putative CDKycyclin pairs not detected by
experimental methods (i.e., not in Fig. 3), all but one (cdc28ypcl1)
give significant scores, with 14 significant at #0.01. The surprising
suggestion that most kinaseycyclin combinations can interact agrees
with cyclin knockouts in yeast (32) that show that deletion of all but
a single cyclin yields viable strains.

Conclusions
We have presented a method to model protein interactions on
3D complexes. The method can successfully model one known
protein complex on another, and predicts correct interactions
within several systems. Given a known 3D complex structure and
homologous sequences for each interacting protein, the method
can rank all of the possible interactions between homologues of
the same species. For studies of protein families that are known
to show different interaction specificities, such a ranking can be
used to prioritize experiments, and save laboratory time and
costs. This ranking could also help to interpret results from
gene-fusion studies (4, 5), where multiple homologues in one
organism relative to another can create ambiguities. More
generally, we have shown how 3D structures can be used to
interrogate whole interaction networks to validate and infer
molecular details for interactions proposed by other approaches.

There remain several questions regarding protein–protein inter-
actions. Whereas we can predict whether proteins homologous to
a complex are likely to interact in the same way, we still do not
generally know how protein-interacting partners change during
evolution. Some systems appear to change gradually, or via genetic
events such as alternative splicing, to optimize pairings. Ultimately,
these changes may lead to differences in the relative orientations of
the interacting molecules, or to homologous proteins interacting
with entirely different molecules. However, it is also becoming clear
that nature makes use of strategies other than alteration of surfaces
to ensure that the correct interactions occur in the cell, foremost
among these being regulation of gene expression (e.g., ref. 36).
Optimal interactions may be obtained simply by the presence or
absence of proteins. Each pair of interacting protein families will
need to be considered in context in order for strategies like that
described here to be most useful.

Structural genomics efforts and the increasing pace of structure
determination will provide knowledge of many more complexes in
the future. With these data, our method will permit critical inter-
rogation of interactions predicted by other areas of functional
genomics, and provide molecular details for proposed protein
interaction networks in advance of experimental structural biology.
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