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INTRODUCTION

Eukaryotic cells are remarkably well understood in their chemical composition: we know the
DNA sequences of many organisms more or less completely and can deduce many of their RNA
and protein products. In the past, proteins have received most attention from biochemists because
they are the most complicated and among the most important molecules in a cell. Accordingly,
proteins and their interactions have been studied in great detail resulting in the identification of
thousands of protein-protein interactions over the past 30-50 years. In addition to these classical
studies, more recent large-scale proteomics projects are contributing huge amounts of systematic
data relevant to the understanding of protein interactions. These large data sets also harbor
information that is not immediately obvious without integrative analysis. Although integration
and analysis have traditionally been carried out by humans, the sheer amount of data now calls
for computer assistance.

Of course, cells not only consist of proteins but also a significant number of other molecules,
ranging from small ions to high molecular weight carbohydrates and nucleic acids. Most of these
non-proteinaceous compounds interact with at least one protein, as many represent the product of
enzymatic reactions, and by default associate with the enzyme that generated them (e.g. pyruvate
with pyruvate kinase; see Figure 1).

Figure 1. Physical interactions of proteins. Note that there are also interactions between the non-protein
classes, e.g. between ions and other small molecules (such as Fe++ and heme). However, not many such
interactions are reported. Additional interactions can be imagined with artificial molecules like drugs or
synthetic ligands. In addition to physical interactions, genetic interactions (like synthetic lethality or
suppression) can hint at potential physical interactions.
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Although knowledge of these interactions is essential for a complete understanding of a cell,
the number of such interactions is thought to be small compared to the number of interactions
among proteins or between proteins and nucleic acids. Moreover, the study of protein-DNA
interactions has been a more popular starting point for interaction network assembly than the
study of protein-protein interactions.  DNA behaves more predictably than proteins and is subject
to fewer variables such as chemical modification which may confer significant structural change.
Furthermore, DNA-binding domains in many transcription factors are generally better
characterized than protein-protein interaction domains, and extensive structural information for
such modules exist. In contrast, interactions between proteins, or between proteins and RNA are
often harder to characterize due to their perceived inherent variability.

This chapter will present some computerized means to visualize and integrate protein-protein
interaction data with data from DNA chip experiments and other sources, to create a starting point
for future methods and discoveries.

Why do we need visualization?
For most people, graphical representations of facts are much easier to understand than raw

data. This is especially true for large datasets or complex situations. A long list of interacting
proteins or a table of protein pairs falls short of capturing what happens in a cell, which is a
dynamic process that occurs in at least 4 dimensions (including time). Instead, the use of graphics
suits human preference for visual perception over every other sensory system. Like a road atlas,
visual maps of protein interactions provide orientation for both novices and specialists. In order to
make these maps useful for both audiences it is desirable to generate dynamic maps that allow
concealment of detail when only a rough overview is needed. Finally, protein-interaction maps
stimulate the formulation of hypotheses that can be tested experimentally. For example, if a
membrane protein is found to interact with a transcription factor this might look like a false
positive . However, such apparent incongruities have led to unexpected new insights into signal
transduction, as in the cases of notch and Suppressor of hairless, Su(H), (Artavanis-Tsakonas et
al., 1999) or with the SREBPs, transcription factors that are localized to the ER membrane
(Edwards et al. 2000). Development of an appropriate map  can aid in the identification of such
informative anomalies.

Protein interaction maps versus metabolic pathways
Considerable effort has been invested into the visualization of metabolic pathways (e.g.

Michal 1993, 1998), with more recent efforts using computerized systems (e.g. K ffner et al.
2000). Although the structures of metabolic pathways and protein interaction maps are similar,
there are a number of significant differences. While metabolic pathways focus on the conversion
of small molecules and the enzymes responsible for these conversions, protein interaction maps
(and signal transduction maps) concentrate mainly on physical contacts without obvious chemical
conversions. Physical interactions are certainly of great utility when one studies single proteins or
defined biological processes, but themselves do not reflect the huge amount of knowledge that
has been accumulated in the biological literature. For example, Figure 5 implies that the PEX
proteins in yeast form a complex, but it does not provide any information about the assembly of
the complex, its biological function or its regulation. Although these shortcomings can be partly
relieved by building in hyperlinks to protein databases, few such databases collate biological
information in an easily accessible format.

In addition to physical and metabolic networks, several groups have presented models and
systems for genetic networks (Kolpakov et al. 1998, Serov et al. 1998, von Dassow et al. 2000).
Such networks do not require physical interactions and in fact can suggest factors affecting
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control of a biological process that remain to be identified (von Dassow et al. 2000).
Nevertheless, the ultimate goal of all such network models is a physical network integrated with
genetic and metabolic information that is predictive of phenotype.

The biggest challenge for coherent display of physical networks remains the large amount of
biological information that is available about many molecules and their interactions. Graphical
networks can illustrate the complexity of biological interactions, but still fail to explain processes,
mainly because important details are not visualized, such as spatial and temporal expression
patterns or the conditions under which certain interactions occur.

Protein networks, protein complexes, and dynamic protein interactions
Currently, the most practicable way to identify the components of a protein complex is mass

spectrometric (MS) analysis (Yates 2000). Unfortunately, MS usually doesn t provide
information about topology, so that additional methods are required to decipher which proteins
bind to which. The two-hybrid system can provide complementary information about direct
interactions. However, it remains a challenge to integrate data from different experimental
approaches, especially when they have been collected under different biological conditions (e.g.
when cells were grown in different media). Figure 2 illustrates such non-overlapping datasets.
Protein interactions can occur in stable complexes or as transient, usually regulated interactions.
Unfortunately, most interactions are described qualitatively and we don t know how strong the
interaction really is. For example, the Database of Interacting Proteins (DIP) lists binding
constants for less than 20 protein pairs (as of December, 2000, see also Xenarios et al. 2000).
Because there are hardly any quantitative data about protein interactions, protein complexes are
currently difficult to analyze quantitatively based on an informatics  approach.
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Figure 2. Protein complexes and networks. Mass spectrometry allows to identify proteins in a complex but
the composition may be dependent on which protein was tagged in order to purify the complex. Two-
hybrid interactions allow to reconstruct protein networks but not physical  complexes. Most protein
interaction diagrams ignore such contradictions.
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Theoretically, computational analysis of protein structures should allow us to find fitting
surfaces among known protein structures and thereby predict their interactions (Tsai et al. 1996,
Palma et al. 2000). Of the ~6000 yeast proteins comprising the yeast proteome, about 600 have
experimentally determined 3D structures, while for up to ~2600 (~44%) the structure can be
modeled based on homology (http://jura.ebi.ac.uk:8765/ext-genequiz//genomes/sc/index.html,
Sanchez et al. 2000, Vitkup et al. 2001, and U. Pieper, pers. comm., and M. Andrade, pers.
comm.). However, limitations in experimental data and computing power still prohibit detailed
and thereby successful predictions in most cases.

Protein-protein interactions and associated information
Much information is required to describe molecular interactions, especially if they are

dynamic and dependent on many different parameters. For instance, once interacting proteins
have been identified, one wants to know which parts or domains of the two partners interact
because this might lead immediately to further hypotheses about the specificity and nature of the
interaction. The strength of  interaction is also an important parameter, because it indicates
whether the two proteins form a complex or interact only transiently. The strength of an
interaction may be also modulated by phosphorylation or other types of modification: for
example, SH2- and some WW-domain proteins only bind to phosphorylated target proteins.

Although many interactions among structural proteins are static and therefore relatively
straightforward to describe, dynamic interactions are more difficult to study and visualize. For
example, the activity of an enzyme might be regulated by several subunits, whose interaction is
dependent on physical or biochemical parameters such as temperature, phosphorylation, or
concentration. Likewise, protein interactions might be described in terms of actions they exert on
other proteins, much like the interactions between enzymes and their substrates. Common
examples are protein acetylases or proteases. Such interactions might necessarily be weak and
transient to assure a high reaction rate. We have summarized parameters describing protein
interactions and their conditions in Table 1. Table 2 lists databases and websites that have such
data for large sets of proteins.

VISUALIZATION

Relational visualization
Protein-protein interactions are frequently represented as a linear list of protein pairs (such as

in Uetz et al. 2000). In contrast, relational visualization seeks to represent entities and their
relationships in a graphical form (Figure 3). The complexity of such representations ranges from
simple (Figure 3a-c) to highly complex (Figures 3d-h and Figure 4). Figures 3f and 3g illustrate
the usefulness of graphics on a small network of protein-protein interactions in yeast.

Although both representations reflect identical information, the graphical representation
(frequently called layout) has fundamental advantages with respect to human perception.

1. Localization: single versus multiple entries. In a textual representation, the protein
interactions involving a given protein X are usually spread out over different positions in the list,
which requires an exhaustive search through the whole list to find all interactions involving X. In
a graphical layout, X occurs exactly once.

2. Context. Once X has been identified in the layout, its immediate and indirect neighbors are
easily identified, and their relation to X studied.

3. Mental map. A graphical representation facilitates to memorize proteins by position in a
mental map  (Eades et al.  1991). In positioning the nodes, secondary information can be

employed to guide the layout; for example, proteins can be spatially grouped by localization or
function. In this way, a particular arrangement of the proteins can increase the information
content of the layout, and facilitate its comprehension at the same time.

http://jura.ebi.ac.uk:8765/ext-genequiz//genomes/sc/index.html
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Table 1. Parameters of molecular interactions and complementary sources of
biological information

Molecule
Parameter Prot. DNA RNA Lipids Carb. Met.

Concentration x - x (x) x x

Localization x (x) (x) x x x

Covalent modifications x x x x x x

      phosphorylation x - ? x (x) ?

      acetylation x ? ? ? ? ?

      methylation x x ? ? ? ?

      other modifications x ? x x ? ?

cleavage (degradation) x (x) x (x) x x

Non-covalent modificationa x (x) x ? ? ?

Logical state (ON/OFF) x ? ? ? ? ?

Binding sites x x x (x) (x) (x)

For types of molecules see also Figure 1. Carb. = carbohydrates, Met. = metabolites. “x”
indicates wheter this paramater is relevant for the given molecule. Information about molecules
and their actions can be found to various degrees in the databases listed in Table 2. Please note
that many modification states or the activity of molecules is dependent on the input from other
molecules, e.g. when phosphorylation activates a protein. Such actions and their conditions are
usually not recorded systematically or in a standardized  nomenclature, and thus aredifficult to
use for automated map generation. Protein interaction maps therefore should have an option to
enter some free-text  annotation that can be accessed from the graphical output. (a) Non-covalent
modifications may be conformational states such als allosteric isoforms.
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Figure 3. Visualization of protein interactions. For computerized display, (a) and (b) are the most common
ones. Shapes, as in (c) are more difficult to generate automatically by computer because topology has to be
taken into account. (d) shows a computer-generated 3D structure of a protein complex but such data is only
available for a small set of proteins. (e) takes into account the domain structure of proteins and functional
interactions such as phosphorylation, but there are no systems available yet to generate such diagrams
automatically, partly because the pertinent information is not available in databases.
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Figure 3, cont d. Boxes denote other proteins. (f) list of interactions as text. (g) graphical representation of
list in (f). (h) Ultimately we wish an integrated display of the aforementioned options which allows a user
to look at the big picture  of many proteins but also to zoom in to atomic detail. Such visualization tools
are not available yet and will be possible only as electronic systems (i.e. not on paper). 3D strucure in (d)
reproduced by permission of the Protein Structure Database (http://www.rcsb.org); based on a figure in
Hargreaves et al. (1998).

Table 2 - Databases and web sites

Protein interactions

MIPS http://www.mips.biochem.mpg.de/proj/yeast/tables/i
nteraction/index.html, (Mewes et al. 2000)

YPD (Proteome); http://www.proteome.com/ (single interactions)

DIP http://dip.doe-mbi.ucla.edu/

SGD (Function Junction) http://genome-www.stanford.edu/cgi-
bin/SGD/functionJunction

Myriad-Pronet http://www.myriad-pronet.com/

Curagen http://portal.curagen.com

BIND http://www.binddb.org

BRITE http://www.genome.ad.jp/brite/

Protein networks

Biocarta http://www.Biocarta.com

Genmapp http://gladstone-genome.ucsf.edu/introduction.asp

Kohn (1999) http://discover.nci.nih.gov/kohnk/links.html

Signal Transduction
Knowledge Environment

http://www.stke.org

Schwikowski et al. http://depts.washington.edu/sfields/projects/YPLM/d
ata/index.html

Eilbeck et al. (1999) described another protein-protein interaction database, which was not
accessible at the time of this writing.

http://www.rcsb.org
http://www.mips.biochem.mpg.de/proj/yeast/tables/i
http://www.proteome.com/
http://dip.doe-mbi.ucla.edu/
http://genome-www.stanford.edu/cgi-bin/SGD/functionJunction
http://www.myriad-pronet.com/
http://portal.curagen.com
http://www.binddb.org
http://www.genome.ad.jp/brite/
http://www.Biocarta.com
http://gladstone-genome.ucsf.edu/introduction.asp
http://discover.nci.nih.gov/kohnk/links.html
http://www.stke.org
http://depts.washington.edu/sfields/projects/YPLM/d
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The magnitude of experimental data from large-scale experimental methods makes it seem
impossible to visualize all protein-protein interactions in a single layout, even for relatively
simple organisms such as yeast.

For example, Figure 4 shows a layout that contains the largest component of an
experimentally determined protein-protein interaction map in yeast (as of April, 2000). Specific
functions (according to the YPD classification, Costanzo et al. 2000) are highlighted by color,
and it becomes clear from this map that certain proteins with similar function cluster together.
However, the detail in Figure 5 illustrates that, while proteins and their interactions appear
arranged well in the peripheral regions, in central regions of the layout edges and name labels are
drawn on top of each other, making it impossible to discern individual interactions. Finally,
computer-generated interaction maps have not been designed to contain as much information as
hand-drawn maps.

Figure 4. 2358 protein-protein-protein interactions in yeast (from Schwikowski et al. 2000). Alternative
wiring schemes for complex networks are shown in Kohn (1999) and Strogatz (2001).
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Figure 5. Detail of Figure 4.

In summary, hand-formatted maps (such as those in Michal 1993; Michal 1998; Kohn 1999)
are usually of a higher quality, but — due to the large amount of work involved to construct them —
available for very limited datasets. Finally, with the greater complexity of datasets arising from
more complicated genomes, even hand-formatted maps are likely to be inadequate.

Symbols and conventions
Several authors have suggested symbols for describing protein-protein interactions. Notably,

Kohn (1999) suggested some conventions for building sophisticated models of protein
interactions involved in cell-cycle control and DNA repair (Figures 6-9). Although Kohn s wiring
diagrams are well worked out, they are not generated by an automated system and therefore have
to be redrawn manually when larger changes need to be included. However, his symbols and
conventions might also be used by a computerized system, and therefore are reproduced here.
More recently, Cook et al. (2001) suggested another system for describing complex biological
systems including protein interactions. Other projects are under way and we would like to refer
readers to our web site for updates (http://www.systemsbiology.org/pubs/vizprotein).

Graphs and Graph Drawing
The field of graph drawing deals with the automatic computation of maps from graphs. The

abstract nature of a set of protein-protein interactions can be captured by the mathematical notion
of a graph. Formally, a graph consists of nodes that represent the proteins, and edges between
pairs of nodes that represent protein-protein interactions. Graphs arise in many other fields, such
as sociology, project management, and software engineering, as well as in other areas of biology,
such as taxonomy and biochemistry. Because of this ubiquity, there is an extensive body of graph
theory that deals with mathematical properties of graphs (for an introductory text, see Bollob s
1998).

http://www.systemsbiology.org/pubs/vizprotein
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Symbol MEANING
Non-covalent binding, e.g. between proteins. A node
represents the A-B complex itself.

Asymmetric binding where protein A contributes a
peptide that binds to a receptor site or pocket on
protein B.

Z is the combination of states defined by x and y.

Multimolecular complex: x is A-B; y is (A-B)-C.

Formation of a homodimer. Filled circle on the right
represents another copy of A. The filled circle on the
binding line represents the homodimer A-A.

Figure 6. Kohn s symbols for describing protein-protein interactions (after Kohn 1999). Please note that
Kohn also suggested additional symbols for the stoichiometric conversion of A into B, degradation
products, transport etc. A complete list can be found in Kohn (1999) or online at
http://discover.nci.nih.gov/kohnk/symbols.html. Additional symbols and conventions have been proposed
by other authors such as Cook et al. (2001).

Figure 7 . Kohn s representation of alternative binding modes. Example: heterodimers formed by Cyclins
E, A, and B binding to Cdk1 or 2.; Note that a, c, e, and g each lie on a unique connector line, and each
represents a unique heterodimer, namely (a) CycE:Cdk2, (c) CycA:Cdk2 (e) CycA:Cdk1, (g) cycB:Cdk1.
Nodes b, d, and f, on the other hand, represent dimer combinations, namely (b) Cdk2 complexed with either
CycE or CycA; (d) CycA complexed with either Cdk2 or Cdk1; (f) Cdk1 complexed with either CycA or
CycB. This notation simplifies the representation of multiple alternative interactions: for example, the
interactions of p21, p27, or p57 with various Cyclin: Cdk dimers. A formal rule, required to avoid
ambiguity, is that lines representing alternative interactions must join at an acute angle. Reprinted from
Molecular Biology of the Cell, (1999, volume 10, 2703-2734) with permission by the American Society for
Cell Biology.

http://discover.nci.nih.gov/kohnk/symbols.html
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Figure 8. Kohn s representation of multimolecular complexes and integration of information on
transcriptional regulation: Stimulatory and inhibitory complexes of E2F1, DP1, and pRb. Note that the
promoter element E2 can be occupied either by E2F1:DP1 or by E2F1:DP1: pRb (alternative binding
represented by interaction lines joined at an acute angle). Individual complexes are  (a) E2F1:DP1 dimer;
(b) E2F1:DP1:pRb trimer; (c) E2F1:DP1 bound to promoter element E2 (transcriptional activation shown);
(d) E2F1:DP1:pRb bound to E2 (transcriptional inhibition shown). From Kohn 1999. Reprinted from
Molecular Biology of the Cell, (1999, volume 10, 2703-2734) with permission by the American Society for
Cell Biology.

Figure 9. Kohn s representation of homopolymers: formation and effects of p53 homotetramer. ¥ represent
additional copies of p53. (1) The three additional copies of p53 monomer required to make up the tetramer
are represented by three nodes placed side by side and linked to the identified p53 monomer; a node placed
internally on this line represents the homotetramer itself. (2) p53 tetramer can bind to promoter element. (3)
Tetramerization stimulates (or is required for) phosphorylation of p53 Ser15.Reprinted from Molecular
Biology of the Cell, (1999, volume 10, 2703-2734) with permission by the American Society for Cell
Biology.
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A graph is specified completely by a set of nodes and a set of node pairs as edges, but graph
theory does not stipulate where its nodes and edges are to be drawn. To obtain a drawing or
layout of a graph, as in Figure 3 (h), one needs to further associate (two- or three-dimensional)
coordinates with each node, and specify how the edges are drawn. Performing this task
computationally is the object of graph drawing, a relatively young subfield of computer science
(for an overview, see  Battista et al. 1999). Various attempts have been made to quantify the
quality  of a two-dimensional graph layout. According to common definitions of quality, good

layouts should have evenly spaced nodes: edges should be straight lines, identical or isomorphic
subgraphs should be drawn identically, etc. One of the most prominent criteria, the number of
edge intersections in a graph drawing, has been correlated empirically with human ability to solve
simple problems using that drawing (Purchase 1997).

Planar graphs are graphs that are optimal in this respect, i.e., graphs that can, in some way,
be drawn in two dimensions without any edge crossings. Planar graphs are important in
applications such as the layout of electronic circuits, where different conducting paths are not
allowed to cross each other. Although planar graphs usually permit many layouts without edge
crossings, even efficiently testing whether a given graph is planar is not straightforward (Hopcroft
et al. 1974). However, most graphs, such as those that represent protein-protein interactions, are
not planar.

Spring embedder algorithm
The most widely used algorithm for general larger two-and three-dimensional graphs is the

spring embedder algorithm (Eades 1984). The layout of a graph if computed by modeling a
mechanical system in which the edges of the graph correspond to springs, and nodes correspond
to rings. The springs create an attracting force between the rings when they are far apart, and a
repulsive force repels close rings. One searches for a placement of rings that minimizes the total
energy present in the system, commonly by simulating the behavior of the mechanical system
over a certain period of time. Figure 4 was created using a spring embedder algorithm.

Limitations for large graphs
Working with layouts for very large graphs of 100 or more nodes presents certain technical

limitations. First, the computer time required to execute most practical layout algorithms does not
scale linearly, but rather with the square of the graph size (at least). Many layout objectives, such
as the minimization of edge crossings, translate into NP-hard problems (Garey et al. 1979; Garey
et al. 1983) and take even more time to achieve. Second, in an interactive system with thousands
of nodes or more, just drawing a dynamically changing graph, even though this is a linear
operation, can take unacceptably long.

While faster computers may eventually mitigate the above restrictions, even the best
drawings of large graphs under any of the above quality criteria may not be aesthetically pleasing
or practically usable.

Extension to three dimensions
The increase in available computing power and the advancement of graphical displays and

software standards has inspired work on three-dimensional graph layout. For graphs in three
dimensions, the edge-crossing criterion is no longer helpful in selection of good drawings. Every
graph can be drawn in three dimensions without edge crossings in many ways (Fary 1948). For
displaying protein interactions in three dimensions, a variation of a spring embedder algorithm
has been suggested (Basalaj and Eilbeck 1999).
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Techniques for visualization
There are several techniques to relieve the above described problems with the visualization of

large graphs.

Zoom and pan
A common approach is zoom and pan . This is the same technique that is used by Web

browsers: Instead of showing a Web page from beginning to end, only part of it is shown at every
given moment, and the user can continuously scroll through the Web page by means of a scroll
bar.

Focus and context techniques
Zoom and pan has the disadvantage that zooming makes certain regions of the layout

invisible: one creates a focus , but the context  is lost. Focus and context techniques avoid loss
of context by compressing a layout towards the edges of the window, instead of hiding part of it.
One example of a such a technique is the well-known fisheye effect. Note that focus and context
techniques are complementary to zoom and pan they can be used together.

Collapsing protein classes
A third, complementary, technique to simplify a layout collapses groups of proteins (classes)

into single nodes. Figure 10 was generated from 2709 protein-protein interactions in yeast
(Schwikowski et al. 2000) on the basis of the functional classification of the involved proteins
according to YPD (Costanzo et al. 2000). Each node represents a functional class. Proteins that
have been assigned multiple functions thus contribute to multiple classes. The aggregated
information is summarized in several ways: The number on each edge A-B indicates the number
of protein interactions between proteins of function A and proteins of function B. This number is
also reflected in the thickness of the edge. The numbers in parentheses indicate the number of
intra-class interactions, and the number of proteins in the class, respectively.

Figure 10. Protein classes by functional classification (after Schwikowski et al. 2000).
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Available tools for visualization
Table 3 lists some currently available software packages that visualize arbitrary protein

interactions or can be customized for that task. The databases listed in Table 4 visualize
predefined, limited sets of protein interactions.

Table 3: Visualization tools for general networks

The LEDA library/GraphWin http://www.mpi-sb.mpg.de/LEDA

C++ library for efficient data structures and algorithms; contains graph drawing demo application
Platforms: Linux-PC, Sun, Silicon Graphics, HP, Windows 95/NT (commercial)
Availability: commercial, free license for academic users.  Ref: Mehlhorn et al. 1999

Y-Files http://www-pr.informatik.uni-tuebingen.de/yfiles

Extensible, programmable graph editor, with graph algorithms. Extensions to generation of biochemical
pathway diagrams are underway
Platforms: PC, Macintosh
Availability: free binaries/source code for academic purposes. Ref: Himsolt 1997

Graphlet http://www.infosun.fmi.uni-passau.de/Graphlet/

Extensible, programmable graph editor, with graph algorithms. Extensions to generation of biochemical
pathway diagrams are underway
Platforms: Windows NT/98 or higher, Solaris, Linux
Availability: free binaries/source code for academic purposes. Ref: Himsolt 1997

XGvis http://www.research.att.com/areas/stat/xgobi/index.html

Interactive visualization system for proximity data, graphs and networks
Platforms: Linux, Solaris, other UNIX systems
Availability: Free, incl. source code. Ref: Buja et al. 1998

Tom Sawyer Software http://www.tomsawyer.com/

Cross-platform software library and tools for drawing general graphs.
Availability: commercial
Platform: Macintosh, many UNIX versions, standard WWW browsers
Platforms: Most major operating systems, incl. Windows, Apple Macintosh

CUtenet http://genome6.cpmc.columbia.edu/~tkoike/cutenet/

Interactive graphic editor for signal-transduction pathways and protein interactions.
Availability: ?
Platform: Most major operating systems  (Java application). Ref: Koike & Rzhetsky 2000

http://www.mpi-sb.mpg.de/LEDA
http://www-pr.informatik.uni-tuebingen.de/yfiles
http://www.infosun.fmi.uni-passau.de/Graphlet/
http://www.research.att.com/areas/stat/xgobi/index.html
http://www.tomsawyer.com/
http://genome6.cpmc.columbia.edu/~tkoike/cutenet/
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Table 4: Visualization of specific datasets.

DIP (Xenarios
et al. 2001)

http://dip.doe-mbi.ucla.edu

Visualization of protein-protein interactions in DIP database.
Static images depict neighborhoods 2 and 3 steps away from
center protein. Availability: free
Platforms: Web browser

ProNet http://pronet.doubletwist.com/

Interactive visualization of protein-protein interactions in the
ProNet database
Availability: free
Platforms: Standard WWW browser

GeneNet
(Kolpakov et al.
1998)

http://wwwmgs.bionet.nsc.ru/systems/mgl/genenet/

Interactive visualization of protein interactions in GeneNet
database, based on a number of predefined diagrams. GeneNet
includes entries for DNA, RNA, protein, and cellular interactions.
Availability: free
Platforms: Standard Web browser

PIMRider (Rain
et al. 2001)

http://pim.hybrigenics.com

Interactive visualization of protein-protein interactions with
different viewers
Availability: commercial, free license for academic users
Platform: Standard Web browser

BindDB (Bader
et al. 2001)

http://www.binddb.org

Interactive visualization of protein interactions in BindDB
database.  BindDB contains general biomolecular interactions.
Platform: Standard Web browser
Availablility: free

http://dip.doe-mbi.ucla.edu
http://pronet.doubletwist.com/
http://wwwmgs.bionet.nsc.ru/systems/mgl/genenet/
http://pim.hybrigenics.com
http://www.binddb.org
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INTEGRATING PROTEIN-INTERACTION NETWORKS WITH
SUPPLEMENTAL DATA

Simultaneous display of complementary data types
Proteins are not the only molecules of interest to biologists; nor do protein-interaction

networks function in isolation to govern cellular processes or to influence phenotypes.  On the
contrary, successful visualization of protein-interaction networks leads almost immediately to
questions such as: How do these proteins interact with DNA, substrates, and other cellular
components?  What impact does protein interaction have on the properties and behaviors of each
interacting protein?

In fact, it is not hard to envision incorporating a number of supplemental data types into the
basic network display. Sources of supplemental data generally fall into one of four categories:
new types of interactions, new types of molecules, new information on existing interactions, and
new information on existing molecules (see also Table 1).  For instance, we may wish to visualize
not only interactions between pairs of proteins, but also interactions between these proteins and
ligands or other small molecules.  Similarly, proteins that function as transcription factors may
form complexes that bind particular DNA sequences, as well as interact with a variety of protein
co-factors and annotation or organization taking these properties into account may be useful.
Moreover, we may find it useful to place the protein-interaction network in the context of indirect
evidence such as genetic interactions, or we may wish ultimately to annotate each protein with its
instantaneous expression pattern or each interaction with its relative strength of binding as these
points become known.

To date, numerous articles and textbooks have included figures displaying different types of
molecules and interactions between them.  However, these figures usually invoke a limited
number of components to describe an isolated biochemical process or signaling pathway, are
carefully tailored to illustrate a predetermined concept, and rely heavily on accompanying textual
descriptions (Pirson et al. 2000).  In contrast, there is a pressing need for visual representations
that can systematically present and organize the extremely large amounts of protein-interaction
and expression data rapidly accumulating in the wake of two-hybrid screens, DNA microarray
technology, and high-throughput proteomics.  Such displays are not hand-tailored to illustrate a
foregone conclusion, but should ideally stimulate the discovery of new protein functions and
biological relationships.  As the raw data become increasingly complex with each type of
supplemental information, tools that are both visual and interactive become increasingly
important for emphasizing and extracting the key features.

An example: integrated networks to study galactose metabolism
We now illustrate one method to systematically create and display an integrated interaction

network, as described in Ideker et al. (2001).  Suppose that we are interested in viewing the
molecular interactions that govern a particular cellular process: that of galactose utilization in
yeast.  Our specific goals might be to assess the impact of these interactions on expression of the
galactose-utilization (GAL) genes and to understand how the process of galactose utilization
interacts with other metabolic processes in yeast.

To begin, we construct a database representing all known protein-protein and protein-DNA
interactions in the yeast Saccharomyces cerevisiae.  Protein interactions may be drawn from any
of the sources listed in Table 2 and 4: in this example, we utilize the 2709 protein-protein
interactions compiled by Schwikowski et al. (2000).  Similarly, we obtain all of the 317 protein-
DNA interactions present in either of two publicly-accessible on-line databases (as of July, 2000):
TRANSFAC (Wingender et al. 2000) or the Saccharomyces cerevisiae Promoter Database
(SCPD) (Zhu & Zhang 1999).  These sources link known transcription factors (proteins) to the
genes they regulate (DNA).
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Next, we use a program based on GraphWin (Mehlhorn & N her 1999)  to display these
physical interactions as a graph structure or network, as discussed above.  Because several types
of interactions are now involved, but all of them reflect physical binding events, we refer to this
network as a physical-interaction network.  As shown in Figures 11 through 13, each node
represents a gene and is labeled with its corresponding gene name.  An arrow, or directed edge,
from one node to another signifies that the protein encoded by the first gene can influence the
transcription of the second by DNA binding (a protein→DNA interaction), while a line, or
undirected edge, between two nodes signifies that the proteins encoded by each gene can
physically interact (a protein−protein interaction).  Network layout is performed using the spring-
embedder algorithm included with GraphWin, so that proteins with related functions or that are
involved in the same molecular pathway often end up in the same region of the display.

GAL10

GAL11

MEL1

MIG1
GAL80

GAL1

GAL2

GAL3

GAL4

GAL7
GCY1

3210-3 -1-2

EXPRESSION CHANGE (log10)

protein-DNA
INTERACTIONS

protein-protein

Figure 11. Sample region of an integrated physical-interaction network containing genes involved in
galactose metabolism. Each node represents a gene, an arrow directed from one node to another represents
a protein-DNA interaction, and an undirected line between nodes represents a protein-protein interaction.
The grayscale intensity of each node indicates the change in mRNA expression of its corresponding gene,
with medium-gray representing no change and darker or lighter spots representing an increase or decrease
in expression, respectively (to draw attention to genes with large expression changes, node diameter also
scales with the magnitude of change). To signify that the expression level of GAL4 has been perturbed by
external means, it is highlighted with a red border. According to the interactions in the network, Gal4
regulates expression of many other GAL genes through protein-DNA interactions, while Gal4 s activity is
impacted by protein-protein interactions with Gal80 and Gal11 (see text for details).
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Thus, the region shown in Figure 11 corresponds to the process of galactose utilization, while
the regions shown in Figures 12 and 13 correspond to amino-acid biosynthesis and glycogen
synthesis, respectively.

According to the network, Gal4p is a transcription factor that binds to the promoters of many
other GAL genes, thereby regulating their transcription through protein-DNA interactions (Figure
11).  The network also shows clearly that the activity of Gal4p may be influenced by protein-
protein interactions with Gal80p and Gal11p.  Note that the network specifies only that a
particular protein-DNA interaction takes place: it does not dictate whether the interaction
activates or represses transcription, whether the effect on transcription is rapid or gradual, or in
the case that multiple interactions affect a gene, how these interactions should be combined to
produce an overall level of transcription.  Since these levels of information are not encoded in the
protein-DNA databases, they are also absent from the network display.  Similarly, the protein-
protein databases do not specify whether the Gal80p-Gal4p protein interaction, as shown in the
figure, results in these proteins forming a functional complex or whether one protein modifies
another.  All of this information is known outside of the databases: classic genetic and
biochemical experiments (Johnston & Carlson 1992, Lohr et al. 1995) have determined that
Gal4p is a strong transcriptional activator, and that Gal80p can bind to Gal4p to repress this
function.

PHO13
GCN4

ILV2

RAD52

BAS1

ADE5

HIS3
HIS7

SRP1

YNL311C

MET14

ARG1

ADE4

TRP2

TRP4

RFA1

SER33

SER3

CAR1

TRP3
RFA2

ASN1

FCY1
HIS4

Figure 12. Integration of protein-expression response in the region corresponding to amino-acid
biosynthesis. Nodes and interactions appear as in Fig. 11, with a solid grayscale intensity representing the
change in mRNA expression. Nodes for which protein data are also available contain two distinct regions:
an outer circle, or ring, representing the change in mRNA expression, and an inner circle representing the
change in protein expression. Both mRNA and protein intensity scales are identical to that used in Fig. 11.
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Superimposition of mRNA- and protein-expression changes on the network
To better understand how the physical-interaction network regulates genes, it can be

extremely effective to augment the network with information about gene expression.  As
described previously (Ideker et al. 2001), we [T. Ideker] measured global changes in gene
expression over 20 genetic and environmental perturbations to the GAL pathway.  Wild type (wt)
and nine genetically-altered yeast strains were examined, each with a complete deletion of a
different GAL gene (gal1∆, 2∆,3∆, 4∆, 5∆, 6∆, 7∆, 10∆, or 80∆).  These ten strains were
perturbed environmentally by growth to steady state in the presence (+gal) or absence (—gal) of
2% galactose.  Since many of the deletion strains cannot grow in galactose, 2% raffinose was also
provided in both media as an alternate supply of sugar.  In each of these 20 perturbation
conditions, we monitored changes in mRNA expression over the approximately 6200 nuclear
yeast genes using a whole-yeast-genome microarray.

For any particular perturbation, we can integrate, i.e. graphically superimpose, the resulting
changes in mRNA expression on the network.  Although a number of visual representations are
possible, an obvious choice is to use node color to represent a change in expression of the
corresponding gene.  For example, Figure 11 shows the expression changes resulting from the
perturbation gal4∆+gal, a deletion of the GAL4 gene in the presence of galactose.

When protein-expression data are available, they too can be superimposed on the network
display.  For example, we measured changes in both mRNA and protein levels in wild-type cells
grown in the presence vs. absence of galactose (Ideker et al. 2001).  Using a procedure based on
isotope-coded-affinity-tags (ICAT) and tandem mass spectrometry (Gygi et al. 1999), we
detected a total of 289 proteins and quantified their expression-level changes between these two
conditions.  Figure 12 illustrates the addition of this information to the visual display, focusing on
the region of the network corresponding to amino-acid biosynthesis.  By comparing the mRNA-
and protein-expression responses displayed on each node, one can visually assess whether the
mRNA and protein data are correlated and quickly spot genes for which they are remarkably
discordant.

Integrated networks enable new biological insights
In the previous example, we have integrated at least four types of data into the same graphical

display: protein-protein interactions, protein-DNA interactions, mRNA-expression changes, and
protein-expression changes.  In addition, because interconnected groups of genes tend to have
related functions, the display also confers information about cellular function or process.  What
exactly is gained from this level of integration?  Is superimposing data from multiple, complex
sources on the same graphical display really worth all of the added clutter?

Most generally, the integrated network display is useful because it provides a lucid means of
summarizing existing biological knowledge about molecular behavior.  Although individual
researchers may amass a great deal of knowledge about the molecular interactions underlying one
particular pathway, no single biologist can be familiar with the extremely large and complex
number of interactions in an entire cell.  A computer database, however, tracks all of these,
provided the proper representation is available to allow a biologist to access, display, and
interpret the information.  Moreover, since changes to the database are automatically reflected in
the graphical display, the integrated network is continually up-to-date.  In short, the physical-
interaction databases and the graphical display together constitute an expert system, providing
knowledge about the molecular makeup of the cell which can be queried and viewed by a
biologist.

In our case study of galactose utilization, the network display engenders at least three types of
biological insights.  First, it provides plausible cause-and-effect explanations for numerous
changes in gene expression observed in response to each of the twenty perturbations to the GAL
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pathway.  Note that when GAL4 is deleted in Figure 11, expression levels of GAL1, 7, 10, and
several other genes decrease dramatically, consistent with GAL4 s known role as a transcriptional
activator.  Similarly, in Figure 12 we see that the increase in expression of HIS3, HIS4, HIS7,
ADE4, ARG1 and ILV2 could be controlled by the GCN4 transcription factor.  Interestingly,
GCN4 itself does not change perceptibly in mRNA expression.  However, because seven of the
eight genes it regulates do change, we feel intuitively that GCN4 is somehow involved.  A
subsequent literature search on GCN4 reveals that this gene is in fact regulated translationally, not
transcriptionally (McCarthy 1998), a detail not represented by the network display because we
have not yet measured protein-expression changes for GCN4.  Thus, through a rapid visual scan,
we can determine which gene-expression changes could be caused by known protein-DNA
interactions, and which changes require further research to identify the particular transcription
factors involved.  Going a step further, one can then seek explanations for how each transcription
factor is itself controlled, either by protein-DNA interactions with still other transcription factors,
or through protein-protein interactions with cofactors or signaling proteins.

Second, the network graph highlights groups of physically-interacting proteins that display
joint increases or decreases in expression level across many experimental conditions.  These
coordinate changes suggest that the proteins are controlled by one or more common transcription
factors.  For instance, the genes GAC1, GIP1, PIG2, and GSY2, shown in Figure 13, are not only
involved in protein-protein interactions with each other, but display concomitant increases in
expression.  Moreover, the expression levels of these genes are highly correlated over the twenty
perturbation conditions.  Examples of inverse regulation are also abundant among physically
interacting proteins, where often one protein is known to inactivate the other.  For example, we
observe an increase in expression of Gsy2p, a glycogen synthase, and a corresponding decrease in
expression of Pcl10p, a protein that interacts with and inactivates Gsy2p (Wilson et al. 1999).
Thus, the integrated network suggests that glycogen synthesis is controlled by upregulating an
enzyme and downregulating the enzyme s inhibitor.

PIG2

GAC1

YOR315W

GLC7GLC8

PHO85
PCL5

PCL10

GSY2

REG2

GIP1

GIP2

Figure 13. Co- and inverse-regulation of interacting
proteins. The integrated physical-interaction
network is shown as in Fig. 11, for the region
corresponding to glycogen synthesis. Changes in
mRNA-expression are due to deletion of the GAL4
gene (a gal4∆  vs. wild-type strain, galactose
present). In this and many other perturbation
conditions, the Gac1-Gip1-Pig2-Gsy2 enzyme
complex increases in mRNA expression, while
Pcl10 (which functions to inactivate Gsy2) shows a
corresponding expression decrease.
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Finally, the network graph may be used to confirm newly discovered or controversial
interactions.  Consistent co- or inverse-regulation between two physically-interacting proteins,
over many perturbation conditions, provides strong evidence that the interaction occurs in vivo
and is not an artifact of the particular assay originally used to determine the interaction.  This
confirmation is especially useful given that some experimental techniques for establishing a
physical interaction, such as the two-hybrid screen, may return a substantial number of false-
positive interactions.

Choice of graphical representation
Of course, it is not necessary to implement the same structural or color conventions used in

the example.  Nonetheless, due to the overwhelming amount of information to be loaded onto a
single visual display, a clear, efficient, and consistent graphical representation remains extremely
important.  In the words of Edward Tufte (1983),

Graphical excellence is that which gives to the viewer the greatest number of ideas in the
shortest time with the least ink in the smallest space.

In constructing our integrated interaction graphs, we have relied upon a few short, common-
sense guidelines:
1. High visual density is to be desired, not avoided.  Often, clutter and confusion are failures of

design, not complexity (Tufte 1983).  Many different attributes can be varied on the same
graph, each conveying a different type of information: node size and color; node border width
and color; node-label font, font size, and font color; edge directionality, width, and color.  We
have varied only a small subset of these attributes in the visual displays of the previous
example.

2. When including many different types of data in the same display, use the fewest number of
colors required to represent each type.  The key to managing visual complexity is to make
each type of information use the fewest graphical resources possible.  Because the eye is
particularly drawn to changes in color, color should be used judiciously to emphasize only
the most important features of the display.  For example, although changes in gene-
expression are often displayed with two color scales (e.g., red for increases in expression and
green for decreases in expression), these data are fundamentally one-dimensional; if
necessary, they can be displayed with a single color or grayscale (e.g., Figure 11), freeing up
a larger range of colors to encode other types of data.  Moreover, contrasts of red and green
are particularly ill suited to convey information to the ~8% of men who are fully or partially
red-green color blind (Passarge, 1995).  In short, careful use of color is the key to
representing highly-dimensional data sets.

3. Display new types of data only if there is a clear biological goal that relies on these data.
The choice of which information to display, out of all information accessible from the
databases, must always be driven by biological inquiry.  For instance, if our goal is to
understand which protein-DNA interactions can cause a particular gene expression pattern,
information such as the amino-acid sequences of each protein or the genomic location of the
corresponding gene would be of low interest.  Alternatively, each of these data types may be
assigned to a distinct visual layer, which can be temporarily hidden when the data in the layer
are not directly relevant.
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From visual representation to a predictive model: early steps towards gene-expression
modeling using physical-interaction networks

Beyond their use as graphical displays, physical-interaction networks can function as
predictive models of the cell.  For instance, with a few added formalisms that we shall discuss
shortly, the physical-interaction network developed in our example  can predict all of the changes
in gene expression that could be caused by a particular perturbation.  Such predictions are highly
informative when compared to their true, observed values measured in laboratory experiments:
for any gene expression level that changes in experiment but not in simulation, we may conclude
that one or several physical interactions are unknown and/or absent from the network model.

Predictions are obtained by running simulations.  To see how, recall that the network
represents two types of interactions, protein-DNA and protein-protein.  These interactions can
produce very different effects: a protein-DNA interaction can affect the expression level of a
gene, while a protein-protein interaction can cause a protein to become active or inactive with
regard to its biological function.  However, a protein-protein interaction by itself cannot elicit a
change in gene expression (without the aid of an associated protein-DNA interaction), just as a
protein-DNA interaction usually affects protein activity only indirectly, by influencing whether
the protein is expressed.

These interaction types imply at least two types of information associated with each node X:
a gene expression level Xe and a protein activity Xa.  A perturbation to the network may elicit a
change in Xe through an incoming protein-DNA interaction from a node Y (Y→X), if Y also
undergoes a change in activity Ya.  In contrast, Xa may change either if the perturbation causes a
change in Xe, or if X is involved in a protein-protein interaction with a node Z which undergoes a
corresponding change in activity Za.  Figure 14 summarizes these rules.

Xe   may depend on  Y a  for all protein -DNA interactions Y ♦ X 

Xa   may depend on  Xe and Za  for all protein -protein interactions Z X 

Xa 

Za 

Xe 

Ya 

Y X Z 

 

 

 

 

∩  

Figure 14. Rules governing the effects of physical interactions on gene expression and protein activity.
Each node X in the physical-interaction network (left) has an associated expression level Xe and activity
level Xa (right). These levels may change in response to (i.e., may depend on) changes at adjacent nodes Y
or Z according to rules highlighted in the box. Rules are qualified with the word may because the network
does not specify in what conditions the interactions occur or how multiple interactions should be combined
to produce an overall expression or activity level.
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Along with the network model, these rules are sufficient to predict possible changes in gene
expression resulting from perturbation of any particular node in the network.  It then becomes
straightforward to perform these simulations automatically, by implementing these rules directly
in software.  Since the network model does not specify precisely how a node combines the
relevant input interactions to determine its expression level or protein activity, it is not possible to
state definitively whether a change actually occurs: we only know if a change may occur.
However, it is possible to predict which nodes are not, under any circumstances, affected by a
particular perturbation to the network.

Prediction of expression changes resulting from particular perturbations to the galactose-
utilization network

As an example, consider Figure 15a, which once again displays the region of the physical-
interaction network corresponding to galactose utilization.  In this case, the network has been
perturbed by deletion of the GAL3 gene in the presence of galactose.  The resulting changes in
gene expression, as observed by microarray experiment, are superimposed on this graph.  To
perform the corresponding simulation, we reason that deletion of GAL3 is likely to affect GAL3e

and GAL3a.  In turn, a change in GAL3a may affect GAL80a, which then may affect GAL1a or
GAL4a, as mediated through protein-protein interactions.
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Figure 15. Predicting changes in gene expression in the region of the integrated network corresponding to
galactose metabolism. The grayscale intensity of each node reflects the experimentally-observed change in
mRNA expression for a gal3∆  vs. wild-type strain in galactose. (a) Forward simulation, starting from the
perturbed gene GAL3 (highlighted in red). Red edges denote interactions that may transmit a change, either
in expression or activity, from one node to another (according to the rules described in Fig. 14). Nodes
highlighted in blue denote genes whose expression levels may change as a result. Experimentally-observed
expression changes in these blue genes are consistent with the simulation. (b) Reverse simulation, tracing
backwards from GAL7 (highlighted in blue), whose expression state has changed in response to
perturbation of the network. Here, blue edges denote interactions which may transmit a change, leading to
nodes that are highlighted in red if their corresponding genes were observed to change significantly in
expression. These red nodes are possible causes  of the change observed at GAL7 .
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Although a change in GAL1a has no further impacts on the network, a change in GAL4a can
affect GAL7e, GAL10e, and many other expression levels through protein-DNA interactions.
Thus, experimentally-observed expression changes in GAL7 and GAL10 are consistent with those
predicted by the network.

For observed changes in gene expression that are not predicted by the network model, a legal
path between the perturbed and affected gene does not exist.  However, it is possible that a
segment of this path is present in the network, offering at least a partial explanation for the
observed change.  One approach to finding this partial path is to start at an affected gene and
work backwards towards the perturbed one.  Figure 15b gives an example of this type of
simulation.  Here, we start at GAL7, which exhibits a clear decrease in gene expression under this
perturbation condition.  Working backwards, we see that a change in GAL7e could be explained
by incoming protein-DNA interactions implicating GAL4a or GAL11a.  GAL4a could likewise be
affected by GAL80a, and GAL80a affected by GAL1a or GAL3a.  Since dramatic changes in gene
expression were observed for GAL1 and GAL3, they become possible causes  of the change
observed at GAL7.

Although our simulation implicates GAL3 as a possible cause of the expression change at
GAL7, the perturbed node may not always be reachable through a backwards path.  However, in
performing the simulation, we hope to identify upstream nodes that are one or several steps closer
to it.

FUTURE DIRECTIONS
In the future, the available methods for data integration and network visualization should be

extended in a number of important directions.  First, there is a need for more complex integration
schemes than have been presented here.  For instance, although small molecules such as
metabolites, drugs, or hormones are known to directly influence the expression of many genes
and proteins, they do not appear in the network graph.  One could represent these compounds as
nodes in the graph and define a new type of  physical interaction to represent the enzymatic
transformation of one metabolite to another.

Second, we also need better algorithms for automated layout.  Although the spring embedder
and similar algorithms draw the graph so that strongly-connected subsets of nodes are grouped
together in two dimensions, an improved layout algorithm would not only group together
interacting proteins, but could attempt to explicitly group together nodes that are of similar
biological function, subcellular localization, or that have similar gene-expression responses to
perturbation.

Finally, it would also be extremely useful to display a much wider range of information about
existing nodes and interactions.  For example, the improved display might supply information
about the structural or functional implications of a protein-protein interaction.  Are the interacting
proteins subunits of a larger complex, or does the interaction instead result in covalent
modification of one of the proteins?  Alternatively, when using the network graph as a guide to
explain experimental observations, one might like to know how much confidence to place in each
interaction.  For example, was the interaction predicted computationally or determined
experimentally, and is it supported by corroborating evidence?  We anticipate that these types of
data will become increasingly available as annotation of the public databases becomes more
systematic and complete.  The challenge will then be to integrate the new data in such a way as to
increase our understanding of the underlying biological processes, not obscure them in
convoluted figures or excessive detail.  Ultimately, these added layers of information will make
the network even more powerful as a model on which simulations may be performed to predict
experimental outcomes.
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